清水 航太朗 岡山大学大学院, 量子宇宙研究コア, M2

Th-229原子核時計実現に向けた真空紫外レーザー開発

トリウム229(Th-229) アイソマー

長い半減期: ~10³ sec
 全ての原子核の中で最も低いエネルギーの励起準位: ~8 eV
 う 真空紫外 (VUV) 領域
 期待される応用例
 原子核時計

□ 物理定数の恒常性の確認
 □ 新物理の探索

Expected new physics exploration using the Th-229 isomer

これまでの研究

1976	数eVの準位の存在を示唆	L. A. Kroger and C. W. Reich, Nucl. Phys. A 259 , 1 (1976).
2016	アイソマーの存在を確認	L. Wense et al., Nature 533 , 47 (2016).
2019	アイソマーの人工的生成	T. Masuda et al., Nature 573 , 238 (2019).
2023	アイソマーからの脱励起光観測	S. Kraemer et al., Nature 617 , 706 (2023). S. Hiraki et al., Nature Communications 15 , 5536 (2024).
2024	レーザー励起に成功	

ついにレーザーによるアイソマー直接励起成功が報告された

O(10) MHz 狭線幅レーザー

This study

高い背景事象除去性能の検出器

T. Hiraki *et al.*, Nature Communications **15**, 5536 (2024). M. Guan *et al.*, Nucl. Instrum. Method B, (accepted).

VUVパルスレーザーを開発して、アイソマー直接励起と結 晶場分裂によるスペクトルの観測を目指す

レーザー開発目標

マスターオシレーター

7

オシレーター開発

オシレーター開発

オシレーター開発

オシレーター開発

オシレーター開発

450 mm

12

600 mm

共振器長をスイープしてフリンジを確認 ■ 出力パルスエネルギー(Seed: 5.5 mW)

パルス性能評価

タイムジッター: ~ 2.4 ns →パルス幅と比較して十分小さく安定

Agilent Technologies THU OCT 17 09:47:22 2024		🗖 786 nm	
5.00V/ 2 500v/ 8 10v/ 20v/ 110.0v 200.0v/ Yellow: IR(786 nm) pulse signal Green: IR(749 nm) pulse signal Red: UV(249 nm) pulse signal	✓ Trig'd <i>F</i> ■ 1.46V	パルスエネルギー パルス幅 M ² 線幅	6 mJ 40 ns 1.10 18 MHz
	重(1 ƒ→2 ƒ): 4ns ペルス幅(1): 42ns ペルス幅(2): 44ns 畐(2): 970mV	■ 749 nm パルスエネルギー パルス幅 M ² 線幅	6 mJ 30 ns 1.11 15 MHz
************************************	Co転 プローブ	■ 249 nm パルスエネルギー	2 mJ

*M²: Difference from an ideal single-mode laser (Closer to 1 is better)

VUVパルス生成に必要なIR・UVパルスの開発が完了

VUVパルスエネルギー

■ VUVパルスエネルギーをPDで検出し、オシロスコープで確認

レーザー励起実験

■ Th-229をドープした CaF₂にVUVパルスレーザーを照射し、脱励起光を観測 ■ レーザー60秒照射、検出時間3600秒で1セット測定

2025/02/16 ICEPP Symposium

まとめ

- オシレーターを用いたIR-UVレーザーシステムを開発し、四光波混合 に必要な性能を持つレーザーの生成に成功した
- 四光波混合を通じて、約1µJのパルスエネルギーを持つ VUV パルス レーザーの開発に成功した
- Th-229 ターゲットへの照射および直接励起実験を行い、脱励起光の 観測に成功した
- VUVレーザー線幅は今後の分光実験で得られるスペクトルにより評価 する予定である
- 結晶場分裂のスペクトルを取得・解析するために分光測定を実施予定 である

BACK UP

Development of Seed Light for 749 nm

- External Cavity Diode Laser (ECDL)
- Wavelength tuning: ±0.08 nm
- Converted to UV range
 - (third-harmonic) ± 0.24 nm \rightarrow Optimized for VUV intensity

- Comparison of output with LD catalog values
- Consistent in both oscillation threshold and power

Development of a 749 nm ECDL with Frequency Tunability within the Target Range

Frequency Stabilization of Seed Light

Frequency Locking System

Stabilized with an accuracy of ± 0.5 MHz

Stabilization of Cavity

Stabilize the output by adjusting the cavity length

- Differentiated Signal of the Fringe Waveform
- → The sign is reversed on either side of the fringe peak
 Using PI control, the PZT voltage is adjusted to the peak position, stabilizing the resonator

UV Pulse Generation

Third-harmonic generation (THG) from 749 nm to 249 nm
 UV pulse energy simulation

System construction with four BBO crystals

UV pulse energy: ~2 mJ \rightarrow consistent with simulation

VUV Generation System

Xe Chamber for four-wave mixing

- □ IR and UV pulses co-axially overlapped and injected
- □ VUV pulses generated co-axially with IR and UV pulses
- □ Xe pressure controlled between 100-2000 Pa
- Recent Xe pressure: 100 Pa

Optimize VUV Output by Controlling Xe Pressure

Detector

The detector used is the same as in Okayama University's spectroscopic experiments offering a high background event rejection rate (e.g., scintillation light from the crystal)

■ Target Th-229 density: ~4×10¹⁸ /cm³ Producted by TU Wien

TECHNISCHE UNIVERSITÄT WIEN

~1×1×1 mm

 Wavelength selection using a dichroic mirror

Crystal field splitting

C. Zhang et al., Nature 633, 63 (2024).