Research and Development of the COMET trigger counter

Feb 18th 2024 30th ICEPP Symposium **Ryoka SASAKI**

Contents

- 1. The COMET experiment
- 2. Development of Detector System for the COMET Phase-I
- 3. Beam time at PSI
- 4. Analysis
- 5. Results
- 6. Discussion
- 7. Summary

COMET experiment

COMET (<u>COherent Muon to Electron Transition</u>) Search for Charged Lepton Flavour Violation @J-PARC

 $\mu^- + N(A,Z) \rightarrow e^- + N(A,Z)$

<u> μ -e conversion rate</u> < $O(10^{-54})$ in the Standard Model (SM)

 $\sim O(10^{-15})$ in BSM

COMET Phase-I (2026?) Single event sensitivity : 3×10^{-15}

COMET Phase-II (203X)

Single event sensitivity : 3×10^{-17}

Cf) SINDRUM II (Au target): 7×10^{-13} **Feb 18th 2024**

<u>CyDet (Cylindrical Detector system)</u>

CDC (Cylindrical Drift Chamber)

Specifications

Drift chamber with 4967 sense wires

Purpose

- Tracking particles
- Measuring momentum of particles

CTH (Cylindrical Trigger Hodoscope)

Specifications

• 4-fold coincidence

Purpose

- Timing of signal event and trigger signal
- Make CDC to start taking data

Feb 18th 2024

30th ICEPP symposium

CTH (Cylindrical Trigger Hodoscope)

The requirements

- Time resolution ≤ 1 ns
- ~40 p.e. for electrons around 105 MeV/c SiPM will be damaged by neutron in physics run -> increasing dark pulse

To making a trigger properly, sufficient amount of light output is needed.

Situation

The design of CTH is almost finalized.

->We made a part of CTH with optical fibre, SiPM, scintillators for performance evaluation.

Feb 18th 2024

30th ICEPP symposium

Making the realistic CTH prototype

Same as actual setup :

- Scintillator : Saint Gobain crystals BC-408
 - A,B 370 mm x 80 mm x **5 mm**
 - C,D 340 mm x 88 mm x **10 mm**
- **Optical fibre** 124 per a counter

In the real experiment, 5.0 m and 7.5 m fibre will be used.

• SiPM : HAMAMATSU S14161-3050HS-04

Feb 18th 2024

30th ICEPP symposium

Performance evaluation

The requirements

- Time resolution $\leq 1 \text{ ns}$
- ~40 p.e. for electrons around 105 MeV/c

Motivation

Understanding the response for particles Checking the detector response in detail

Reducing muon background

Muon around 105 MeV/c can be background.

Making the realistic CTH partly The detector performance was evaluated at PSI (Paul Scherrer Institut)

Feb 18th 2024

30th ICEPP symposium

Beam time at PSI

Pictures of the beam time

Feb 18th 2024

30th ICEPP symposium

Definition of TOF

Time of flight (TOF)

TOF at trigger counter

Time of flight is defined as ttrig - tree, where tree is an RF signal timing given by the accelerator.

Feb 18th 2024

30th ICEPP symposium

Particle identification by using TOF

The particles with the same PID and momentum have the same TOF

Both positive/negative particles showed the same TOF at the same momentum.

Setting the time range shown by colour lines to sort the particles.

Positive beam 105 MeV/c Negative beam 105 MeV/c Electron Muon 10 [pC] Positive beam 125 MeV/c Negative beam 125 MeV/c JC Time[ns] Time[ns] Electron 10² Pion Muor MARKEN, CARACTER AND and the second second

Feb 18th 2024

Ryoka SASAKI

30th ICEPP symposium

Evaluation of light output

Fitting the histogram of each		
particle with Gaussian		
	70	
Using the neak of the fit for calculating the	60	
light output		
ngni output	40	
In this presentation	30	
we assume that 1 p.e. ~ 2.5 mV .	20	
	10	

30th ICEPP symposium

An example of peak distribution

Counter	Electron(105 MeV/c)	50 Electron (125 CTH 3 Peak for all @ 105 MeV/c 50 Electron (125 CTH 3 Plak for all @ 105 MeV/c
Α	20.5	400 20.6
B	21.0	300 21.1
С	15.8	15.8
D	24.3	$\begin{smallmatrix} 0 \\ 0 \\ 0 \\ 20 \\ 40 \\ 60 \\ 80 \\ 100 \\ 120 \\ 140 \\ 10 \\ 10 \\ 140 \\ 10 \\ 10 \\ 10 \\$

Discussion

Optical coupling of the setup

The connection between SiPM and fibre bundle may cause low light yield.

- The surface of fibre bundle was not flat.
- The fibre arrangement was not uniform.
- A few fibres were broken.

Light reflector for scintillator

Lower reflectance near the wavelength of light emission of BC-408

Accuracy of jig position

Jigs for fixing fibre are made with a 3D printer.

Feb 18th 2024

30th ICEPP symposium

More investigations are needed to get sufficient light output !

Summary

- The COMET experiment searches for the μ -e conversion with the world's best sensitivity.
- The CTH is currently under development for the COMET Phase-I physics measurement.
- The first beam test for the realistic CTH prototype was carried out to evaluate the detailed detector response.
- We found that electrons and muons are separated around 105 MeV/c.
- The number of photo electrons was fewer than the requirements for the CTH.
- Additional investigations and improvement in fibre couplings are needed to increase light output.

Feb 18th 2024

Back up

Datasets ->Backup

Measurement with 3 types of momentum of beam, different positions of CTH, beam polarity

Run No.	Category	Beam polarity	Momentum(MeV/c)
278-280	Momentum scan	Negative	105,125,150
281-284	Move the counter : ±12.5 cm shift (along x axis)	Negative	105,125
285-287	Move the counter : 2.5 cm up (along y axis)	Negative	105,125
288-291	Angle the counter : 15 deg and 30 deg along y axis	Negative	105,125
292-293	Test of positive beam	Positive	105,125
294-295	Positive beam (same setup as Momentum scan)	Positive	105,125
296-297	Reproducibility check	Negative	105,125
298-301	Back side (particles go through $A \rightarrow B \rightarrow C \rightarrow D$)	Neg/Pos	105,125
302	SAM's amplifier test	Positive	105,125

Feb 18th 2024

30th ICEPP symposium

Measurement for 1 p.e.

- Quick measurement to see 1 p.e.
- Need to make a firmly measurement •

Feb 18th 2024

Channel 1

30th ICEPP symposium

