

- LHC-ATLAS 実験 (元 ICEPP)
 - SUSY 粒子の探索
- <u>やっている実験</u>
- 宇宙マイクロ波背景放射 (CMB) 観測実験
 - Simons Observatory 実験 @ チリ
 - 主に望遠鏡の開発
- ミリ波を用いたダークマター探索実験 「DOSUE-RR」

- LHC-ATLAS 実験 (元 ICEPP)
 - SUSY 粒子の探索
- <u>やっている実験</u>
- 宇宙マイクロ波背景放射 (CMB) 観測実験
 - Simons Observatory 実験 @ チリ
 - 主に望遠鏡の開発
- ミリ波を用いたダークマター探索実験
 「DOSUE-RR」

ダークマター

重力相互作用をする(質量がある)が他の反応をほぼしない ダークマターの重力の寄与は宇宙観測でよく測られている。。

我々はダークマターの中を通過している

どうにか検出してその性質を知りたい

- **質量**
- 他の物質との反応方法

いわゆるDM直接探索は "WIMP" で O(GeV) 未だ発見ならず

第31回 ICEPPシンポジウム, 2025/02/17

XENON

µeV—meV Axion-Like Particle..

注目するダークマター候補: 超軽量なダークフォトン

・光とのみわずかに反応・転換する未発見粒子

・重要なパラメータ $\left\{egin{array}{c} egin{array}{c} egin{array}{c}$

ダークフォトンの光への転換

ミリ波受信機を用いたダークマター実験

ど す え - ダブルアール **DOSUE-RR 実験**

Dark-photon dark-matter Observing System for Un-Explored Radio-Range

2020 年から開始

第31回 ICEPPシンポジウム, 2025/02/17

10

転換光の検出原理

ダークフォトンに対する制限 in 2020

ダークフォトンに対する制限 in 2020

10–18 GHz でのセットアップ

低ノイズアンプ +34dB

スペクトル アナライザ アンリツ MS2840A

16

DOSUE-RRのこれから

一つの部品でカバーできる帯域に限界がある

特に、信号を伝送するものの規格

規格	周波数の帯域	(低周波 < 30 GHz)
J-band	10—18 GHz	探索済み
K-band	18—26.5 GHz	
Q-band	33—50 GHz	導波管
V-band	50–75 GHz	(高周波 > 30 GHz)
W-band	75—110 GHz	
D-band	110—170 GHz	
Y-band	170—260 GHz	高周波ほど小さい導波管になる

同軸ケーブル

周波数を網羅する戦略

転換光の周波数 ν_0 [GHz]

周波数を網羅する戦略

転換光の周波数 ν_0 [GHz]

周波数を網羅する戦略

転換光の周波数 ν_0 [GHz]

FPGA, CPU, 4Gsps ADC/DAC が 1チップに内蔵されたもの

スペクトルアナライザ

開発した FFT 分光計

2 MHz 帯域

4 GHz 帯域

測定効率の向上 = 測定時間の改善

改善2: 光を集める量を増やす アンテナがより広い転換光を見ることができれば 面積の分だけχへの感度が向上する

- 今まで: アンテナが感度を持つ金属板はせいぜいアンテナの開口面積ほど
- 改善方法: ミラーで広い金属板からの転換光をアンテナに集光

改善2: 光を集める量を増やす アンテナがより広い転換光を見ることができれば 面積の分だけχへの感度が向上する

- 今まで: アンテナが感度を持つ金属板はせいぜいアンテナの開口面積ほど
- **改善方法**: ミラーで広い金属板からの転換光をアンテナに集光

DOSUE-RRの計画

第31回 ICEPPシンポジウム, 2025/02/17

27

DOSUE-RR の計画 転換光の周波数 v₀ [GHz]

さらには??

アクシオン(ALP)探索

月を金属板に見立てて 望遠鏡で受信する?

ダークフォトン

さらには??

アクシオン(ALP)探索

望遠鏡で受信する? 面白い実験を試行錯誤できるかも

ダークフォトン

月を金属板に見立てて

第31回 ICEPPシンポジウム, 2025/02/17

28

ダークマター探索にミリ波受信機を応用した 新しい手法で取り組んでいます。

まだまだやることはたくさんあるので いつでも参加者募集中です。(CMBも)

興味あれば、ぜひ懇親会でお話ししましょう! ^{私は明日帰りますが。}

Backup

ダークフォトン (DP)

- DOSUE-RR のターゲット: Dark-Photon Dark-Matter
- ・ 光との結合定数: Kinetic mixing χ
- *m*_{DP} ≠ 0 の質量固有状態として、通常の電磁場と混合状態を作る

微弱な振動電場を持つ($\propto \chi$) $\vec{E}_{\rm DP} = -\partial_0 \vec{A}_{\rm DP} = i\chi\omega_{\rm DP} \vec{X}_0 \exp\{-i(\omega_{\rm DP}t - \vec{k} \cdot \vec{x})\}$

33

宇宙背景マイクロ波背景放射 CMB

Cosmic Microwave Background

