Search for $B \rightarrow X_s \nu \bar{\nu}$ decay in Belle II Experiment

30th ICEPP Symposium

University of Tokyo

Junewoo Park

Motivation

- $B \rightarrow X_s \nu \overline{\nu}$ decay is theoretically clean
- It is flavour changing neutral current (FCNC) process
 - $BR = (2.9 \pm 0.3) \times 10^{-5}$ by Standard Model [Journal of High Energy Physics 2015.2 (2015): 1-39.]
 - It can be enhanced by new physics, like Z' boson [Journal of High Energy Physics 2009.04 (2009): 022.]
- This decay mode have not been studied at Belle and Belle II $UL(b \rightarrow sv\bar{v}) = 6.4 \cdot 10^{-4}$ (90CL) by ALEPH [The European Physical Journal C-Particles and Fields 19.2 (2001): 213-227.]

Belle II Experiment

- Electrons and positrons are accelerated up to 7 GeV and 4 GeV respectively by SuperKEKB
- Its energy correspond to the resonance of Υ(4S) which mainly decay into B meson pair
 10.58 GeV
- Belle II detector consists of several sub-detector components
 - pixelated silicon sensors (PXD), silicon strip sensors (SVD), central drift chamber (CDC), Aerogel Ring Imaging Cherenkov (ARICH), electromagnetic calorimeter (ECL), and K_L^0 and muon detector (KLM)

Υ (4*S*) DECAY MODES

	Mode	Fraction (Γ_i)	Fraction (Γ_i/Γ)	
L	BB	> 96	%	95%
>	B^+B^-	$(51.4\ \pm 0.6\)\ \%$		

Event Generation

- For MC study, MC samples are produced
 - Particle decay and kinematics are simulated by `EvtGen`
 - Detector simulation is done by `Geant4`
- For background sample

Official background samples are used. 6 types of samples are used:

• $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$ • $e^+e^- \rightarrow q\overline{q} \ (q = u, d, s, c)$

Event Generation

• $B \to K \nu \bar{\nu}, B \to K^* \nu \bar{\nu}$, and non-resonant $B \to X_s \nu \bar{\nu}$ MC samples are produced separately

 $B \rightarrow K \nu \bar{\nu}$ and $B \rightarrow K^* \nu \bar{\nu}$ samples are produced based on form factors [PhysRevD.107.014510] [JHEP08(2016)098]

$$\mathcal{M}(B \to K \nu \bar{\nu}) \propto f_+(q^2) \left\{ (p_B + p)_\mu - \frac{m_B^2 - m_K^2}{s} q_\mu \right\} (\bar{\nu} \gamma^\mu (1 - \gamma_5) \nu)$$

 $\mathcal{M}(B \to K^* \nu \bar{\nu}) \propto T_{\mu}(\bar{\nu} \gamma^{\mu} (1 - \gamma_5) \nu), \text{ where } T_{\mu} = (m_B + m_{K^*}) A_1(q^2) \epsilon_{\mu}^* - A_2(q^2) \frac{\epsilon^* \cdot q}{m_B + m_{K^*}} (p + p_{K^*})_{\mu} + i \frac{2V(q^2)}{m_B + m_{K^*}} \epsilon_{\mu\nu\rho\sigma} \epsilon^{*\nu} p^{\rho} p_{K^*}^{\sigma}$

Event Generation

• For non-resonant $B \rightarrow X_s \nu \overline{\nu}$ MC samples, following distribution is used [JHEPO4(2009)]

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} \propto \sqrt{\lambda(1,\hat{m}_s,s_b)} \left[3s_b \left(1 + \hat{m}_s^2 - s_b - 4\hat{m}_s + \lambda(1,\hat{m}_s,s_b) \right) \right] \text{ , where } \hat{m}_s = m_s/m_b \text{ and } s_b = q^2/m_b^2$$

• To determine the mass of non-resonant X_s , Fermi motion model is used [PhysRevD.55.4105]

Inside B meson, b-quark are assumed to follow $\phi(p) = \frac{4}{\sqrt{\pi}p_F^3} \exp\left(\frac{-p^2}{p_F^2}\right)$ as a momentum distribution

- Then non-resonant X_s decays by PYTHIA
 - ratio between decay modes (fragmetation) cannot be reliable
 - Fragmentation is corrected by $B \to X_S \gamma$ decay and uncertainty is estimated by $B \to X_S J/\psi$ decay

Analysis Procedure

• In $B \to X_s \nu \overline{\nu}$ decay, there are two neutrinos, which leads to large amount of background

 \bullet One side of B meson (B_{tag}) is reconstructed by common decay modes

• The tool FEI (full event interpretation) is used to reconstruct it automatically [541781-019-0021-8]

• Information of B_{tag} can be used to remove background

$$M_{bc}^{tag} \equiv \sqrt{E_{beam}^2 - |p_B^2|}$$
 - generally B meson mass for signal
 $\Delta E^{tag} \equiv E_B - E_{beam}$ - generally 0 for signal

Analysis Procedure

• 30 decay modes are reconstructed (sum of exclusive method)

		$B^0 ar{B}^0$			B^{\pm}	
K	K_S^0			K^{\pm}		
$K\pi$	$K^{\pm}\pi^{\mp}$	$K^0_S \pi^0$		$K^{\pm}\pi^0$	$K_S^0 \pi^{\pm}$	
$K2\pi$	$K^{\pm}\pi^{\mp}\pi^{0}$	$K^0_S \pi^{\pm} \pi^{\mp}$	$K^0_S \pi^0 \pi^0$	$K^{\pm}\pi^{\mp}\pi^{\pm}$	$K_S^0 \pi^{\pm} \pi^0$	$K^{\pm}\pi^{0}\pi^{0}$
$K3\pi$	$K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\mp}$	$K^0_S \pi^{\pm} \pi^{\mp} \pi^0$	$K^{\pm}\pi^{\mp}\pi^{0}\pi^{0}$	$K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{0}$	$K^0_S \pi^{\pm} \pi^{\mp} \pi^{\pm}$	$K^0_S \pi^\pm \pi^0 \pi^0$
$K4\pi$	$K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\mp}\pi$	${}^0K^0_S\pi^\pm\pi^\mp\pi^\pm\pi^\pm$	$FK^0_S \pi^{\pm} \pi^{\mp} \pi^0 \pi^0$	$K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\mp}\pi^{\mp}\pi^{\mp}\pi^{\mp}\pi^{\mp}\pi^{\mp}\pi^{\mp}\pi^{\mp$	${}^{\pm}\!K^0_S \pi^{\pm} \pi^{\mp} \pi^{\pm} \pi^0$	$K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{0}\pi^{0}$
3K	$K^{\pm}K^{\mp}K^0_S$			$K^{\pm}K^{\mp}K^{\pm}$		
$3K\pi$	$ K^{\pm}K^{\mp}K^{\pm}\pi^{\mp}$	$K^{\pm}K^{\mp}K^0_S\pi^0$		$K^{\pm}K^{\mp}K^{\pm}\pi^{0}$	$K^0_S K^\pm K^\mp \pi^\pm$	

- It covers ~83% of my non-resonant X_s sample
- $K\nu\bar{\nu}$ and $K^*\nu\bar{\nu}$ decays account for 16.8% and 33.0% of total $X_s\nu\bar{\nu}$ sample

Signal Selection

Preselection

To reduce combinatorial backgrounds

- $M_{X_s}^{Rec} < 2.0 \text{ GeV}/c^2$
- Kinematic Fit converges for compatible X_s decay modes
- Kinematic Fit converges for B_{tag}

To reject backgrounds with additional tracks

• the number of remaining loose tracks [†] = 0

To reject backgrounds with additional particles

- the number of remaining $\pi^0 = 0$
- the number of remaining $K_S^0 = 0$

Signal Selection

Several selections are applied

loose selection is applied. Optimization is done at MVA stage

- $M_{bc}^{tag} > 5.27 \text{ GeV}$
- $\left|\Delta E_{bc}^{tag}\right| < 0.2 \text{ GeV}$
- remaining energy in the calorimeter < 1.3 GeV
- 0.297 < $\theta_{\rm missing}$ < 2.618 rad
- $0.5 < p_{X_s} < 2.96 \text{ GeV}$
- reject $1.84 < M_{Xs}^{Rec} < 1.89 \text{ GeV}$
- There can be more than one candidates Best candidate selection is done by B_{tag} side information

MVA

- BDT is used as a multi variate analysis (MVA)
 - 30 variables are used for BDT
 - Independent sample is used to check an overfitting
 - powerful variable: remaining energy in the calorimeter
 - These variables are selected based on discriminant power
- Figure of merit (FOM) is used to select BDT cut

• FOM = $\frac{S}{\sqrt{S+B}}$,

where S and B are the number of signal and background, respectively

 BDT output > 0.96 is applied: ensures good sensitivity and relatively high signal efficiency

Corrections

• Several corrections are applied

There can be difference between data and MC. We need to correct it! Some examples:

PID correction

- official correction factors for particle identification are applied
- K and π efficiency, and K and π fake rate from leptons are corrected

π^0 efficiency correction

- official correction factors for π^0 reconstruction is applied

Fragmentation correction

- non-resonant $X_s \nu \bar{\nu}$ decay is produced by PYTHIA, which should be corrected
- use the result of $B \rightarrow X_s \gamma$ study

Corrections

- Several corrections are applied
 Some examples:
 - $B
 ightarrow K^{(*)} n \overline{n}$ mismodeling correction
 - MC sample is produced based on flat phase space
 - it was found that there is a enhancement near a threshold
 - use the result of $B \rightarrow K^{(*)}p\bar{p}$ study [j.physletb.2007.11.063.] [PhysRevLett.100.251801] [PhysRevD.76.092004]
 - $M_{n\bar{n}}$ distribution and BR are corrected
 - $B
 ightarrow KK^0_L K^0_L$ mismodeling correction
 - MC sample does not agree with the experimental result
 - use the result of $B \rightarrow KK_S^0K_S^0$ study [PhysRevD.85.112010] [PhysRevD.85.054023]
 - Dalitz plots are reweighted

MC Result

• The expected yields:

Signal: 16.9 events Charged: 347.5 events Mixed: 171.5 events UUBAR: 73.1 events DDBAR: 15.1 events SSBAR: 99.1 events CHARM: 97.5 events

mixed background

charged background

Systematics

 Several systematics are estimated some examples:

Background normalization

- The number of background may not agree with data
- conservatively apply $\pm 30\%$ uncertainties on each backgrounds
- motivated by the $B \rightarrow K \nu \bar{\nu}$ analysis [arXiv:2311.14647]

MC Statistics

comes from statistical uncertainty of MC sample

Difference of $B \rightarrow K$ form factors

• comes from two theoretical values [JHEP02(2015)184] [PhysRevD.107.014510]

BR of major B meson decays

- uncertainty of BR is obtained by PDG
- for major B decays, uncertainties are applied

Source	Type	σ_{μ}
Background normalization	OverallSys	$^{+0.81}_{-0.84}$
MC statistics	StatError	$^{+0.78}_{-0.63}$
Photon multiplicity correction	HistoSys	$^{+0.40}_{-0.19}$
Difference of $B \to K$ form factors	HistoSys	$^{+0.46}_{-0.11}$
BR of main B meson decays	HistoSys	$^{+0.39}_{-0.16}$
$q\bar{q}$ shape	HistoSys	$^{+0.19}_{-0.17}$
Efficiency correction for $q\bar{q}$	OverallSys	$^{+0.15}_{-0.12}$
FastBDT efficiency	OverallSys	$^{+0.19}_{-0.05}$
uncorrelated systematics	ShapeSys	$^{+0.10}_{-0.12}$
Fraction of decay modes	HistoSys	$^{+0.18}_{-0.04}$
FEI calibration for $B\bar{B}$	HistoSys	$^{+0.15}_{-0.07}$
π^0 reconstruction	HistoSys	$^{+0.10}_{-0.10}$
$B \to K$ form factor	HistoSys	$^{+0.13}_{-0.03}$
Mass width of K^*	HistoSys	$^{+0.07}_{-0.02}$
K_S^0 reconstruction	HistoSys	$^{+0.04}_{-0.04}$
$B \to K^*$ form factor	HistoSys	$^{+0.06}_{-0.01}$
BB counting	OverallSys	$^{+0.06}_{-0.02}$
$K^* - X_s$ transition	HistoSys	$^{+0.06}_{-0.01}$
Pion ID	HistoSys	$^{+0.03}_{-0.03}$
Fragmentation	HistoSys	$^{+0.04}_{-0.01}$
Kaon ID	HistoSys	$^{+0.03}_{-0.02}$
BR of $D \to K_L^0 X$ from B meson	HistoSys	$^{+0.00}_{-0.02}$
BR of $B \to K^{(*)} n \bar{n}$ decay	HistoSys	$^{+0.01}_{-0.01}$
Fermi motion momentum	HistoSys	$^{+0.01}_{-0.00}$
b-quark mass	HistoSys	$^{+0.01}_{-0}$
Tracking efficiency	HistoSys	$^{+0}_{-0.01}$
BR of $B \to K K_L^0 K_L^0$	HistoSys	$^{+0}_{-0}$
statistical uncertainty		$^{+1.40}_{-1.29}$

15

Systematics

• Several systematics are estimated

Mass width of K^*

- In theoretical calculation, the mass of K^* is fixed
- In MC generator, the mass of K^* has a finite width

The effect of it is estimated

Fitting and Limit Setting

- BDT output is used as a fitting variable
- PDF is constructed by HistFactory

$$\mathcal{P} = \prod_{b \in \text{bins}} \text{Pois}(n_b | \nu_b) \cdot \prod_p f_p(a_p | \alpha_p)$$
Poisson distribution
For each bin/channel
Constraint term for systematic uncertainty
(nuisance parameters)

 $\times n_{\rm h}$: the number of observed event by data

 $\times v_{\rm h}$: the number of expected event by MC

 $\times a_{\rm p} :$ nominal value of nuisance parameter

 $\times \alpha_{\rm p}$: nuisance parameter

.

Orange means the probability that we found n_b events **Blue** means the probability that we found NP a_p

• Histogram template can easily describe variable shape

Toy MC study

- Toy MC study is done
 - fluctuate nuisance parameters and produce toy MC
 - `pull` should follow normal distribution, if fitter works fine.
 - pull is calculated:

Linearity Test

- Linearity is done
 - do toy MC study for different μ values
 - check the μ distributions and fit them by Gaussian function
 - shows good linearity

 $\mu = 1$ corresponds to SM prediction (BR = 2.9×10^{-5})

Asimov Fit

- Fit is done with Asimov data [†]
 - To check the rough result
- No significant signal
 - Need to set an upper limit

Upper Limit

- Upper limit is calculated by CLs method calculated with 362 fb⁻¹
- Frequentist method

null hypothesis ($\mu = 0$): UL = 9.17 × 10⁻⁵ (90CL) Asimov data ($\mu = 1$): UL = 1.14 × 10⁻⁴ (90CL)

• Hybrid method

null hypothesis ($\mu = 0$): UL = 9.72×10^{-5} (90CL) Asimov data ($\mu = 1$): UL = 1.23×10^{-4} (90CL)

* ALEPH experiment: $UL = 6.4 \times 10^{-4}$ (90CL)

* $B^+ \to K^+ \nu \bar{\nu}$ result: $BR = 2.3^{+0.5}_{-0.5} (\text{stat})^{+0.5}_{-0.4} (\text{syst}) \times 10^{-5}$ [arXiv:2311.14647]

Action Item

- The signal efficiency is low at high multiplicity region
 - separate the candidate by M_{X_s}
 - result = $K + K^* + X_s$, which is better than just K

22

Summary

- Analysis procedure is established
- Several systematic uncertainties are estimated
- Upper limit is estimated

Plan

• New fitting method

Backups

FastBDT Variables	Explanation	
Bsig_KSFWVariables_hso04	KSFW variables of X_s	
Bsig_cosTBTO	cosine of angle between thrust axis of the X_s and thrust axis of ROE	
Bsig_useCMSFrame_p	momentum of X_s in CMS frame	
Btag_CleoConeCS_1, 2, 3	cleo cones from the continuum suppression	
Btag_KSFWVariables_hoo2, hoo4	KSFW variables of B_{tag}	
Btag_cosTBTO	cosine of angle between thrust axis of the B_{tag} and thrust axis of ROE	
Btag_extraInfo_SignalProbability	Signal probability value of FEI	
Btag_useCMSFrame_theta	polar angle of B_{tag} in CMS frame	
extraInfo_boEeclv133	extra energy from ECLClusters	
extraInfoboNgammav133bc	the number of photon candidates in ROE	
foxWolframR3	Ratio of the 3-rd and 4-th to the 0-th order Fox Wolfram moments	
harmonicMomentThrust 2	Harmonic moment calculated with respect to the thrust axis	
missingMomentumOfEvent	magnitude of the missing momentum in laboratory frame	
missingMomentumOfEvent_theta	theta angle of the missing momentum of the event in labo- ratory frame	
nRemainingTracksInEvent	the number of tracks in ROE	
roePTheta_bocleanMask_bc	polar angle θ of momentum of ROE. ROE means rest of event with respect to B_{tag} plus X_s	
Bsig_daughter_0_extraInfo_Dcsimpleveto_dz	dz of charged D meson candidate	
Bsig_daughter_0_extraInfo_Dcsimpleveto_M	mass of charged D meson candidate	
Bsig_daughter_0_extraInfo_D0simpleveto_dz	dz of neutral D meson candidate	
Bsig_daughter_0_extraInfo_D0simpleveto_M	mass of neutral D meson candidate	

Fake hadron (signal)

Fake hadron (background)

Reconstruction Precedure

Reconstruction method

Reconstruction Precedure

Reconstruction method

