ヒッグスファクトリーの 物理と状況

末原 大幹 (東大ICEPP)

素粒子「標準模型」

ヒッグス粒子が素粒子のミッシングピースだった(1994年までに他の全ての素粒子は発見された)

「ヒッグス粒子」発見: 2012/7/4

ヒッグス粒子とは

- 真空に「凝縮」している(真空期待値246GeV)
- ・ ヒッグス粒子と相互作用する粒子は真空中を 通過するとヒッグス粒子から「抵抗」を受ける
 - 抵抗の大きさが 質量: 粒子に固有
- 唯一の「スカラー」素粒子 (spin 0)
 - フェルミオン: ½
 - _ ゲージボゾン: 1

ヒッグスと自発的対称性の破れ

真空のスカラーポテンシャル $V(\Phi)$ μ^2 <0のとき、 Φ =0の真空は不安定で、 Φ が0でない 真空に崩壊する (真空の相転移) 我々の宇宙ではヒッグスの真空期待値 v = 246 GeV

このとき、μはヒッグス粒子の質量項となり λは自己結合定数となる

$$V(\Phi) = \mu^2 |\Phi|^2 + \lambda |\Phi|^4 + \text{h.c.}, \qquad \mu^2 < 0, \lambda > 0$$

$$m_h^2 = 2 \lambda v^2$$

標準模型の問題点

- ヒッグス粒子の「自然さ」
- ・ダークマター
- 宇宙の物質生成
- ニュートリノ質量
- クォーク・レプトンの世代

ヒッグス粒子と「自然さ」

- 2012年、ヒッグス粒子発見 → 質量125 GeV
- ヒッグス粒子は図のようなダイアグラムによる自己エネルギーを持つ

- 閉線はエネルギーについて積分するが、非常に高い エネルギーまで標準模型が成り立つと すると、この図のエネルギーが発散する (それを打ち消す裸の質量を仮定すると不自然)
- 電弱エネルギーの近くに新物理の存在を示唆
 - ループの寄与を打ち消すような新物理を仮定する
 - 1 TeVで約2桁のfine tuning, 10 TeVで4桁のfine tuning

ダークマターとダークエネルギー

- 既存の「素粒子」は全体の4.9%
- 「ダークマター」が26.8%

- ダークマターは物質なので、他の物質と何らかの反

応をする。それを検出できると考えられている (ただしまだ見つかっていないことから反応性は低い)

- 「ダークエネルギー」が 68.3%
 - 宇宙の膨張に関わる量。 詳細はいっさい不明

ダークマターの候補

- ・新粒子(未知の相互作用)
 - 重くて反応しにくい中性粒子 Weakly Interacting Massive Particles (WIMP)
 - W, Zより少し重い電弱エネルギースケールの粒子
 - 「弱い力」のみにより標準模型の粒子と結合
 - 軽くて反応しにくい中性粒子 Weakly Interacting Slim Particles (WISP)
 - WIMPよりさらに反応しにくい
 - ・低エネルギーの特殊な実験で探索 (今回は取り上げません)
- ・ 既存の物体(ブラックホール、矮星など)

宇宙の物質生成

- ・ ビッグバンの時に物質・反物質は 真空からペアで生成した
 - 宇宙が冷えるとともに物質と反物質は 対消滅し同数だけ消えていく
- いつのまにか物質が1/10億だけ 多くなっていて、物質だけが残った
 - 物質と反物質で物理法則は厳密には 等しくない。(弱い力のみ)
 - ただし現在わかっている非対称性では 1/10億のずれを説明できない。 (もっと小さい)
 - 物質生成に対する多数の仮説がある
 - レプトジェネシス・電弱バリオジェネシス...

ヒッグス場の相転移により 非対称性ができる

Mechanism of EWBG

<u>泡の周りで起きる現象</u>

B is not conserved: B = 0

- 1. 泡に q, \bar{q} が飛び込む。
- 2. 泡の壁におけるCP の破れによって、壁面での侵入と反射に q, \bar{q} 間の差ができる。
- 3. 泡内部ではB が保存されているので、 $n_q \neq n_{\bar{q}}$ が維持される。
- 4. 泡外部ではB が激しく変化しているため $n_a = n_{\bar{a}}$ となる。
- 5. 泡が拡大、衝突しながら上記過程を繰り返す。
- 6. 最終的に*B* ≠ 0 の非対称相の宇宙となる。

素粒子と力(相互作用)

超対称性 (SUper SYmmetry: SUSY)

SUSYとヒッグス階層性問題

- ヒッグスには「自然さ」の問題があった
 - 巨大な輻射補正とそれを「たまたま」極めて高い精度(24ケタ)で打ち消す裸(輻射補正前)の質量
- 標準模型の全粒子にspinが1/2違うパートナーがいれば輻射補正を打ち消すことができる
 - → 自然さの回復
- ただし、パートナーがあまり重い とやはり輻射補正がずれるので、 TeV領域に新粒子を要求

SUSYにおけるダークマター

Rパリティ: 超対称性を規定する保存量

標準模型の粒子: 1

超対称性粒子: -1

反応の前後でRパリティの積は保存

例1) 例2) 例3)

1 1 1 -1 -1 1 1 OK NG

結論: 超対称性粒子は単体での崩壊では 消滅できない

最も軽い超対称性粒子(LSP)は安定

その他、余剰次元モデル、リトルヒッグスモデルなど、 ヒッグスの階層性問題解決とダークマターを含むモデルが存在

加速器実験による直接探索が鍵となる

様々な可能性

第二の道:「より深い階層」

現在地

全く新しい原理? 複数宇宙+人間原理?

(5)

(5)

標準理論と究極 理論が直結?

第三の道:「複数宇宙?」

ヒッグスを巡る数々の謎

- •「自然さ」の問題 TeV新物理を強く示唆
- 標準理論で「唯一の」スカラ―粒子
 - ヒッグス粒子は他にないのか?
 - 他にヒッグスがある模型: Two Higgs doubletなど
 - ヒッグス粒子は本当に素粒子なのか?
 - 複合ヒッグス模型ではヒッグスは複合粒子
- ・他の粒子との結合(=質量)はどう決まったのか?
 - クォーク、レプトンの世代との関係は?
- 暗黒物質やダークセクターとの結合は?
- 宇宙の物質生成に関わるか? etc...

ILCの概要

- 電子陽電子衝突型加速器
 - 重心系エネルギー: 250 GeV「ヒッグスファクトリー」
 → 1-3 TeV upgradeでさらに広範な新物理探索
 - 直線 20 km (50 kmまで延長可)
- 日本がホストする国際プロジェクト (2038-)
 - 日米欧の三極で分担 "Global project"
 - 「ILC国際研究所」は長期にわたる国際拠点へ

ヒッグス生成@ILC

250 GeVでは e⁺e⁻ → ZHが重要 断面積は電子・陽電子偏極にもよる 電子左偏極、陽電子右偏極(eLpR) が最も生成断面積が大きい。 (eRpLで約6割程度)

0.9 x 300 x (1+0.6) = 432,000事象 200日x5年走るとして、432/day

$N_{\rm detected} = \epsilon \sigma \mathcal{L}_{\rm int}$

L_{int}は積分ルミノシティ ILC 250 GeVでは 2 ab⁻¹を想定 (eLpR, eRpLを0.9 ab⁻¹ずつ) εはほぼ100%。ただし 背景事象を選ぶ過程で 信号事象も一部が失われる (解析手法による)

ヒッグスの崩壊

- ・ 生成したヒッグス粒子は 即座に崩壊する
 - ヒッグスは電荷もバリオン・ レプトン数も持たないので 粒子・反粒子ペアに崩壊
 - ヒッグス粒子の結合は 質量の2乗に比例
 - ・重い粒子に壊れやすい
 - ・ただしヒッグスの質量の ½を越えるとエネルギー 保存を満たさないため 確率は下がる (off-shell崩壊と呼ぶ)

崩壊モード	崩壊分岐比	ILC 事象数	
bb	58.1%	290,000	
ww	21.5%	110,000	
gg	8.2%	41,000	
ττ	6.3%	32,000	
cc	2.9%	15,000	
ZZ	2.6%	13,000	
γγ	0.2%	1,000	

ヒッグスの測定

- ヒッグスの崩壊生成物は さらに崩壊する
 - − b, c, gluon→ ハドロンジェット(多数のハドロンの束)
 - W → qq (2/3), lv (1/3)
 Z → qq (70%), vv (20%), ll (10%)
 クォークはハドロンジェットになる
 - □ τ → 1~数個のハドロン/レプトンに崩壊 (tau jet)
 - □ γ → 高エネルギー光子としてそのまま検出可能
- ・ ジェットやレプトンを測定器で検出する(後述)

崩壊モード 崩壊分岐比 hh 58.1% WW 21.5% 8.2% gg 6.3% ττ 2.9% CC 77 2.6% 0.2%γγ

ヒッグスの測定 (2)

- 事象分離
 - 信号事象(ヒッグス) の10~100倍の 背景事象がある
 - Z, Hの運動量・エネルギーや生成角、クォークの種類等の情報を駆使して背景と信号を分離する
 - ILCの始状態の 4元運動量は明確

ヒッグス反跳質量測定

- "Higgsを見るのにHiggsを見ない" → 反跳されるZ → IIのみを使う (4-momentum conservation)
- "Higgsを見ない"のでどんな崩壊 でも関係なく見える
 - →ヒッグスの性質に依存しない

シンポ

ヒッグスの結合定数測定

- 各崩壊の事象数を高精度測定
 - 精度: $\sqrt{S+N}$ S: S

S: 信号事象数

N: 背景事象数

- 1万事象、背景なしで1%統計誤差
- 1万事象、背景10万で3%統計誤差
- 精度: 統計誤差と系統誤差による。

電子陽電子コライダーは 理論予測の精度が高く 系統誤差も1%以下に 抑えられる。

ILCでは概ね1%以下の精度で各結合定数を決定する。

30 parameters arXiv:1905.03764
Taikan Suehara, ICEPPシンポジウム2025@志賀高原, 16 Feb. 2025 page 24

ヒッグス結合定数による新物理探索

- ヒッグスの結合定数の標準理論 からのずれが発見できれば、その パターンから新物理を区別できる。
 - SUSY: b/τの結合が上昇
 - 複合ヒッグス: フェルミオンの 結合定数が下がる

ずれが見えるかどうかは新物理の パラメータによるが、

ILCではTeV新物理の多くをカバーする

ヒッグスと新粒子の直接結合探索

Higgs Invisible Decays

Hadronic Z decay (ILD), Kato, 2002.12048

Invisible decay branching ratio: 0.3% (95% CL upper limit)

Exotic Higgs Decays

Liu, Wang, Zhang [1612.09284]

LC sensitive to various exotic Higgs decays

ヒッグス自己結合

ヒッグス ポテンシャル の4次の項 真空の構造 を決める

 $V(\eta_H) = \frac{1}{2} m_H^2 \eta_H^2 + \sqrt{v \eta_H^3 + \frac{1}{4} \lambda \eta_H^4}$

宇宙の物質生成を解き明かす ニつのプローブ

- 1. 「ヒッグスと電弱バリオジェネシス」
 - 真空の一次相転移
- 2. ニュートリノとレプトジェネシス • 重いレプトン崩壊のCP破れ

真空の2次相転移

に必要

電弱バリオ ジェネシスなら λの値は O(10%)以上 増加する

ヒッグス自己結合@ILC upgrade

干渉項の効果でさらに実質断面積低下

断面積が小さく困難。1 ab-1でO(100)事象

干渉項が3点結合の 測定精度に影響 s-channelは正の干渉, t-channelは負の干渉 (LHCは負の干渉)

channel	√s[GeV]	λ精度
s (正の干渉)	500-600	~20%
t (負の干渉)	>1000	<10%

深層学習によるジェット 再構成性能の抜本的な 改善に取り組んでいる

Targets of e+e- Higgs factory

Oblique parameter決定, W/Z mass, b/τの精密測定

Higgs 結合定数測定(~1%), Higgs稀崩壊(軽い新物理) (TeV新物理間接探索)

Top質量の精密測定)真空の安定性

1 TeV Higgsino

Higgs自己結合(20-30%), ttH結合

Higgs自己結合(10%) -> 物質生成

1 TeV

250 GeV - a few TeV

Natural SUSY (250 GeV - 1 TeV)

TeV新物理直接探索

3 TeV Wino

Higgs factory Projects

円形加速器と線形加速器

荷電粒子が曲げられると シンクロトロン放射でエネルギーを失う 軽い粒子では影響が大きい

エネルギーを倍にするには、円周を8倍にしなければならない

線形加速器はエネルギーを失わず、 長さとエネルギーは比例する

線形コライダーと円形コライダー

Luminosity:

加速器の衝突頻度を表す量。積分Luminosityは全断面積の 逆数になっていて、Cross sectionを掛けると期待する事象数を求められる。

円形加速器: 何度も衝突させてluminosityを稼げるが、シンクロトロン放射で失うエネルギーを再加速する必要があり、電力で最終的に制限される。 線形加速器: 一回しか衝突できないので、もとの電荷とどれだけ絞れるかで決まる

- 91-160GeV円形コライダーが有利 (線形ERLでは円形に近いluminosityに到達可)
- 250 GeV円形コライダーがやや高いluminosity線形コライダーの偏極により物理reachは同等
- 350 GeV円形コライダーでも可能だが線形が有利
- > 500 GeV線形コライダーでのみ実現可能

ile international linear collider

 ILC-Technology Network Inter. Expert Panel 9+1年 203x実験開始? Pre-lab phase Construction phase Physics experiment IDT phase Aug. 2020 Joint **ILC** construction Experiment IDT Pre-lab by ILC Lab. at ILC R&D International Pre-lab organized ILC lab, based on Development by MoU'S among the Governmental team under ICFA the relevant labs. agreement

「国際協力で日本に建設する国際プロジェクト」 超伝導加速空洞、加速部12 km, 全長20 km 加速勾配平均32 MV/m

超伝導加速空洞を液体ヘリウムで冷却

超伝導加速空洞を8000本並べて電子・陽電子を加速し衝突させる

最終収束試験設備@KEK

ILC加速器のコスト見積もり: 5152-5830億円(±25%)

ILC (upgrade path)

エネルギーアップグレードのためには加速勾配の向上が必要

- 45-50 MV/m空洞表面処理の改善 (うまくいけばILCにそのまま使える)
- 60-70 MV/m空洞形状の改善・進行波加速管 (抜本的なデザイン変更, upgrade用)
- 100 MV/m 積層薄膜(原理実証の段階)
- それ以上 新奇加速に置き換え or afterburner

Possible upgrade シナリオ

- -2050年: 250 GeV Higgs factory (表面処理の改善がよければ350 GeVも?)
- 2050年-: 550 GeV 1 TeV with 60-70 MV/m(追加部分)
- 2070年-: 2-3 TeV with 100+ MV/m(薄膜)既存空洞の置き換えが必要
 (電力に対して抜本的な何かが必要?)

FCCee

周長 91.1 km, 2 IP, エネルギー 91-365 GeV

Numbers are for 100 km ring					
	√s	L /IP (cm ⁻² s ⁻¹)	Int. L /IP(ab-1)	Comments	
e ⁺ e ⁻ FCC-ee	~90 GeV Z 160 WW 240 H ~365 top	230 x10 ³⁴ 28 8.5 1.5	75 5 2.5 0.8	2-4 experiments Total ~ 15 years of operation	
pp FCC-hh	100 TeV	5 x 10 ³⁴ 30	20-30	2+2 experiments Total ~ 25 years of operation	
PbPb FCC-hh	√ <u>s_{NN}</u> = 39TeV	3 x 10 ²⁹	100 nb ⁻¹ /run	1 run = 1 month operation	
ep Fcc-eh	3.5 TeV	1.5 10 ³⁴	2 ab ⁻¹	60 GeV e- from ERL Concurrent operation with pp for ~ 20 years	
e-Pb Fcc-eh	√s _{eN} = 2.2 TeV	0.5 10 ³⁴	1 fb ⁻¹	60 GeV e- from ERL Concurrent operation with PbPb	

"FCC feasibility study"が進行中 CERNが100億円規模の予算をつけ 研究開発、詳細設計を推進

2025年にレポートが発表される予定 その後、欧州物理戦略アップデート を経て、Pre-TDR phaseに移行、 2028年頃の建設決定を目指している

予算規模は15 BCHF (2.6兆円)の 巨大プロジェクト、予算の裏付けはまだない pp colliderはさらに数倍の費用

測定開始は2045-2048が目標 100 TeV pp colliderにアップグレード (2070年以降)

そのほかのHiggs factories

中国でもFCCと類似した計画が検討中 こちらは2035年頃の実現を目指す(中国国内計画) 2026-の中国5カ年計画への採択を 目指している(採択は建設決定に直結?)

Operation mode		ZH	Z	W ⁺ W ⁻	tt
\sqrt{s} [GeV]		~240	~91.2	158-172	~360
L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	CDR (2018)	3	32	10	
	Latest	5.0	115	16	0.5

Cool copper collider USの計画で、常伝導だが液体窒素 温度で運転して効率を向上させる 8 kmでHiggs factoryが可能 (かなりアグレッシブなデザイン) USは直近10年は建設不可能 → 2040年代が最短

CLIC: CERNの常伝導 リニアコライダー計画 380 - 3000 GeV Technologyは比較的進展 FCCのbackup optionと 位置づけられている(?)

Higgs factoryをめぐる情勢

- e+e-はLHCの次のコライダーとして最有力
 - 欧州、アメリカいずれもそのような位置づけ
 - 欧州戦略に向けFCCが注目を集めている
 - CERNが強力にpushしているが、予算獲得は困難
- ILCはglobal projectの枠組み作りを進めている
 - リニアコライダーの優位性(energy upgrade, cost)はある
 - 日本にとって現状唯一可能なenergy frontierのcollider計画
 - 日本単独で作るのは困難、国際合意による建設を目指す
- 物理・測定器開発はILCもFCCeeも共通部分が多い
 - ただし、違う部分もある(バンチ構造、想定エネルギーなど)
 - どちらにも使える技術として開発を進める
 - → 建設が決まればそのプロジェクトに特化していく

ILCの測定器

International Large Detector (ILD)

主に日本+ヨーロッパ

2つの測定器グループがある 焦点は1つしかないので、交互に置く(push-pull)か、 あるいは1つに統合するか。

超伝導電磁石 (3.5 Tesla) 強力な磁場で荷電粒子を曲げる

カロリメータ 中性粒子の位置、エネルギーを測定

ガス検出器(TPC) 荷電粒子の運動量を正確に測定

ビームパイプ

シリコン崩壊点検出器・飛跡検出器 荷電粒子の位置を精密に測定する

衝突点

内側に荷電粒子の検出器、 外側にカロリメータがある 得られた粒子の情報から 元の反応を再構成していく

電磁カロリメータ

タングステンとセンサーの 多層カロリメータ (20-30層) 読み出し回路(ASIC, フロントエンド) をセンサーと吸収層の間に 挟み込んでいる 合計10^{7~8}チャンネル

シリコンセンサー (浜松ホトニクス製) 日仏共同開発

シンチレータ (日中独)

解析技術: 深層学習の活用

Transformer, graph neutral networkなどの技術を物理性能向上、 測定器最適化・デザイン等に活用、AI研究へのフィードバックも目指す

Particle flow (for jet reconstruction)

Reconstruct particles in jets and subtract contribution from charged particles

PandoraPFA: human-tuned algorithm developed in ~2008 Still used in most of analyses

GNN algorithm developed for CMS HGCal being tried

Flavor tagging (b/c/s/g tagging)

LCFIPlus: b/c tagging software developed in 2012 BDT used with ~40 input params

FCCee ParticleNet: >10 times better!
Maybe due to fast simulation (no scattering) but still worth to try with full simulation

Using PID (kaon-tag) can help → both hardware (dE/dx, timing, Cherenkov) and algorithm studies

より高精細な測定器の性能を最大限に引き出すにはDNNが有効のはず

まとめ

- HL-LHC後の将来コライダーとして、 e+e- Higgs factoryは最有力
 - ヒッグスを通じて新物理探索、時空の構造解明
 - 新物理直接探索も(今回は省略)
 - リニアコライダーならアップグレードで 50年以上にわたり新物理探索の最有カツールに
 - Circular colliderは100 TeV ppコライダーへのステップになり得る
- ILCとCERNのFCCee, 中国など 様々なプロジェクトが進んでいる
 - いずれか一つは実現すると期待 (もちろんILCに強く期待)
 - 物理・測定器技術は共通技術が多く、協力して進めたい

宇宙の謎を解き明かす二つの加速器

LHC Large Hadron Collider

International Linear Collider

- 現存最大の加速器 27 km・ 次世代直線加速器 20 km
- スイス・ジュネーブ近郊
- 日本からも多数参加
- 2012年、質量を司る ヒッグス粒子発見

- 日本に建設予定 (海外からも多数参加)
- LHCより精密な測定が可能

ILC

International Linear Collider

陽子・陽子衝突 13-14 TeV

電子•陽電子衝突 250- GeV

- エネルギーは高い
- 複合粒子同士の衝突のため エネルギーの大半は見たい 反応に寄与しない
- 不要な生成粒子が多い

重いが見やすい状態が得意

- エネルギーは低め
- 素粒子同士の衝突のため すべてのエネルギーを新粒子 生成に利用できる
- 不要な生成粒子は少ない

軽ければ見にくい状態でも見える

得意分野を生かし、協力して新物理を探索