High Energy (TeV-scale) Neutrino **Cross Section Sensitivity using the IceCube Neutrino Experiment Colton Hill ICEPP Symposium 2023**

CHIBA UNIVERSITY

IceCube Neutrino Observatory

- Located at the geographic South \bullet Pole, collecting data for 10+ years.
- IceCube's instrumented volume includes 1 km³ of ice, making it well suited to detect GeV+ energy neutrinos.
- IceCube detects O(100,000) neutrino interactions per year.
- Higher-level data is transmitted via satellite to the Northern Hemisphere in real-time.

IceCube Neutrino Observatory

- When charged particles traverse the ice they create Cherenkov radiation, which is detected by ulletPhotomultiplier Tubes (PMTs).
- \bullet

The PMTs are inside 5160 glass optical modules installed in-ice between 1450 m - 2450 m below surface.

Using timing & charge information, IceCube reconstructs the energy and direction of the neutrino interaction.

- Neutrino cross section grows with energy.
- For $E_v \gtrsim 40$ TeV Earth is no longer transparent:
 - before reaching IceCube*.
 - lower energies.

Neutrino Interactions

Neutrinos at IceCube

- As exclusively weakly-interacting particles, neutrinos can propagate great distances without interacting.
- IceCube can detect neutrinos which are both "down-going" and "up-going" (propagate through the Earth).
- Flavour tagging possible by identifying the \bullet signature for the out-going lepton, but v/v-bar extremely challenging on event level.

Neutrino Flux Overview

Neutrino Flux Overview

Atmospheric Neutrino Flux

- Atmospheric neutrinos produced primarily by π/K decays.
- Due to the rapidly falling spectrum with energy, the atmospheric neutrino spectrum is the dominant source of neutrinos in IceCube.
- Thanks to its size, IceCube has a large amount of neutrinos to work with - can even observe variations in the seasonal atmospheric neutrino flux.

Astrophysical Neutrino Flux

- Astrophysical neutrinos produced in cosmic accelerators up to very high energies.
- Precise sources unknown ("diffuse").
- Production flavours also unknown - assumed that over long propagation distances mixed to equal amounts of $v_e:v_\mu:v_\tau$.
- Number of events observed is small O(100s) in 10+ years of data.

 10^{-5}

Ч

arXiv:2203.08096

- Measurements using IceCube's track (v_µ CC) & cascade selection have been performed ($v_e CC + v_\tau CC + NC$).
- Current results are in agreement with several cross section models (ex. CSMS).
- Results disfavour certain BSM scenarios, but pushing to higher energies probe additional models.
- Significantly more data is available since these measurements were performed! - Better TeV+ limits?

https://arxiv.org/pdf/1711.11043.pdf

12

Earth Density Column

- Attenuation experienced by neutrinos is directly related to their propagation distance and density of the matter.
- Because of IceCube's location, the cosine of the neutrino's zenith can be conveniently translated to a column of traversed earth.
- The commonly used Preliminary reference Earth model (PREM) is shown here.
- The impact of the sharp increase in density in the transition region (core to mantle) can be clearly seen on the following slides in the expected flux at IceCube.

- Because of the in-Earth interactions, the flux reaching IceCube is modified.
- To account for effects like NC interactions or τ -regeneration, the flux ϕ_0 must be propagated to the detector.
- A semi-analytical solution from the open-source SQuIDS/nuSQuIDS software packages* is used for the propagation.
- Performing this propagation returns the new flux with respect to energy & $\cos(\theta_z)$ at the detector.
- As E_v and the size of the density column increase, the contributions from the original flux at those energies decrease.

Flux Propagation

Colton Hill - Chiba University

14

Flux Propagation

- The in-Earth interactions are a function of the neutrino cross section.
- For example, propagating the same flux (ϕ_0) with 5x enhanced cross section results in a reduction of the up-going flux reaching IceCube.
- This is most obvious for higher energy neutrinos or those which pass through more dense regions of the Earth.
- Naturally, interactions from neutrinos which do not pass through the Earth will be enhanced.

Cross Section Measurements with IceCube

- For visualisation, we can choose large scaling factors for the CSMS cross section, and pick events propagating through large amounts of earth.
- ex. an increase in the cross section:
 - Low energy events are enhanced.
 - High energy (up-going) events are suppressed.

"Global Fit" Cross Section Analysis

- Combine the orthogonal IceCube "track" (v μ CC) and "cascade" (v $_e$ CC, v $_\tau$ CC/ NC) selections.
- Track selection has high efficiency & rate (~2.4 mHz), reconstruction of µ direction very reliable.
- Cascade selection has no zenith cut (up/down-going events), better sensitivity to higher energy events, and robust energy reconstruction.
- Both selections have very low backgrounds.

Simulation Approach

- nuSQuIDS propagates the Atmospheric & Astrophysical ϕ_0 from the Earth's surface to reweight event by event at the detector.
- Fluxes with a range of cross section normalisations are injected and an event-by-event description of the interaction weight is parameterised.
- This means the propagated ϕ can be modified without needing to re-simulate the entire Monte Carlo.
- Another benefit is correctly handling the treatment of re-interactions within the Earth during propagation as the cross section is modified (not true for other IceCube MC approaches).

At-Detector Injection

Colton Hill - Chiba University

https://arxiv.org/abs/2012.10449 18

Selections

Colton Hill - Chiba University

Track: PhysRevD.89.062007 Cascade: arXiv:2001.09520

Selections

Track Event Display

Selections

Cascade Event Display

Track: PhysRevD.89.062007 Cascade: arXiv:2001.09520

Selection Rates

- Event rates using combined track & cascade selection.
- v_µ CC events compose majority of selection, due to high flux contribution.
- At higher energies, $v_e CC v_\tau CC$, and NC start to contribute significantly to the total.
- As energy increases:
 - Flux ↓
 - Absorption (Propagation) 1
 - Interaction Probability 1

10⁴

10³

Events per Year

 10^{-1}

 10^{-2}

Selected Flavour Rates vs True Energy

Colton Hill - Chiba University

Selection Rates

- Event rates using combined track & cascade selection.
- v_µ CC events compose majority of selection, due to high flux contribution.
- At higher energies, $v_e CC v_\tau CC$, and NC start to contribute significantly to the total.
- As energy increases:
 - Flux ↓
 - Absorption (Propagation) 1
 - Interaction Probability 1

10⁴

10³

Events per Year

 10^{-2}

Selected Flavour Rates vs True Energy

Selection Rates

- Event rates using combined track & cascade selection.
- v_µ CC events compose majority of selection, due to high flux contribution.
- At higher energies, $v_e CC v_\tau CC$, and NC start to contribute significantly to the total.
- As energy increases:
 - Flux ↓
 - Absorption (Propagation) 1
 - Interaction Probability 1

10⁴

10³

Events per Year

 10^{-2}

Selected Flavour Rates vs True Energy

- energy ranges. Important for the cross section versus energy.
- Burn sample data comparison to Monte Carlo shows reasonable initial agreement.
- section energy bin is wide.

Contributions from both Atmospheric and Astrophysical fluxes are relevant at different

Even in the full IceCube dataset, statistics at higher energies are limited, so final cross

Likelihood-based Approach

- Perform a forward-folding binned likelihood calculation: $\mathcal{L}(\mu_i) = \prod_i \mathcal{L}_{j_{bin}}(\mu_i; d_i)$.
- From Monte Carlo the bin expectations can be set as μ_i , and determined by data d_i.
- Include my 3 cross section bins, with both normalisation and shape terms for the Atmospheric & Astrophysical fluxes - 7 dimensional minimisation.
- The cross section scaling (how the event weights change) can be de-coupled from the flux normalisations primarily by examining the up-going events. However the parameters are still correlated - more investigation still in progress.

- Monte Carlo.

Likelihood-based Approach **IceCube Cascade Selection**

Binning schemes chosen considering strengths of individual selections & available

Note: additional Monte Carlo to be generated (high energy events are time-intensive).

- Monte Carlo.

Likelihood-based Approach **IceCube Cascade Selection**

Binning schemes chosen considering strengths of individual selections & available

Note: additional Monte Carlo to be generated (high energy events are time-intensive).

- Build Asimov likelihood using Monte Carlo for round-trip test of likelihood method.
- Assuming 10 years of data.
- Examine sensitivity in each bin, using Wilks Theorem to set 1σ contour.
- Lowest energy bin mainly includes events from Atmospheric flux.

- Second energy bin also shows agreement with injected values (round-trip).
- Overlap region of Atmospheric and Astrophysical fluxes.
- 1σ sensitivity on the level of 10%.

- While the highest energy bin is the widest, this also includes the most "interesting" events:
- Furthest away from accelerator neutrino regime.
- Least explored region w.r.t. investigating BSM processes.
- Previous IceCube cross section analyses extended sensitivity up to 10 PeV, this analysis plans extending range up to 100 PeV.

- Previous IceCube analyses typically simply assume Wilk's Theorem to draw confidence intervals.
- Cross-check confidence intervals by running pseudo-experiments (N=500) and extracting the test statistic for 3 cross section bins.
- Calculating the critical value for 1σ confidence.
- Exploratory scan shows that the TSdistributions follow χ^2 across the profiled likelihood region.

Pseudo-experiment Trials

- Plotting the critical values evaluated at different normalisations gives my new 1σ contour.
- Critical values extracted from pseudo-experiments indicate close agreement w/ Wilk's (~1%) for all 3 energy bins.
- As further systematic effects are included & data injected consistent verification of Wilk's theorem can be important.

Global Fit Sensitivity

- Evaluating the sensitivity improvement due to combining the track & cascade samples.
- Is using track + cascade more sensitive than *just* enhancing the number of statistics?
- Try scaling the track livetime by the number of cascade events (Track + LiveTime) - only a few %.
- Track Only & Track Only + LiveTime lines almost perfectly overlapping (square-root N scaling).
- Track + Cascade sensitivity better than sqrt(N)!

Monte Carlo Sensitivity

- Extracting the best fit normalisation for each cross section bin to build a sensitivity estimate.
- Uncertainties in the cross section are derived from the likelihood profile contours.
- Current uncertainties indicate competitive sensitivity to contemporary IceCube analyses.
- Uncertainties do not yet include full suite of IceCube systematic effects (ex. ice modelling).

Summary

- IceCube has sensitivity to a wide variety of events available for cross section analyses.
- By considering attenuation of the neutrino flux through the Earth, IceCube has demonstrated unique sensitivity to the DIS neutrino cross section.
- Combining the IceCube track and cascade selections as part of a "global fit" gains additional sensitivity to the σ_v cross section.
- Careful treatment of the flux prediction and relevant uncertainties will play a key role in determining the accuracy of future IceCube cross section measurements.

- Additionally examine correlations between the cross section normalisation bins.
- Also in the 2D case, the best fit point is found at 1.0 for both cross section bins (true for all 2D comparisons).
- For $\sigma 1$ vs $\sigma 2$, 2D likelihood scans show weak anti-correlation between first and second cross section bin (possibly due to energy reconstruction).

Scan Points

Neutrino Flux Overview

Cross Section Measurements with IceCube

Neutrino Fluxes at IceCube

PRL 125, 121104 (2020)

TeV-Scale Cross Section Measurements In IceCube

- IceCube has a varied cross section physics programme, which focuses on a number of different signals and techniques.
- This includes analyses looking for "track-like" or "cascade-like" interactions, or specifically up-going or down-going neutrinos.
- Recent results (1) used "starting" events, measuring the CC all-flavour cross section using the Earth absorption method.
- A number of other new cross section measurements are also in progress and will be released soon.

