#### LHC-ATLAS実験Run 3における 速度の遅い荷電粒子用トリガーのための TGC検出器のバンチ識別性能評価

#### 神戸大学 粒子物理学研究室 修士課程1年

田路 航也

第29回 ICEPP国際シンポジウム



- 世界最高エネルギー13.6TeV
   LHCの衝突点の一つ
- 円形陽子加速器
- 衝突頻度: 40MHz
- $L = 2 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
- 3年間の休止期間を経て
   昨年より第3期運転 (Run 3)

- 大型汎用型粒子検出器
- 内部飛跡検出器
- 超伝導ソレノイド磁石
- カロリーメータ
- ミューオン検出器



粒子速度分布





▶ATLAS検出器の外層にある
 ミューオン検出器まで遅れて到達
 ▶直接検出が可能

#### ATLAS Run-3 トリガーシステム 物理的に興味のある事象のみを選択する



速度の遅い粒子のためのトリガー



- 基準バンチにカロリーメー タの信号を要求
- 次バンチに遅れてきた信号
   をトリガーする







 新物理探索における解析のために実データにおけるトリガー 効率の測定が必要



#### TGC検出器における 速度の遅い粒子のためのトリガー

- TGC 検出器はクロックを跨ぐような時間分布を取得可能
  - トリガー信号の前後のクロックの情報も取得している
- クロックの切り替わるタイミング付近で到来する粒子に関しては数nsecのずれが検出効率の低下に繋がる
   ▶詳細なタイミング設定が必要



## TGC検出器 タイミング設定



- TGC検出器はヒットした衝突の 前後の情報も読み出す
- ・ゲート幅はLHCクロック25nsより も大きい

|          | ゲート                                    |
|----------|----------------------------------------|
| BW ワイヤー  | 29.32 ns (26 ns + 4 $\times$ 0.83 ns)  |
| BW ストリップ | 40.94 ns (26 ns + 18 $\times$ 0.83 ns) |
| SW ワイヤー  | 33.47 ns (26 ns + 9 $\times$ 0.83 ns)  |
| SW ストリップ | 45.09 ns (26 ns + 23 $\times$ 0.83 ns) |

ある1チェンバーのタイミング



TGC フォワード領域

ビーム軸に近い領域(η > 1.9)



TGC フォワード領域の遅延

フォワード領域のストリップ読み出しが遅れている





- フォワード領域は入射角度が小さくなりやすい
- オフラインミューオンをTGCへ外 挿し入射角度を計算
- ビームテスト結果を利用し、
   ジッター分布を算出

▶ジッター時間を考慮したタイミン グ設定が必要



## 速度の遅い粒子のための トリガー効率の見積もり (Run 2)



- シミュレーションと実データによる見積もりはおおよそ一致を示す
   バンチ判定から速度に依存したトリガー効率を算出する方法を確立
- MCと実データの不一致の部分
  - そもそものバンチ識別が異なる
     > MCシミュレーションが実際の データを正しく再現しておらず、 MCは基準バンチの割合が高い
  - 前バンチの情報のないデータの使用

▶確率密度分布による系統誤差 (不定性)

#### 速度の遅い粒子のための トリガー効率の見積もりの改善点

- ・前バンチの情報を加えたタイミング分布を用いる
   ▶MCのタイミングのずれの改善
- 確率密度分布の再定義

 > ジッター分布にヒット位置によるToFや伝播時間を考慮した計算を 加えたより詳細な確率分布を定義する
 > P & C, C, C & N → P, P & C, C, C & N, N の割合の一致を見る



#### MET トリガーによる効率の低下

- カロリーメータではMissing Transverse Energy Trigger (MET)を利用している
  - (横方向エネルギー)の不均一さを測定
  - 基準バンチのタイミングに要求
- METトリガーのトリガー効率が30%ほどあるため、
   速度の遅い粒子のためのトリガー効率も下がる
- METトリガーを利用しない新たな方法を考えたい





課題

LAr カロリメータ検出器のアップグレード
 > 粒度が細かくなり通過する荷電粒子の位置をより詳細に検出可能
 > タイミングの遅れた信号をL1 トリガーシステムに送信可能に



- ミューオンがカロリーメータで落とすMIP信号を見る
- •L1トリガーシステムでの処理の確立

#### まとめ

- 超対称性理論などでは、安定で質量の重い粒子が存在する
  - ▶ 外層にあるTGC検出器まで遅れて到達する
  - ▶速度の遅い粒子のためのトリガー
- TGC検出器のより詳細なタイミング設定が重要となる
  - フォワード領域において、タイミングが遅れやすい。
  - 入射角度によるタイミング分布の広がりがある
  - ▶位置を考慮した最適な遅延時間を実装する必要がある
- TGC検出器の特性により、LHCクロックをまたぐようなタイ ミング分布を取得可能
  - 速度の遅い粒子のためのトリガーの実データを用いたトリガー効率を 見積もることができる
  - ▶ Run 3 で取得できる前バンチの情報を用いる
  - ▶ジッター分布を利用して詳細なタイミング分布を計算する

Back up





- 2008年:稼働開始
- 2012年:標準模型の最後のピースであるヒッグス粒子を発見
   ノーベル賞
- 2019年-2021年:休止(Phase-1 upgrade)
- 2022年7月:第3期運転が稼働開始
- 2029年:さらにビーム強度、輝度を高める

イベントディスプレイ



# SUSY (SUper SYmmetry)

- ゲージ階層性問題の解決策として提案されている
- フェルミオンとボソン間の対称性を説明するを標準理論を拡張したもの
- stau粒子の探索
  - 約 までの質量制限が課せられている
  - 粒子質量と速度の関係



τ̃, mass [GeV]

#### TGC (Thin Gap Chamber)検出器 エンドキャップ部のミューオン検出器



## TGC検出器 信号読み出し



t = 0

- ・生の電流信号をASDで電圧信号に変換、増幅
   >ASD 1枚あたり16ch
   >LVDS信号を出力
   → LVDS信号を出力
- PP-ASICで0.83 nsごとの遅延をかけ '
   タイミングを揃える

• 2つのASDに対して共通した遅延

L1 シングルミューオントリガー

ミューオン検出器は最外層に位置





- ★ToFが存在
- •★と仮定
- タイミングを揃える
- ★高い運動量のミューオンを検出
   →L1トリガー発行
- ★粒子の速度が遅い場合
- ToFの影響で効率が落ちる
- ・
   ・
   シングルミューオントリガーで
   は遅い荷電粒子に対して不十分

### TGC デジタイズ時間

衝突が起きてからTGCの信号が読み出されるまでの時間

- ToF (Time of Flight): 衝突から検出器まで粒子が飛ぶ時間
- ジッター時間:荷電粒子がガスを電離し電流信号となるまでにかかるドリフト時間による内在的なタイミングのふらつき
   検出器への入射角度ごとに異なる
- 信号伝播時間:
  - ワイヤー及びストリップにおいて信号が伝播する時間
  - ケーブル長
  - センサーの端からチェンバーに沿ってASDに到達するまでの時間





# ToF (Time of Flight)の計算

TGC検出器のヒット位置(x, y, z)座標により飛跡の長さを計算
 ➤ToF = 飛跡長/c



## Tag and Probe 法

- Run 3 実験データを用いる
  - トリガーを通過した粒子の情報のみが保存されておりバイアスがある
- Probe ミューオンをTGC 検出器まで外挿し、TGC検出器の ヒット位置とマッチングをとる
  - Z→µµ由来のミューオン候補を利用する
  - 1回のバンチ衝突に対し2つ以上の候補
    電荷が異符号
- 正しく再構成されたミューオンのうち一方をTagミューオンとする
- Tagミューオンがトリガーを通過したかどうかを判定
  - ➡もう一方をProbeミューオンをとする
  - ➡バイアスに寄らずに解析に使用できる





#### 速度の遅い粒子のための トリガー効率



☆カロリーメータとコインシデンス ENDCAP (1.05≤I ŋ<sup>™®</sup>I<2.41)



HLTトリガー

☆ToFに応じた飛跡の再構成



#### トリガー効率測定手法の開発

- •★最終目標:新物理探索における解析
  - ➡実データにおけるトリガー効率のβ依存性を測定
  - ➡実データとMCで効率の差異の補正が必要
- ★標準模型にはサンプルとなる速度の遅い粒子はない
  - ➡実データにおけるトリガー効率の直接測定は困難
    - 新たなトリガー効率の測定手法を開発する
- ミューオン検出器のヒットタイミングから
- バンチ識別の速度依存性を算出する
- 今回は<u>TGC (Thin Gap Chamber)検出器</u>における効率を算 出する
   基準バンチ 次バンチ



速度に応じて分布をシフトさせる



- 三角形の頂点を基準バンチのゲートの中心にする
- PandC, C, CandNの割合を満たすように残りの2頂点を決定
- 前バンチの情報がないと左辺の頂点は0になる







①データを用いて分布を定義する ②速度に応じて分布をシフトさせ ウィンドウに入った割合から効率を求める



dE-dx 解析への貢献

- ベーテ・ブロッホの式
  - ピクセル検出器のdE/dxの解析

$$-\left\langle \frac{dE}{dx} \right\rangle = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[ \frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{max}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$



•➡観測結果に期待値を超える領域 (エクセス)がある



#### 日本物理学会2022 秋大会 生出秀行 8aA431-5