ILCにおけるe⁺e⁻-> γZ反応を用いた 測定器較正シミュレーション

総合研究大学院大学 高エネルギー加速器科学研究科 水野 貴裕

Bird's Eye View of the ILC Accelerator

International Large Detector (ILD)

A detector concept for the ILC designed for Particle Flow Analysis (PFA)

Vertex Detector (VTX) -> Heavy Flavor ID

Time Projection Chamber (TPC) -> Charged Particles

• Electromagnetic Calorimeter (ECAL) -> Photons

Hadron Calorimeter (HCAL) -> Neutral Hadrons

• Muon Detector -> Muons

Reconstruct final states in terms of fundamental particles

Large ILD model (IDR-L) TPC outer radius: 180 cm B Field ~3.5 T **Small ILD model (IDR-S)** TPC outer radius: 146 cm B Field ~4 T

Introduction

Detector Benchmark Motivation

Primary Target of ILC 250: to precisely measure *the coupling constants between Higgs boson and various other particles*-> For this, we need to precisely calibrate energy scales for various particles.

• In this talk, we focus on photon energy calibration and jet energy calibration (additionally), using the $e^+e^- \rightarrow \gamma Z$ process.

Introduction

Detector Benchmark Motivation

Primary T
between HEnergy can be reconstructed \rightarrow For this
particles.Energy can be reconstructed \rightarrow For this
particles.using measured direction of γ and μ^- , μ^+
lous

• In this talk, we focus on photon energy calibration and jet energy calibration (additionally), using the $e^+e^- \rightarrow \gamma Z$ process.

Photon Energy Scale Calibration

Photon Energy Reconstruction Method

Direction Angle θ : polar angle

 ϕ : azimuthal angle

- 4-momentum conservation is considered.
- The mass of muon is neglected.
- Several reconstruction methods (Method A, B, C) are considered.
- Consider Beamstrahlung and Crossing Angle

Method A: Using Only Angles Using $(\theta_{\mu}, \theta_{\mu}, \theta_{\mu}, \phi_{\mu}, \phi_{\mu}, \phi_{\gamma}) \rightarrow$ Determine $(E_{\mu}, E_{\mu}, E_{\mu}, E_{\gamma}, E_{ISR})$

$$\begin{split} E_{\mu} + E_{\mu^{+}} + E_{\gamma} + |P_{ISR}| &= 500 \\ E_{\mu} sin\theta_{\mu} cos\phi_{\mu} + E_{\mu^{+}} sin\theta_{\mu^{+}} cos\phi_{\mu^{+}} + E_{\gamma} sin\theta_{\gamma} cos\phi_{\gamma} + |P_{ISR}| sin\alpha &= 500 sin\alpha \\ E_{\mu} sin\theta_{\mu} sin\phi_{\mu} + E_{\mu^{+}} sin\theta_{\mu^{+}} sin\phi_{\mu^{+}} + E_{\gamma} sin\theta_{\gamma} sin\phi_{\gamma} &= 0 \\ E_{\mu} cos\theta_{\mu} + E_{\mu^{+}} cos\theta_{\mu^{+}} + E_{\gamma} cos\theta_{\gamma} \pm |P_{ISR}| cos\alpha &= 0 \\ \text{Beam Crossing Angle (= 2\alpha)} \\ \text{ISR photon = additional unseen photon} \\ \end{split}$$

Reconstruction Method

Method B, C: Also using <u>Muons' Energies</u> Using $(\theta_{\mu}, \theta_{\mu}, \theta_{\gamma}, \phi_{\mu}, \phi_{\mu}, \phi_{\gamma}, E_{\mu}, E_{\mu})$ -> Determine (E_{γ}, E_{ISR})

• Method B: Energy and Pz Conservation

 $\begin{cases} E_{\mu} + E_{\mu^{+}} + E_{\gamma} + |P_{ISR}| = 500\\ E_{\mu}sin\theta_{\mu}cos\phi_{\mu} + E_{\mu^{+}}sin\theta_{\mu^{+}}cos\phi_{\mu^{+}} + E_{\gamma}sin\theta_{\gamma}cos\phi_{\gamma} + |P_{ISR}|sin\alpha = 500sin\alpha\\ E_{\mu}sin\theta_{\mu}sin\phi_{\mu} + E_{\mu^{+}}sin\theta_{\mu^{+}}sin\phi_{\mu^{+}} + E_{\gamma}sin\theta_{\gamma}sin\phi_{\gamma} = 0\\ E_{\mu}cos\theta_{\mu} + E_{\mu^{+}}cos\theta_{\mu^{+}} + E_{\gamma}cos\theta_{\gamma} \pm |P_{ISR}|cos\alpha = 0\\ \end{cases}$ Need to decide P_{ISR}.

• Method C: Energy and Py Conservation

 $\begin{cases} E_{\mu} + E_{\mu^{+}} + E_{\gamma} + |P_{ISR}| = 500 \\ E_{\mu}sin\theta_{\mu}cos\phi_{\mu} + E_{\mu}sin\theta_{\mu} + cos\phi_{\mu} + E_{\gamma}sin\theta_{\gamma}cos\phi_{\gamma} + |P_{ISR}|sine = 500sine \\ E_{\mu}sin\theta_{\mu}sin\phi_{\mu} + E_{\mu^{+}}sin\theta_{\mu^{+}}sin\phi_{\mu^{+}} + E_{\gamma}sin\theta_{\gamma}sin\phi_{\gamma} = 0 \\ E_{\mu}cos\theta_{\mu} + E_{\mu^{+}}si\theta_{\mu^{+}} + E_{\gamma}cos\theta_{\gamma} \pm |P_{ISR}|sine = 0 \\ This is of no use when sin\theta_{\gamma} or sin\phi_{\gamma}=0 ?? \\ However, photon energy can be determined without calculating P_{ISR}. \end{cases}$

Simulation Setup

Full simulation (ILCSOFT version v02-00-02)

- Event generation by Whizard 1.95
 with beamstrahlung and additional ISR photon effects
- Geant4 based full simulation of 2 realistic detector models IDR-L and IDR-S
- realistic event reconstruction from detector signals

Signal sample: $e^+e^- \rightarrow \gamma Z$, $Z \rightarrow l^+l^-$ E_{CM} of e^+e^- is 500 GeV. Two detector models IDR-L and IDR-S are compared.

Event Selection

Signatures of the signal events: $\mu^+\mu^-$ pair (inv. mass ~Z boson) + one energetic isolated photon

In order to pick up our required process, following cuts are applied.

<u>Step1</u>: Select events with two isolated muons. -> 3 types of events remain:

 $M(\mu^{+}\mu^{-}) \sim 500 \text{ GeV}$ $M(\mu^{+}\mu^{-}) \sim 91.2 \text{ GeV}$ $M(\mu^{+}\mu^{-}) \sim 0 \text{ GeV}$

Event Selection

Step2:

 Require invariant mass of two muons M(μ+μ-) to satisfy
 IM(μ+μ-) - 91.2I < 10 GeV

Step3:

Demand events to have one isolated photon with more than 50 GeV

Method Comparison

Method Comparison

Method Comparison

Demonstration of the Validity of Ang. Method

 $|\cos\theta\gamma| < 0.95$

 $\pi/40 < |\phi_{\gamma}| < 39\pi/40$

Calibration of the Measured Energy

• It is shown that the PFO has large dependence on $|\cos\theta_{v}|$.

Calibration Factor $(\theta_{\gamma}) = Mean E_{Ang.Method}(\theta_{\gamma})/Mean E_{PFO}(\theta_{\gamma})$ Calibrated PFO Energy = PFO Energy × Calibration Factor (θ_{γ})

Calibration Result

Calibration Result

Ey Scale Uncertainty

• E_{γ} Scale Uncertainty = $\sqrt{(PFO \ Uncertainty)^2 + (Ang.\ Method\ Uncertainty)^2}$

Ey Scale Uncertainty

Based on 4-momentum conservation

$$\begin{split} \sqrt{P_{J1}^2 + m_{J1}^2} + \sqrt{P_{J2}^2 + m_{J2}^2} + |P_{\gamma}| + |P_{ISR}| &= 500 \\ P_{J1} sin\theta_{J1} cos\phi_{J1} + P_{J2} sin\theta_{J2} cos\phi_{J2} + P_{\gamma} sin\theta_{\gamma} cos\phi_{\gamma} + |P_{ISR}| sin\alpha &= 500 sin\alpha \\ P_{J1} sin\theta_{J1} sin\phi_{J1} + P_{J2} sin\theta_{J2} sin\phi_{J2} + P_{\gamma} sin\theta_{\gamma} sin\phi_{\gamma} &= 0 \\ P_{J1} cos\theta_{J1} + P_{J2} cos\theta_{J2} + P_{\gamma} cos\theta_{\gamma} \pm |P_{ISR}| cos\alpha &= 0 \end{split}$$

Beam Crossing Angle $\equiv 2\alpha$: $\alpha = 7.0$ mrad ISR photon = additional unseen photon Signal sample: $e^+e^- \rightarrow \gamma + 2$ Jets On-shell Z is not required.

Jet Mass Distribution 350 F 300 Jet1 250 200 Not necessarily Jet2 150 on-shell 100 Direction Angle θ : polar angle 50 ϕ : azimuthal angle 300 250 50 150 200 100 0

lieV

Reconstruction Method

Method : Consider ISR and solve the full equation Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \varphi_{J1}, \varphi_{J2}, \varphi_{\gamma}, m_{J1}, m_{J2})$ -> Determine $(P_{J1}, P_{J2}, P_{\gamma}, P_{ISR})$

Inserting P_{J1} , P_{J2} , P_{γ} into the first equation

- -> 8 Possible Solutions!
- 4: Quartic Equation of |P_{ISR}| X 2: sign of ISR
 - Choose real and positive solutions
 - Solved P_{γ} close to the measured P_{γ}

Result

Result

Conclusion

- The methods to calibrate photon energy using $e^+e^- \rightarrow \gamma Z$ process are studied.
- Among the kinematical reconstruction methods studied, the Ang. Method is found to be the best due to its good resolution and its symmetric response.
- The resolution of the photon energy kinematically reconstructed by the Ang. Method is better than that of the PFO photon energy for $|\cos\theta_{\gamma}| < 0.95$ and $\pi/40 < |\phi_{\gamma}| < 39\pi/40$. We have hence shown that in this region, PFO photon energy can be calibrated using Ang. Method.
- It is concluded that the photon energy scale uncertainty is less than 100 MeV for photon energy > 120 GeV.
- The methods to calibrate jet energy using $e^+e^- \rightarrow \gamma Z$ process are being studied.

Kinematical reconstruction methods studied has better resolution than the measured.

Backup

Invariant mass distribution of the µ⁻µ⁺ **of Large ILD model samples (e⁻Le⁺R polarization)**

26

M(\mu^+\mu^-) distribution

27

 ϕ : azimuthal angle

Based on 4-momentum conservation

• Several reconstruction methods (Method 1, 2', 2, and 3) are considered.

Method 2': Ignore ISR and use smeared P_{γ} Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \phi_{J1}, \phi_{J2}, \phi_{\gamma}, m_{J1}, m_{J2}, P_{\gamma})$ -> Determine (P_{J1}, P_{J2})

 $\left\{ \begin{array}{ll} \left(\begin{array}{cc} sin\theta_{J1}cos\phi_{J1} & sin\theta_{J2}cos\phi_{J2} \\ sin\theta_{J1}sin\phi_{J1} & sin\theta_{J2}sin\phi_{J2} \end{array} \right) \begin{pmatrix} P_{J1} \\ P_{J2} \end{pmatrix} = \begin{pmatrix} 500sin\alpha - sin\theta_{\gamma}cos\phi_{\gamma}P_{\gamma} \\ -sin\theta_{\gamma}sin\phi_{\gamma}P_{\gamma} \end{pmatrix} \right.$

2 solutions for each sign of P_{ISR} -> choose the best answer which satisfies **1** better

Method 3: Consider ISR and solve the full equation Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \phi_{J1}, \phi_{J2}, \phi_{\gamma}, m_{J1}, m_{J2})$ -> Determine $(P_{J1}, P_{J2}, P_{\gamma}, P_{ISR})$

Inserting P_{J1} , P_{J2} , P_{γ} into the first equation

- -> 8 Possible Solutions!
- 4: Quartic Equation of |P_{ISR}| X 2: sign of ISR
 - Choose real and positive solutions

• Solved P_{γ} close to the measured (smeared) P_{γ}

Method Comparison Result[°]

Method Comparison Result¹

Method Comparison Result²

Method Comparison Result

If using MCtrue photon energy as input,

Biases in Method 2 and 22 disappeared.

Method Comparison Result

If using MCtrue photon energy as input,

Biases in Method 2 and 22 disappeared.