MEG II 実験液体キセノン検出器用 VUV-MPPCの放射線耐性に関する研究 (Study on Radiation Damage of VUV-MPPC for the Liquid Xenon Detector in the MEG II Experiment)

Ryusei Umakoshi,

On behalf of the MEG II collaboration,

The University of Tokyo

Core-to-Core Program

Mu - E - Gamma collaboration

Introduction

- In SM, $\mu^+ \rightarrow e^+ \gamma$ decay is prohibited
- $\mu^+ \rightarrow e^+ \gamma$ decay
 - Two-body decay
 - Muon decay into e^+ and γ with 52.8 MeV
 - Background limits the sensitivity of signal
 - Physics and accidental background (from $\mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu$, $\mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu \gamma$ and Annihilation In Flight (AIF))
 - Reconstruction of position, energy, timing for e^+ and γ is important!!
 - Searching the e⁺ and γ which decayed at "same point", "simultaneously", "opposite each other", with "same energy".
- MEG II experiment
 - Searching for $\mu^+ \rightarrow e^+ \gamma$ as probe of a theory beyond SM
 - with most intense muon beam (7×10⁷ μ /s)
 - Sensitivity in 2021 run: 8.8×10⁻¹³
 - Approaching the MEG (5.3×10^{-13}) even for several weeks

Introduction

- For gamma-ray measurement
 - LXe detector (Liquid Xenon detector)
 - measure the position, energy, timing
 of gamma-ray
 Vacuum UltraViolet (VUV)
 light sensitive MPPCs
 - Using VUV-MPPCs ←
- LXe scintillator
 - Stable low temperature (~168 K) is needed
 - The scintillation wavelength is shorter than visible light ($\lambda = 175$ nm)
 - Purity of LXe affects the light yield

nent

(Today's topic)

Background of this study

- Photon detection efficiency (PDE) for VUV rapidly decreases during physics run.
 - Found that PDE can recover by annealing (70 °C, 28h)
 - MEG II experiment was continued by annealing VUV-MPPCs (from 2021)
 ->not crucial for experiment
 - But we still want to understand cause

 $N_{\rm photon} = 1.1 \times 10^{11} \, \rm photon/mm^2$

Background of this study

- Radiation environment
 - Radiation from the muon stopping target
 - gamma ray
 - VUV light
 - Radiation from the accelerator
 - neutron
- PDE degrease at the center is larger
- Muon stopping target is put on the center of LXe along to beam axis
 - Most likely to be caused by radiation from muon target

Radiation candidates: gamma-ray, VUV light

Radiation damage of VUV-MPPCs

- Candidate for radiation damage: Surface damage
 - occurs by irradiation of light particle (<300 keV, e.g. gamma-ray or VUV light)
- Previous studies in laboratory
 - VUV light was irradiated to VUV-MPPCs at room temperature, low temperature (~165 K), in liquid xenon
 - Humidified VUV-MPPC was irradiated with VUV light in room temperature
 - Gamma-ray was irradiated to VUV-MPPCs at room temperature, low temperature (~165 K)
- PDE degradation was not reproduced in laboratory

(PDE degradation was actually observed by VUV irradiation, but 10^4 slower)

picture of VUV-MPPC (S10943-4372)

Motivation of this study

- It's known that VUV sensitivity of VUV-MPPC is worsened by absorbing moisture
 - Coming from VUV-MPPC has no moisture resistance layer on the surface
- 2. VUV-MPPCs of the LXe detecter in the MEG II were humidified during long period of storage and installation
 - Combine the above two results

Hypothesis Moisture inside VUV-MPPCs accelerate the radiation damage

• Measure PDE of humidified VUV-MPPC during VUV irradiation

Condition: temp=60 °C, humidity=90%

R. Yamada, et al., "Development of MPPC with high sensitivity in NUV or VUV," 2022 IEEE NSS/MIC/RTSD

(This test is accelerated test by 89 times for temperature=25 °C, humidity=60%)

Method

- Irradiate VUV-MPPC with scintillation light (VUV light, $\lambda = 175$ nm) from LXe
 - To confirm humidified VUV-MPPC is damaged by VUV light or not
 - Irradiate same order of VUV light compare to the MEG II
 - Continued irradiation for 300 hours
- Put VUV-MPPC ,alpha ray source (Am241) and LED in LXe
 - Alpha ray is used instead of gamma ray
 - Sustain the temperature in LXe (168 K) during data taking
- DAQ
 - Measure the charge of alpha ray and MPPC gain by 1 hour

Setup – inside small chamber

	ch0,1,4,5 (VUV-MPPC's chips for irradiation)	ch2,3,6,7 (VUV-MPPC's chips for reference)
Humidity	89 times accelarated (60 °C x 250 hours, humidity 90 %)	not accelerated
Annealing	150 °C x 16 hours baked (Assume humidities inside VUV-MPPC were removed)	not annealed
Note	for test of radiation damege	for reference of LXe stability

Small chamber construction

- Inside small chamber, separeted into GXe and LXe
 - By cooling, LXe accumulated in the bottom of small chamber
- Small chamber is covered by a outer chamber
 - Between the small and outer chamber is vacuumd
 - This works like "magic bottle"

Vacuuming and leak check

- Turbo pump (Pfeiffer Vacuum, TMH 071P)
 - Used for vacuuming inside the small chamber
 - Reach $O(10^{-4})$ Pa in this experiment
- Scroll pump
 - Used for vacuuming of the outer chamber
 - Reach O(1) Pa in this experiment
- Helium leak detector (Alcatel, ASM 122 D)
 - Detects the leak of a flange using helium
 - There were no leak even high-sensitivity $(O(10^{-10}) \text{ mbar} \cdot l/s)$

Pulification of GXe and cooling of small chamber

- After vacuuming, entering GXe inside the small chamber
 - Purify GXe throught the getter (impurity < 1 ppb)
- Cooling of inside the small chamber
 - Refrigerator (Iwatani, PDC08)
 - Cooling cold head inside small chamber
 - LN2
 - Helped cooling of the small chamber
 - Emergency Used (because the refrigerator didn't work

Control of cooling system and DAQ

- SCS2000
 - Used for control of the pressure and temperature inside the small chamber "automatically"
 - Control LN2 flow by setting upper and lower limit of the pressure
 - Took the data of pressure and temperature inside small chamber
- WaveDREAM Board (WDB)
 - Has HV and amplifier inside
 - Took the data of VUV-MPPC signal from alpha-ray and LED light

Result – Charge of alpha-ray and MPPC gain

44 92 / 21 charge hist (run5972, channel3) -0.485 Mean Std Dev 0.6543 r^2 / ndf 1718/78 - 54660-09 Preb . 301.9 ± 7.9 226 ± 0.00407 0.1525 ± 0.0035 59.76 ± 1.63 1.018 + 0.023 $.6117 \pm 0.0124$

charge hist (run5972, channel1

charge hist (run5969, channel2)

charge hist (run5967, channel1)

- Charge of alpha-ray
 - ch0~7: Calculated by gaussian peak
- MPPC gain
 - ch0~7: Calculated from dividing the difference between 0 p.e. and 2 p.e. peak by 2

Result – Event rate and radiation rate

- Event rate
 - Calculated by the mean of first 10 runs
- Average charge of alpha-ray
 - Calculated by the mean of first 10 runs
 - Excluding the pedestal charge from mean calculation

Result – Breakdown Voltage

	Breakdown voltage [V]	Over voltage [V]	
ch0	45.76	3.51	
ch1	45.68	3.53	
ch2	45.66	3.66	
ch3	45.71	3.57	

• Considered the effect of moisture inside VUV-MPPC

2

0.05

18 Feb. 2024

• *Expected PDE*: ~15 %

ICEPP Symposium 2024 / Ryusei Umakoshi

10

gain of ch1

48

46

48

8

Over-voltage [V]

6

Prob p0

50

 χ^2/nd

Proh p0

50

52

54 Bias Voltage [V]

gain of ch3

0.4258 0.04104 ± 0.0004999 +1.875 ± 0.02509

52

54

Bias Voltage [V]

0.03865 ± 0.0006199

-1.767 ± 0.03114

Result – Expected PDE decrease

Expecterd PDE	~15%	
Event rate of alpha-ray	~38 Hz	
Surface area of 1 chip on VUV-MPPC	$5.95 \times 5.85 \text{ mm}^2$	
Irradiation time	300 hours	

Radiation dose in this experiment:	~15.8×10 ¹² stopped muons	
Expected PDE decrease	>7%	

Result – Stability of LXe

⁻emp: 168 ± 0.5 K

• Gain is stable during VUV light irradiation

Result – About PDE decrease

- PDE decrease by VUV irradiation was not observed for humidified MPPC.
- VUV light was excluded as the candidate of cause for the radiation damage
 - Most plausible candidate is gamma-ray

Sammary & Prospect

- Summary
 - Rapid decrease of VUV PDE for VUV-MPPC of MEG II LXe detector
 - Studied effect of absorption of moisture inside VUV-MPPC for VUV irradiation.
 - PDE decrease was not reproduced.
- Next step
 - Irradiate gamma-ray to VUV-MPPC
 - in LXe
 - to test the effect of moisture inside VUV-MPPC

Backup

Temperature history

Temperature history

Result - Waveform of alpha-ray

• Mostly, the waveform of ch0, 1 were got as data.

18 Feb. 2024

Result - Waveform of alpha-ray

• Sometimes small pulse came in ch0,1

Alpha-ray charge history

Radiation rate

- gain of ch0 : ~0.1448×10⁹e =5.61×10⁶ (*FE gain*: 100 (*but, in practical*: 70.15))
 - Nphe by alpha-ray: $\frac{2.547 \times 70.15}{0.1448} = 1234$ photo-electron
 - Expected PDE ~ 15%
 - Npho by alpha-ray: 1234 / 0.15 = 8227 photon
 - Radiation rate: 8227 photon \cdot 37.76 Hz \cdot (5.95×5.85 mm²)⁻¹ = 8.63×10³ photon \cdot Hz \cdot mm⁻² = 3.21×10⁷ photon \cdot h⁻¹ \cdot mm⁻²
- Irradiation time: 300.118 hour = 1.08×10^6 sec ->Total irradiation: 3.21×10^7 photon \cdot h⁻¹ \cdot mm⁻² \cdot 300.118 h=9.634×10⁹ photon \cdot mm⁻²
- Radiation dose in LXe detector in 2021: 1.1×10^{11} photon \cdot mm⁻²
 - Radiation ratio between this experiment and 2021 run =9.634×10⁹ photon \cdot mm⁻² / 1.1×10¹¹ photon \cdot mm⁻² = 0.088
- Radiation dose in 2021 run: 180×10¹² stopped muons
 - Radiation dose in this experiment: 180×10^{12} stopped muons $\cdot 0.088 = 15.8 \times 10^{12}$ stopped muons
 - Absolute PDE decrease in 2017 run: ~14% -> ~13-12.5% (~1-1.5 %pt, ~7.7-12% in relative)
 - Esxpected absolute PDE decrease in this experiment: ~15 % -> lower than 14%. (>1 %pt, >7% in relative)

- The probability of photon entering a chip with including the dead zone: $P_{\rm 1\,chip,void}$
 - $\alpha_{1 \text{ chip,void}} = 0.892 \text{ rad}$
 - $\beta_{1 \text{ chip,void}} = 0.537 \text{ rad}$

$$-> \Omega_{1 \text{ chip,void}} = 2 \arcsin(\sin \alpha_{1 \text{ chip,void}} \sin \beta_{1 \text{ chip,void}}) = 0.819$$

• $P_{1 \text{ chip,void}} = \Omega_{1 \text{ chip,void}}/4\pi = 0.0652$

The probability of photon entering the dead zone:
P_{void}
α_{void} = 0.0699 rad
β_{void} = β_{1 chip,void} = 0.537 rad

$$- \Omega_{\text{void}} = 2 \arcsin(\sin \alpha_{\text{void}} \sin \beta_{\text{void}}) = 0.0714$$

•
$$P_{\text{void}} = \Omega_{\text{void}} / 4\pi = 0.00568$$

The probability of photon entering a chip without the dead zone: $P_{1 \text{ chip}} = P_{1 \text{ chip,void}} - P_{\text{void}} = 0.0652 - 0.00568 = 0.0595$

PDE degrease during run

Gain vs Over voltage

Tips

- Superinsulation
 - Multiple layer film made from alminum
- LN temperature: 77 K (196 °C)

Annealing

- Heating the VUV-MPPCs (at 70 °C)
 - to remove the accumulated positive charges
- PDE can be returned to original value by annealing.
- Sample
 - Baking condition: 150 °C x 16 hours

Annealing each MPPC for 28 hours (at 70 °C)

Calculation of LXe height filling inside small chamber

- small chamberの容器の内径(直径):101 mm
 ->面積:8008 mm² = 80.1 cm²
 ->容器の底から20.6 36 cmまで、液体キセノンに浸る
 1.65L = 1650 cm³
 1 L = 1000 cm³
- GXe inside high pressure tank: 750 L, 0.23 MPa
 - when the pressure is 0.12 MPa, the volume is $750 \times 0.23/0.12 = 1438$ L
- LXe volume is 500 times smaller than GXe volume
 - 1438 L in GXe -> 1438/500 = 2.88 L in LXe
- Inner diameter of small chamber: 101 mm
 - Bottom area of small chamber: $8.01 \times 10^3 \text{ mm}^2$
- the height of LXe inside small chamber is $2.88 \times 10^6 / 8.01 \times 10^3 = 360$ mm = 36 cm
 - 1 litre = $1 \times 10^6 \text{ mm}^2$

Getter (PS3-MT3-R-2)

Impurities Removed	Nitrogen Outlet Purity (ppb)	Rare Gas Outlet Purity (ppb)
H ₂ O	<1	<1
0 ₂	<1	<1
СО	<1	<1
CO ₂	<1	<1
CH ₄	<1	<1
Other Hydrocarbons	<1	<1
H ₂	<1	<1
N ₂	N/A	<1