HL-LHC ATLASミューオントリガー シミュレータの開発及び、 それを用いた性能評価と実機の検証

浅井研究室 修士課程2年 山下恵理香

2022年度 ICEPPシンポジウム

LHC-ATLAS実験

LHC加速器(Large Hadron Collider)

- ・世界最高エネルギーの13.6TeV(Run3)で
 陽子・陽子衝突を起こし、
 新物理を探すエネルギーフロンティア実験
- 40 MHzで陽子を交差させる

ATLAS検出器

- •LHCの陽子・陽子衝突で生成された粒子を観測する ための大型汎用検出器
- 複数の種類の検出器で構成される

観測したい物理

- •標準模型の粒子の精密測定
- ・超対称性理論などで予言される、暗黒物質などの新 粒子の探索

LHC-ATLAS実験

LHC加速器(Large Hadron Collider)

- 世界最高エネルギーの13.6TeV(Run3)で
 陽子・陽子衝突を起こし、
 新物理を探すエネルギーフロンティア実験
- ・40 MHzで陽子を交差させる ATLAS検出器
- LHCの陽子・陽子衝突で生成された粒子を観測する ための大型汎用検出器
- 複数の種類の検出器で構成される

観測したい物理

- •標準模型の粒子の精密測定
- ・超対称性理論などで予言される新粒子の探索
 ・暗黒物質等も含む

例:暗黒物質探索 DM DM 加 速器実験 宇宙線などによる 間接探索 SM粒子 SM粒子 DMと原子核との反跳などによる

直接探索

LHC-ATLAS実験のトリガーシステム

トリガーシステム

2023/2/17

- 40 MHzの陽子交差の内、ほとんどは物理的な興味の薄い陽子の非弾性散乱 →トリガーによってオンラインで記録する事象を選別する
- ATLASのトリガーは2段階で行われるが、 本研究の対象は初段トリガーの一部のエンドキャップミューオントリガー
 - ・以下は2029年以降の値
 - •10 µsレイテンシーでミューオンの飛跡を再構成し、事象選別に活用する

TGC検出器とトリガー

TGC(Thin Gap Chamber)とエンドキャップミューオントリガー

- 高い横運動量p_Tを持つミューオンを含む事象を選別するためのトリ ガーとして使用
- アノードワイヤーとカソードストリップによる二次元読み出しを行うMWPC
- 7 層・3ステーションで構成され、コインシデンス回路で 高速飛跡再構成(直線飛跡再構成)を行う
 • Wire 7層+Strip 6層
- トロイド磁場による曲率と直線飛跡との差分(*d*η, *d*φ)の相関関係を 利用し、横運動量p_Tを計算する

ATLAS検出機の全体図

TGC検出器とトリガー

TGC(Thin Gap Chamber)とエンドキャップミューオントリガー

- 高い横運動量p_Tを持つミューオンを含む事象を選別するためのトリ ガーとして使用
- アノードワイヤーとカソードストリップによる二次元読み出しを行うMWPC
- 7層・3ステーションで構成され、コインシデンス回路で 高速飛跡再構成(直線飛跡再構成)を行う
 Wire 7層+Strip 6層
- トロイド磁場による曲率と直線飛跡との差分(*dη, dφ*)の相関関係を 利用し、横運動量*p*_Tを計算し、トリガー判定に用いる

ATLAS検出機の全体図

2022年度 ICEPPシンポジウム

高輝度 LHC-ATLAS 実験に向けたPhase2 Upgrade

- 現在は物理実験期間中(Run3)
- 2029年から始まる高輝度LHC実験(Run4)に向けたアップグレードが進行中
 - 瞬間ルミノシティが5~7×10³⁴cm⁻²s⁻¹になる
 - ATLAS検出器設計当初の5~7倍
 - 高輝度環境に対応するため、エンドキャップミューオントリガー系のエレクトロニクスが刷新される→Phase2 Upgrade
- Phase2アップグレード後のエンドキャップミューオントリガー系
 - 実験室ではデータの選別をせず、全データをSector Logic(別室にある後段のエレクトロニクス)へ送信する
 - Run3よりも<u>トリガー計算の時間(レイテンシー)を長く取り、複雑な計算が可能になった</u>

高輝度 LHC-ATLAS 実験に向けたPhase2 Upgrade

- TGC検出器で観測したヒット情報は、多段のコンポーネントを経てトリガー判定される
 - ASD 信号のデジタル化
 - PSボード
 LHCクロックと同期
 - Sector Logic(SL) 7層のコインシデンスにより $p_{\rm T}$ を計算
 - トリガー系では、データの選別をせずに全情報をSLへ送信する
- PSボード以降の全システムがエレクトロニクス・ファイバー接続を含めて刷新
 - SLのトリガー系は開発中であり、現在も統合試験を行っている
 - •本研究はSL開発・運用のためのトリガー系検証機構の全体設計+開発+利用を行った

SL検証機構の全体設計

シミュレーションから実機試験までを系統的に動作検証を行うこと ができる研究基盤を構築し、実際に運用している

セクターロジックトリガー系の ビットワイズシミュレータの開発

SLのトリガー系の7層コインシデンスの計算

SLのトリガー系の7層コインシデンスの計算

3/3 = A1 & B1 & C2 $2/3 = A1 \& B1 \& \overline{C1} \& \overline{C2}$ $+ A1 \& \overline{B1} \& \overline{B2} \& C2 + \overline{A1} \& B1 \& C2$ $1/3 = A1 \& \overline{B1} \& \overline{B2} \& \overline{C1} \& \overline{C2}$

- SLトリガー系では多段の計算によって p_T を 得る
- Channel Mapping
 - トリガーロジックで扱いやすいように下準備 をする
 - SLがシリアルリンクで受け取ったビットマップ (128 bit × 58 link) を コインシデンスのためのロジカルなチャンネル (各レイヤーで1次元配列) に変換する
 - この部分のみ、ファームウェアの開発も行った
- ステーション内コインシデンス
 - 各ステーションの代表点を得る
 - ロジカルなチャンネルに対して、AND、OR、 NOTで記述されるコインシデンス論理をかける
- ステーション間コインシデンス
 - M1・M2・M3の代表点の組み合わせから、 LUT(Look up table)によって無限運動量飛跡 との差分(Δη, Δφ)を得る

• Wire-Strip コインシデンス

(Δη, Δφ)からLUTによってp_Tを得る

SLのトリガー系の7層コインシデンスの計算

2023/2/20

- SLトリガー系では多段の計算によって p_T を得る
- Channel Mapping
 - トリガーロジックで扱いやすいように下準備 をする
 - SLがシリアルリンクで受け取ったビットマップ (128 bit × 58 link) を コインシデンスのためのロジカルなチャンネル (各レイヤーで1次元配列) に変換する
 - この部分のみ、ファームウェアの開発も行った
- ステーション内コインシデンス
 - 各ステーションの代表点を得る
 - ロジカルなチャンネルに対して、AND、OR、 NOTで記述されるコインシデンス論理をかける
- ステーション間コインシデンス
 - M1・M2・M3の代表点の組み合わせから、 LUT(Look up table)によって無限運動量飛跡 との差分(Δη, Δφ)を得る
- Wire-Strip コインシデンス
 - (Δη,Δφ)からLUTによってp_Tを得る

13

ビットワイズシミュレータの作成

- •本研究ではファームウェアのロジックを忠実に再現したシミュレータをC++で作成した
- ファームウェアは多段のモジュールで構成され、シミュレータはモジュールの入出力の単位 で完全一致
 - フロートによる近似ではなくビットによる計算を行う
 - 例:実機の信号線1本にbool値1つが対応
 - ・

 トリガーの制約に起因するファームウェアの構造も全て一致するようにソフトウェアを実装した
 - レイテンシーの制約から、全ての組み合わせではなく、優先順位をつけて上位いくつかのみをLUTに問い合わせる
 - 領域を分割し、独立に並列計算をすることで高速な計算を実現している
- 相互検証に使うため、ファームウェアと同一のテストパターンファイル・LUTのファイルを 入力する
- ファームウェアシミュレータよりもイベントあたりの計算が高速
 - 多くのヒットパターンを試験する際に有用

- 1枚のSLは1/24セクター(="トリガーセクター")を担う
- トリガーセクターは3つのサブセクターに分割され、
 ファームウェアはサブセクターごとに独立
 - $7 + 7 1 \times 1 \times 1 \times 1 = 1.92 < |\eta| < 2.4$
 - エンドキャップ x 2: 1.05 < |η| < 1.92
- •最後のセクションは図で示されるモジュールの検証を行なった話

検証のためのテスト入力パターン の生成機構の開発

テストベクターの生成機構

- トリガーロジックの検証のために、様々なテ スト入力パターンを生成する機構を開発した
- 任意のヒットのパターンを、SLへの入力と なる128bit × 58 link形式のテストベクター ファイルに整形するための機構を作成した

特に有用な2種類のテストベクターを実際に検 証に使用

- 無限運動量飛跡
 - 13層(Wire 7層・Strip 6層)突き抜けの直線飛跡
 - トリガーするべきトラックの中で最も単純かつ優先度の高いパターン

・MCデータ/実データ

 現実的な有限の曲率を持った飛跡による詳細なト リガーの検証

シミュレータとテストベクターを 利用した検証

検証機構の実用

- 1. トリガーロジックの最初の検証とし て、無限運動量飛跡のテストベク ターによる試験
 - a. 無限運動量飛跡63イベントによる、 実機・シミュレータ出力照合試験
 - b. Forward Wireの範囲内にある直線飛跡
 全てを網羅したLUT検証試験
- より詳細のトリガーロジック検証として、現実的な飛跡である
 MCデータのテストベクターによる 試験
- 3. 実機試験への活用

1-a:無限運動量飛跡63イベントによる出力照合試験

2022年度 ICEPPシンポジウム

1-a:無限運動量飛跡63イベントによる出力照合試験

2022年度 ICEPPシンポジウム

2023/2/17

1-b:無限運動量飛跡によるFWのLUT検証試験

2:MCデータによるefficiencyの検証試験

- 大統計・現実的な入力に対するビットレベルのトリガー アルゴリズムの応答を見て性能評価をする
- 手法
 - MCデータから生成したテストベクターを ビットワイズシミュレータに入力
 - Truth情報(ミューオンの(η, φ)座標、p_T)と
 各モジュールの出力情報を用いて解析

2:MCデータによるefficiencyの検証試験

- 6000 eventの試験を行なった
 - $p_T > 40 \text{ GeV}$ (確実にトリガーすべきイベント)
 - ミューオンが1本のみのイベント(初期の試験なので簡単のため)
 - 1.95 < η < 2.4, 2.87 < φ < 3.14(Forward 領域のうち、TGC検出器の構造によるinefficiencyがない 領域)
- •LUTから何らかの値を取り出せたイベントの割合をそれぞれ確認した(下図)
 - 横軸η
 - 期待通りのefficiencyが出力された

24

イベントの解析:Wire-Strip コインシデンス

• 再構成できなかったイベントの調査を行った

- LUTにデータがなかったイベントについて、inefficiency理屈をイベントごとに調査
 - Stripのステーション間コインシデンスの出力となる $d\phi$ (内部磁場による飛跡の歪曲具合)が大きい
 - ノイズのないMCデータのイベントのみを用いているのに、ステーションあたりの代表点が多い(約10個~)
 - 大量の飛跡候補の中から、直線に近い飛跡を選択できていない
- 物理的な解釈
 - MCデータのTruthの情報を簡単に辿れないので推測になるが、ミューオンと検出器等の物質との相互作用で散乱している多重散乱事 象だろうと推測される
- 飛跡選別のロジックの確認
 - ファームウェア自体のロジックによるinefficiencyなのか、 シミュレータ開発時にロジックを誤翻訳したためのinefficiencyなのかを確認する必要がある
 - これから、該当するイベントのみを集めてテストパターンセットを作成し、ファームウェア側でも試験を行う(次ページ)
- このように、シミュレータの各モジュールの出力も全て記録しているため、
 - 予期せぬinefficiencyなどについて簡単に解析をすることができる

3:実機試験への活用

- 実機の試験とファームウェアの試験に
 同じ入力を使用し、相互検証
- 実機試験
 - 実機ではボード単体でのトリガー回路の 試験フレームワークを実現し、動作検証を行 なっている
 - ファームウェア内のRAMにトラックパターン ファイルを仕込んで、任意の入力に対して実 機の応答を確認することができる
- ・ 出力の比較
 - 本研究の枠組みを使うと、同一のテストパ ターンによる実機試験、ファームウェアシ ミュレーション、ソフトウェアシミュレー ションの相互照合を容易に行うことができる
 - SLのファームウェアのIO、読み出し、トリガー、制御の全回路の統合が共同研究者 (同大学の三島)によって行われたが、その際の検証に活用されている
 - 今後さらに多様な入力による実機、ファーム ウェアシミュレータ、ソフトウェアシミュ レータの相互照合をしながら開発・運用がで きる環境が整った

tb_behav.wcfg										? 🗆 🖸
Q ≝ @ Q X + H H	t2 2r +f fe ef l⊨l									
				11.868372000 us						
Name	Value	0.000000	6.60171 0 US 11	2.000000000 us 20.00	0000000 us 30.0000000	00 us 40.000000000 u	50.00000000 us je	50.000000000 us 170.000	1000000 us Bi	0.000000000 us 190.
> 🔚 TGCWireReconstructor_SLR0										
> 🔚 StripPatternMatching_SLR0										
> 🔚 TGCWireReconstructor_SLR3										
> 🛋 StripPatternMatching_SLR3										
🗸 🛋 sim_Yamashita										
∨ 🛋 ChannelMapping_output										
> % F_WIRE_L1[104:0]	00000040000000000000000000000	0000	0000	000000000000000000000000000000000000000	X000000000000000	X0000000000000000	X000000000000000000		000000)	
> 👽 F_WIRE_L2[103:0]	000004000000000000000000000000000000000	0000	0000	0000000000000000000	X0000000000000000	¥0000000000000000	x000000000000000000		000000)	
> 😼 F_WIRE_L3[104:0]	00000040000000000000000000000	0000	0000	0000000000000000000	X000000000000000	x0000000000000000	x00000000000000000	. *************************************	000000)	
> 😼 F_WIRE_L4[124:0]	040000000000000000000000000000000000000	0000	0000	0000000000000000000	X000000000000000	x0000000000000000	x00000000000000000		000000)	
> 😽 F_WIRE_L5[124:0]	020000000000000000000000000000000000000	0000	0000	0000000000000000000	X0000000000000000	x0000000000000000	000000000000000000000000000000000000000		000000)	
> 👽 F_WIRE_L6[121:0]	100000000000000000000000000000000000000	0000	0000	0000000000000000000	X0000000000000000	x0000000000000000	000000000000000000000000000000000000000		000000)	
> 👽 F_WIRE_L7[121:0]	080000000000000000000000000000000000000	0000	0000	000000000000000000	X0000000000000000	x0000000000000000	x00000000000000000		000000)	
> 😼 F_STRIP_M1_A[31:0]	00000001	0000	0000	0000000	X 0000000	0000000	0000000	¥ 0000000	00000000	
> V F_STRIP_M1_B[31:0]	00000001	0000	0000	0000000	X 0000000	0000000	0000000	¥ 0000000	00000000	
> 😽 F_STRIP_M2_A[31:0]	00000001	0000	0000	0000000	X 0000000	0000000	0000000	0000000	0000000	
> V F_STRIP_M2_B[31:0]	00000001	0000	0000	0000000	X 0000000	0000000	0000000	0000000	0000000	
> 👽 F_STRIP_M3_A[31:0]	00000001	0000	0000	0000000	X 0000000	0000000	0000000	0000000	00000000	
> 👽 F_STRIP_M3_B[31:0]	00000001	0000	0000	0000000	X 0000000	0000000	0000000	0000000	x 00000000	
> 🗮 WireStationCoincidence_output										
> 🗮 StripStationCoincidence_output					· · · ·		~			· _ · _ ·
> 🛋 WireSegmentReconstruction_output				T	ンこ・	7 / -	- >/ :	ヨン()) hi	
> 🗮 StripSegmentReconstruction_output							-			

2022年度 ICEPPシンポジウム

まとめ

- Phase2に向けた開発が進んでいる
- それに向けた開発フレームワークとしてSLの 検証機構の全体設計を行い、その構成要素を開 発した
 - ビットワイズシミュレータ
 - テストパターン生成システム
 - リレーショナルデータベース
- •実際に検証機構を運用し、SL開発研究に役立 てている

将来の展望

- 本検証機構は現在のSL開発研究のみならず、 SL実機の運用時も見据えた設計となっている。
 - 例:運転中、試運転中のファームウェアの最初の検 証や、システムの診断

バックアップ

イベントの解析:ステーション間コインシデンス(Wire)

- 再構成できなかったイベントの精査を行った
 - Wire/Stripの比較
 - 「検出器自体にヒットはあったが、 Segment Reconstructionの段階で落ちている」イベントがStripと比較して多い
 (Wing Obving 145 and 14
 - (Wire : Strip=145 event : 71 event, Wire \mathcal{O} inefficiency \mathcal{O} 70%)
 - inefficiency理屈をイベントごとに調査
 - 若干の折れ曲がりをもった飛跡(LUTに存在しない)
 - 現在のトリガーでは落ちるべくして落ちている事象であり、Inefficiencyのメカニズムをクリアに理解できた
 - 若干の折れ曲がりに対する物理的な解釈

再構成でき

- Truthの情報を簡単に辿れないので推測になるが、ミューオンと検出器等の物質との相互作用で散乱している 多重散乱事象だろうと推測される
- 多重散乱事象に対応するデータがLUT内に用意されていないためのinefficiencyと結論付けられるが、 原理的に回復可能なものなので、よく理解をするべき点である

なかった 例	M1	M2	M3		
	224	224	224		
	225	225	225		
	226	226	226		
	227	227	227		
	228	228	228		

同じηのチャンネルが同じ番号になる スタッガードチャンネルによる表記 (同じチャンネル番号の組=無限運動量飛跡)

Channel Mapping

Channel Mapping

- LOトリガー系のファームウェアで最初のモジュール
- SLがシリアルリンクで受け取ったビットマップ(128 bit × 58 link)を コインシデンスのためのロジカルなチャンネルに変換する
 - SLは29枚のPSボードから58本の光ファイバーによりTGC Big Wheelのヒット情報を受け取る
 - 1本の光ファイバーが最大128チャンネルを取り扱う
- 出力はWired ORを考慮した「トリガー系入力チャンネル」

- データベースを利用してファームウェアを自動生成する仕掛けを開発した
- ビットポジションとロジカルなチャンネルの対応関係をデータベースから取り出し、Pythonでファームウェアの形に整形した
- SL 1枚が担う領域(トリガーセクター)にある約6000のチャンネルについて、1チャンネルにつき1行でファームウェアが記述さ れる

Wired ORを考慮したレイヤー毎のチャンネル番号

- ステーション内コインシデンスを行うために、各レイヤーのヒット情報を1次元配列に整形する
 - トリガーセクターは複数のチェンバーで構成されるので、トリガー計算をするときはチェンバー構造を考慮する必要がある
 - トリガー系の最初でチェンバー構造の複雑さを吸収したチャンネルに整形することで、以降の論理回路では構造を気にせずに演算できるようにした

Wired OR

チェンバー境界に同じη領域を 観測するチャンネルがある

- <u>この配列を定義した</u>。ここでは「トリガー系入力チャンネル」と呼ぶ ※修士論文本文での名称は「ステーション内コインシデンス入力」
- ワイヤーにおけるWired OR
 - チェンバー境界のオーバーラップしたチャンネルに対するOR
 - 「トリガー系入力チャンネル」は現行システムにおけるレイヤー内通し番号を踏襲した
- ストリップにおけるWired OR
 - ステーション間でのコインシデンスでは、M3がピボットとなる
 - M1・M2 ステーションでは複数のチェンバーのチャンネル同士でOR を取り、チェンバーをまたがる仮想的な長いチャンネルとして取り扱う必要がある
 - 理由1:ステーション間でのチェンバー境界のη 座標が一致しない
 - ・ 理由2:内部のトロイド磁場により飛跡がη 方向に曲がる
 - M3のピボットを元に、<u>チェンバーをまたいでORをとった仮想的な長いチャンネルを「トリガー系入力チャンネル」と定義した</u>

ストリップのトリガー系入力チャンネル

2023/2/20

2022年度 修士論文審査会

テストベクターの生成機構

- ・ 目的:トリガーロジックの検証のために、 様々なテスト入力パターンを生成する
- 任意のヒットのパターンを、SLへの入力となる 128bit × 58 link形式のテストベクターファイルに 整形するための機構を作成した
 - 入力1:ヒットを打つチャンネルを指定する種ファイル
 - 入力2: リレーショナル・データベース
- 種ファイル:柔軟な入力が可能
 - 1つのファイルに任意のイベント数を書き込める
 - 複数のフォーマットを用意
 - スタッガードチャンネルを入力し、無限運動量飛跡となる 13点(Wire 7層+Strip 6層)をテストベクターに書き込む
 - 検出器上のチャンネルを1点ずつ指定
 - ランダムなノイズを指定された数打つ
 - 1イベントに対して複数のヒット点を指定することが可能
 - (例)無限運動量飛跡 x2 +ノイズ
 - これらのフォーマットを組み合わせることで様々な検証 が可能になる

テストベクターの生成機構

スタッガードチャンネル

• 二段階での飛跡再構成 3/3 = A1 & B1 & C2 $2/3 = A1 \& B1 \& \overline{C1} \& \overline{C2}$ l. ステーション内コインシデンス B1 $+A1 \& \overline{B1} \& \overline{B2} \& C2 + \overline{A1} \& B1 \& C2$ II. ステーション間コインシデンス C2 $1/3 = A1\& \overline{B1} \& \overline{B2} \& \overline{C1} \& \overline{C2}$ TGCチャンネルのスタッガリング構造 コインシデンスによりgranularityが 向上する設計 M2 M1 **M3** • トリガーで使用する位置情報が **Doublets** Triplet **Doublets** 同じ η/ϕ のgranularityになるように 検出器内のチャンネル幅が設計されてい コインシデンス論理はAND、OR、NOT で記述される • 3/3コインシデンスと2/3コインシデンスを 独立&排他的に計算する スタッガードチャンネルの定義 同じη, φのチャンネルが同じ番号になるように、ステーション間で統一的なチャン コインシデンス後の出力 TGC検出器 ネル番号の定義を行なった スタッガードチャンネル チャンネル (同じチャンネル番号の組=無限運動量飛跡) コインシデンス ※M1で3層あるのはワイヤーのみ

Segment Reconstruction

- ・各ステーションの代表点の組み合わせから、無限運動量飛跡との差分 ($\Delta \theta, \Delta \phi$)を得る
- Wire、Stripで独立
- 全体をUnit/subunitの構造に分割して計算を行う

Segment Reconstruction ~ WS coincidence

 Segment Reconstruction M1~M3ステーションについて、 **M3** 同じηを観測するチャンネルを • LUTにより、各ステーションの代表点の組み合わせから 無限運動量飛跡との差分($\Delta\eta, \Delta\phi$)を得る 横に並べた図 • トリガーは高速な計算を求められるため、セクターを複数の領域(unit/subunit)に分割し、 再構成の計算を並列に行う RAMによってLUTが実装される 例:Wire subunitごとにLUTが用意される LUTの入力として代表点からAddressを生成する 各ステーションから「ヒットのあったレイヤー数が多く」「領域の中心に近い」代表点を取得 • 優先順位の高いものからアドレスを生成し、LUTからデータを取得 Subunit • Subunitという単位ごとにLUTから最大8つのデータを取得できる 出力はSubunitごとに最大1データ 96 Wire-Strip coincidence M3:16 M2:32 • $(\Delta \eta, \Delta \phi)$ からLUTによって p_{τ} を得る • Segment Reconstructionと同様に、セクターを分割して並列計算 Unit M1:96 C++での実装 シミュレータでLUTの検証をするため、LUTのパターンファイルもファームウェアと同一 ・ 並列のための分割・多段の計算により、前二つのモジュールよりも非常に複雑 • 高速化のため、ヒットのない領域などは適宜演算をスキップし、 領域のセレクションも最初に行う ファームウェアでは並列で演算するが、C++のシミュレータは直列的な構造のため

Segment Reconstruction

- •LUTを使用する(ファームウェアではRAMにより実装)
 - 代表点の組み合わせがRAMのアドレスになる
 - ・SubunitごとにLUT
 - 例:Stripなら、

Address = {M1 global ID (3~bit), M2 global ID (3~bit), M3 global ID (3~bit)}

- 優先順位の高いものからAddressを作成
 - 1. ヒットのあったレイヤーの枚数
 - 2. Unit/subunitの中心に近い代表点
 - Strip: 6 Address/subunit
 - Wire : 2 Address/subunit

Wire-Strip Coincidence

- Segment Reconstructionで得た($\Delta \theta, \Delta \phi$)から LUTによって p_T を得る
- block(最小単位): Wireのsubunit × Stripのunit
 - ・Wireのsubunitにつき $\Delta \theta$ が最大1つ、 Stripのunitにつき $\Delta \phi$ が最大1つなので、 この領域には最大1つずつの ($\Delta \theta, \Delta \phi$)が入力される
 - $(\Delta \theta, \Delta \phi)$ を入力とするLUTがblockごとに用意される
- Region: 複数のblockからなる単位
 - 8つのblockで構成されるregion8と、
 32のblockで構成されるregion32の2種類
 - region8: 最大1blockからの計算結果を後段に出力
 - region32: 最大4blockからの計算結果を後段に出力
 - ・本研究で検証を行なったForward領域はregion32のみ

					5 15	16 X4	16 10 ····	
			10 106	11 124 4 11 124 4 10 128 5		N 12	11 12 12 12 12 12 12 12 12 12 12 12 12 1	
	8 101	8 U1 8 7 10 10	• 03	9 100 8 8 101 10	± 12	W 101	U 12 8	
	7 00 6 79 5 10 10 10 10 10 10 10 10 10 10	1 6 19 0 5 18 0	7 10	7 30 U 6 719 U		1 10	10 10 10 10 10 10	
	4 107 3 116	4 TTF 3 TH	6 TB	5 TB	10 10			
	2 TB 1 TH 0 TB	2 TB 1 TH 0 TB	2 78 2 78 1 14	2 1% 2 1% 1 1H	К 16 7 17	8 57 7 56	7 7	
	5 TU 34 TTI	M TH 20	0 T1X	0 118 % 110 %	6 96 5 96	6 16 5 14	1 4 2	
	11 110 12 139 11 338	U 10 11 13	18 110 12 120 12 120	10 110 12 139 11 138	4 14	4 18 3 12	4 14 1	
n/1	0 13	5 1X 8 1X 7 1X	11 13K 10 137 	D 137 9 133 8 135	2 9	2 11	2 92	
	7 138 6 138 5 137	6 121 5 127	8 236 7 234 6 238	7 124	0 10	0 B0	0 90 0 10 90 0	•
	4 121 3 120 2 160	3 120 2 90	5 132 4 123 3 130	4 121	× 8	36 87	36 98 0000 01 87 0000 01 87 0000	•
	1 58 D 517 75 56	0 87 16 96	2 50 1 58 0 59	1 14 0 57	2 6	10 K	U N	
	14 56 13 54 17 55	12 64 1 12 64	10 00 14 00 12 00	11 16 12 14	10 M	0.8	0 M	
	11 58 10 51	11 92 10 91 9 90	17 58 11 68	11 52 53 11 52 10 51	0 KL	1 1	1 N N	
	8 80 7 88	7 8 10 1 7 8 1	9 10 8 10	0 10 8 80 7 84	7 B 6 K	5 KO	6 K) 5 V)	
	5 N 6 N	5 N 4 N 3 M	6 57 5 86	6 87 5 86 4 86	5 3 4 3	4 TT	4 34 4	
	2 83 1 82	2 88 1 82 0 81	1 N 3 M 2 N	3 M 2 f3	а 17 2 Ж	2 5	2 8 8	
	0 80 16 80 14 39	16 KO 14 19 U	0 81 56 80	0 81 56 80 U	1 %	0 33	0 H U	
	02 38 02 77 11 36	11 N	14 39 13 38 14 17	u x u x	<u>s</u> n	<u>н</u> и и п	5 N	
	10 N 9 M	0 % 00 9 % 00 8 % 00	11 34 10 36	11 X 20 10 X 21 10	u 7	3 3		
	8 13 7 12 6 71	7 37 6 71 5 30	8 33 7 32	8 33 7 32 6 71	10 X0 11 60	1 4	0 II 2 II 2 II 2 II 2 II	
	6 30 4 60 2 68	4 00 3 08 2 07	6 71 6 30 4 89	5 X0 4 00 2 68	10 0k 9 07	0 0	5 67 1 6 6	
	2 67 1 66 0 66	1 60 0 66	2 08 2 67 1 06	2 67 1 66 0 66	7 6	7 4	7 6	
	16 64 16 62 10 67	N 00 00	0 45 75 64 14 68	5 64 38 14 64	6 44 5 68	5 0	5 a 2	
	10 61 11 60 10 60	11 60 10 59	10 62 12 61 11 60	11 42 12 41 11 40	4 HZ 2 HI	4 61 2 60		
	0 18 8 57 7 56	8 07 7 56	10 50 0 58 8 57	0 50 0 54 8 57	2 10 1 50	2 00		
	6 16 5 14 4 55	6 16 6 14 6 13	7 56 6 56 5 56	7 54 6 56 6 54	0 16	0 57 16 66		
	3 52 2 51	2 10 10 2 11 10	4 54 3 56	4 12 12 3 12 12		9 B	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	1 50 0 60 5 64	1 80 0 40 16 44	2 51 1 50 0 49	2 11 1 50 0 49	10 16 17 16	7 54	11 14	
	14. d/ 12. di	H 47 10 11 46 22 12 6 47	10 4A 36 47	16 46 47 17 47 47	11 BA	11 SF 10 SI	10 10 100	
	11 44 10 44 10 44	11 44 10 44	10 44 10 46 11 44	11 44	0 H	0 10 8 40		
	9 d2 8 d1 7 d0	8 di 7 di	10 44 9 44 8 41	9 42 8 41	7 4	7 46 6 47	7 B B	
	6 20 5 38 4 37	5 38 4 37	7 40 6 20 5 38	E 20 E 30	5 CT	5 4	4 4	
	2 38 2 38 1 34	2 35 1	4 37 2 36 7 36	3 3 2 36	2 6	3 44 2 44	2 4 2	
	0 38 5 39	10 AA 10 30 14 31 10	1 M 0 33	0 33 0 5 32 0	1 4	1 48 0 41		
	11 X0 12 20	11 X0 12 30 11 38	16 21 18 30	14 31 10 80 12 39		5 40	16 41	
	11 28 10 27	10 27 10 9 36	11 28 10 17	11 28 10 10 27	11 AD	11 38	12 20 10 10 10 10 10	
	8 25 7 34 6 23	7 34 44 6 21 44	9 26 8 25 7 24	8 26 26 7 24 26	12 36 11 27	10 M	11 27	
	5 22 4 21 3 20	4 21 4 3 20 4	6 23 5 22 4 21	6 23 5 22 45 4 21 5	0 X 2 X	0 8 9 8		
	2 19 1 18 0 17	2 10 10 10 10 10 10 10 10 10 10 10 10 10	3 20 2 19 1 38	3 X0 2 10 1 N	8 M 7 33	11 XX 7 XX	7 8	
	<u>ь</u> н н п	M 15 20	0 U	N N 20 N N 20	6 X	6 21 5 30	5 H B	
	11 U	11 12 11 11 12 1	3 5 3 H 9 U	11 H	4 2	4 20	4 30	
	10 11 9 10 8 9	- 9 30 - 8 9 40 - 7 8	11 Uz 10 11 1 10	10 11 9 10	2 8	2 27	2 2	
	7 8 6 7 5 6	6 7 5 6 4 5	7 <u>8</u> 7 <u>8</u> 8 7	7 K 6 7	0 24	0 5		
	4 5	2 2 3 M	6 6 6 5	4 5 <u>20</u> 3 4 <u>20</u>	ы ж и и	14 JA	14 24	
	1 2	1 Z 0 1	2 3 1 2	2 3 1 2 0 1	12 23 12 22	u 22	V 22 00	
					11 21 10 20	11 20 10 19	10 20 20	
						» ж ж т		
					7 17 6 36	7 H 6 H	6 X	
					6 16 4 34	5 H 4 U	4 9	
					2 U 2 U	3 W 2 II	2 0	
					1 11	1 10	0 0	
n 🛧 🔽					10 F		N 9 000	
リノト 🔻					11 Y		11 7 22 - 22 6 22 - 22	
					1 5	1 4	11 5 000	
					9 X 8 X	10 X 19 X	9 3 50 8 7 50	
2023/2/17	L		L					

FWチャンネル

 ステーションにより η のカバー範囲が違っており、 M1ステーションしか存在しない領域では Segment Reconstructionができない

2023/2/17

2022年度 ICEPPシンポジウム

41

TGCを構成するチャンネル数・コンポーネント数の規模

- TGC検出器システムでは1/24構造の繰り返しで2 π をカバー
- Big Wheelの1/24セクター内において以下のコンポーネントが存在している
 - 6408 チャンネル
 - 417 ASD
 - 29 PSボード
 - 58ファイバー

ICEPPシンポジウム 2022年度

タイムスケジュール

43

- $WH \rightarrow \mu \nu b \overline{b}$
 - ・トリガーしたい事象の一つ
 - Wボソンの崩壊で高いp_Tを持つμが生成される

2023/2/20

2022年度 ICEPPシンポジウム

46

- 1枚のSLは1/24セクター(="トリガーセクター")を担う
- トリガーセクターは3つのサブセクターに分割され、
 ファームウェアはサブセクターごとに独立
 - $7 + 7 1 \times 1 \times 1 \times 1 = 1.92 < |\eta| < 2.4$
 - エンドキャップ x 2: 1.05 < |η| < 1.92
- •最後のセクションは図で示されるモジュールの検証を行なった話

