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Water-Cherenkov detectors

• Rich physics program: 
ν osc., leptonic CPV, proton 
decay, supernova, …


• Reconstruct charged 
particle information from 
charge+time of PMT hits


• Very good e/μ separation
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Ring-fitting 
right now

• Maximum-likelihood based reconstruction.


• Maximize over track parameters for particle of 
type � :

• energy � 

• position � 

• time � 

• direction � 


• For PMTs �  with hit: � 


• charge likelihood �  
Mostly poisson with mean #photons as 
function of opening angle �  and distance 
� 


• time likelihood �  
mostly just function of distance � 


• For PMTs �  with no hit: �  

… mostly a function of �
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optimal if model pdf = true pdf
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Each PMT is assumed to 
have independent errors

no way!



PMT-correlations  
their origins and magnitude
• Simulate many events with 

500 MeV electron of same 
position, direction etc. and 
study correlation of charges for 
PMT pairs.


• For PMTs near Cherenkov angle, 
about 30% correlation 
→ non-negligible?
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How*do*correla3ons*arise?*
•  EM*shower*and*scanering*produce*overlapping*rings,*
so*consider*an*ensemble*of*slighly*shibed*rings*

•  If*you*pick*a*PMT,*it*will*be*posi3vely*correlated*with*
other*PMTs*that*fall*on*intersec3ng*rings*

•  If*total*charge*is*conserved,*it*will*be*nega3vely*
correlated*with*PMTs*falling*on*non4intersec3ng*rings*

22*

PMT*correla3ons*

•  fiTQun*model*is*(if*I*understand*correctly)*

– calculate*hit*probability*and*mean*charge*for*

cherenkov*profile*(#photons/azimuth)*

– calculate*likelihoods*assuming*independently*

poisson4distributed*PMT*charges*

21*

If*poisson,*we*should*get*1.*

Std.dev*is*~1.5x*larger*than*√μ.!
Even*if*charge*normaliza3on*

is*wrong,*this*slope*cannot*be*

explained*by*poisson."

Mean*charge"

Dark*hits*here*
Direct*light*

PMT*correla3ons*for*off4ring*PMT* PMT*correla3ons*for*on4ring*PMT*

←*

As*it*turns*out,*

PMTs*are*

correlated!*

Why?*Cheren4

kov*profile*

varia3ons"

← 
For electrons correlations are mostly due 
to showering. Essentially we have not a 
single ring, but an ensemble of rings. 
For μ multiple-scattering also contributes, but 
these are already modeled in fiTQun.
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Event 1 Event 7



θ s

ϕ Correlation matrix

• For simplicity study variance of 
#photons integrated over longitudinal 
emission direction


• Bins are chosen to capture most 
important features with small number of 
bins (30) … see backup. !8
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Eigenvectors (principal modes) 
Principal modes are mostly dipole and monopole, some quadrupole(#7)
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Basic symmetry structure
• Expand in Fourier modes �

• Azimuthal symmetry 

�  

implies


• �  unless � 


• �  unless � 


• Real and imaginary parts of �  can be seen as �  and �  
terms �  with � . 
Then for same � : � , �

f(θ, ϕ) = Σm fm(θ) eimϕ

∂
∂ϕ ⟨f(θ, ϕ)⟩ =

∂
∂ϕ ⟨f(θ, ϕ) f(θ′ �, ϕ + Δϕ)⟩ = 0

⟨fm⟩ = 0 m = 0

⟨f*m f′�m′�⟩ = 0 |m | = |m′�|

fm cos sin
(f c , f s) m ≥ 0

m ⟨f c f c′�⟩ = ⟨f s f s′�⟩ ⟨f c f s′�⟩ = 0
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With conventional method (mean 
profile) no azimuthal dependence

Multipoles have non-zero variations. 
Correlations between different multipoles 
cannot be captured with this method.

Actually it is possible to 
study the correlations, 
see backup. In fact 
probably necessary.



Magnitude of variations
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μ– π +

γe–

Big difference of monopole 
variation (pion absorption?)

Additional e-γ separation power from 
relative magnitude of multipoles?

Overall relative size of variations is 
actually larger for μ,π+ than e,γ. 
Note: for μ conventional multi-

segment-fit is probably superior



Electron track reconstruction performance
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Angular 
resolution

Transverse 
position

Longitudinal 
position

Momentum 
resolution

500 MeV electron emitted at center of tank moving in horizontal direction.



Electron track reconstruction performance
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Angular 
resolution

Transverse 
position

Longitudinal 
position

Momentum 
resolution

500 MeV electron emitted at center of tank moving in horizontal direction.

Some are slightly better, some slightly worse. 
Differences seen here could also be due to fitting artifacts.

note: #fit-params increases from 7 (no var) → 37 (m=0) → 67 (m≤1) …


 
In any case no significant improvements for reconstruction… 

possibly the model is unable to capture essential features



How to improve the model + next steps

• Dipole variations correspond to vertex shift and should thus be impossible to fit. 
Features such as double-rings demand quadrupole or higher modes. 
Correlations between multipoles are essential, otherwise just adding “noise”.


• Also electrons have variation in track length, which is not seen for muons.


• Tried several approaches but not easy to realize efficiently. (ideas welcome) 
PID performance also to be studied.
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m ≤ 1 m ≤ 2 m ≤ 10



CNN-based 
reconstruction

Some properties of CNN that I think 
are key to its success: 
• Captures geometrical information of 

pixels

• Small number of parameters (esp. 

compared to a fully-connected 
layer) 
→ trainable


• Translation invariance


When considering doing CNN for 
water-Cherenkov, we have two 
issues to solve: 
1. Correct boundary condition that 

captures detector topology of 2-
sphere.


2. How to encode geometrical 
information. Being in the pixel-
plane next to each other has 
completely different meaning for 
barrel and endcaps.
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On top of this we need to make sure we can 
do every computation efficiently on a GPU.
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The PMTs are then put on a square grid which can be fed to machine 
learning libraries. Prior to convolution, pad sides according to 
identification given by arrows to embody topology of 2-sphere.

↑Top endcapBarrel
↓ Bottom endcap

Convolution 
window

X± = W(ρ, z)
π ± ϕ

2π
W(ρ, z) =

ρ2 + 2Rz + RH
R2 + RH

Topological map 
Cut open along solid line and map to square, 
with �  chosen to preserve area:W(ρ, z)

X+

X−

Solve differential 
eq. for constant 

Jacobian



Passing geometry to 
convolution

Normally convolution is performed over site indices


           �  

where we have translation invariance because the integration kernel K only 
depends on the relative position of the input and output layer sites (i.e. j–i)

For typical 3x3 convolution, this operation essentially is a weighted sum of 
moving average, 1st, and 2nd order discrete derivatives.


Analogously propose a map invariant under spatial translations: 
(� : spatial indices)


�   where the Taylor 

expansion coefficients are learned: � , � , and �  (scalar, vector, …)

N(n+1)
i = ∑

j

Kj−i N(n)
j

I, J

N(n+1)(x) = (K + KI∂I +
1
2

KIJ∂I∂J) N(n)(x)

K KI KIJ
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input layeroutput layer

inspired by gauge freedom 
of worldsheet coordinates in string theory
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input layeroutput layer

N(n+1)
i = ∑

j
(Kwij + KIwI,ij +

1
2

KIJwIJ,ij) N(n)
j

The Taylor expansion can be implemented 
as convolution on the 2D grid by inserting 
precomputed weights � :
w

For each site i weights �  
defined to obtain spatial derivatives 
by summing over neighboring grid 
sites j:

w, wI, wIJ

fi = Σj wij fj
∂I fi = Σj wI,ij fj

∂I ∂J fi = Σj wIJ,ij fj
fi := f (xi)where
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θ-motion



The Taylor expansion can be implemented as 
ordinary convolution on the 2D grid by inserting 
precomputed weights � :


This “Taylorizing” (sum over weights) is easily 
implemented using common tensor libraries like 
PyTorch, TensorFlow…

w

Lukas Berns from Kuze Group

Summary 
Formulated CNN on sub-manifold using 
Taylor expansion in background space.

Geometrical interpretation of kernels allows 
imposing additional symmetries which act 
as regularizer on small sets.

Development ongoing toward full CNN-based 
event reconstruction for water Cherenkov 
detectors.
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A new CNN architecture for sub-manifolds 
embedded into higher dimensional space  

DLAP 2019, Oct 31 – Nov 2.

Other features 
Dead PMTs could be removed by simply recomputing weights 
w without much retraining, since training is in 3D-space, not in 
pixel-space.

PMT orientation can be passed as another “spatial” 
dimension. This is especially interesting for so-called mPMTs 
planned for use in future experiments, that have many smaller 
PMTs collected in a shape compatible with the larger 20" PMTs.

Non-trivialities when using 
CNNs for water Cherenkov detectors 
1. Correct boundary condition that captures 

detector topology of 2-sphere.

2. How to encode geometrical 

information. Being in the pixel-plane 
next to each other has completely 
different meaning for barrel and endcaps.

On top of this we need to make sure we can 
do every computation efficiently on a GPU.

The PMTs are then put on a square grid which can be fed to machine 
learning libraries. Prior to convolution, pad sides according to 
identification given by arrows to embody topology of 2-sphere.

Convolution 
window

Barrel
↓ Bottom endcap

↑Top endcap

X± = W(ρ, z) π ± ϕ
2π W(ρ, z) = ρ2 + 2Rz + RH

R2 + RH

Topological map 
Consider cylinder surface as a sub-manifold embedded into 3D 
configuration space. Since isomorphic to a square with neighboring 
sides identified, we define sub-manifold the coordinates �  as:X±

X+

X−

Solve differential eq. 
for constant Jacobian

Normally convolution is performed over site indices


                                  �  

where we have translation invariance because the integration kernel K only 
depends on the relative position of the input and output layer sites (i.e. j–i)

For typical 3x3 convolution, this operation essentially is a weighted sum of 
moving average, 1st, and 2nd order discrete derivatives.


A “physical” model should respect the re-parametrization freedom of 
the sub-manifold coordinates, thus cannot depend on the 2d grid 
indices � derived from � . Instead, we define the “convolution” in 
terms of spatial coordinates � , corresponding to a differential map 
invariant under spatial translations:


�   where the 

Taylor expansion coefficients are learned: � , � , and �

N(n + 1)
i = ∑

j
Kj−i N(n )

j

i, j, ⋯ X±
I, J, ⋯

N(n + 1)(x) = (K + KI∂I + 1
2 KIJ∂I∂J) N(n )(x)

K KI KIJ

input layeroutput layer
N(n + 1)

i = ∑
j

(Kwij + KIwI,ij + 1
2 KIJwIJ,ij) N(n )

j

For each site i weights �  defined to obtain spatial 
derivatives by summing over neighboring grid sites j:

w, wI, wIJ

fi = Σj wij fj
∂I fi = Σj wI,ij fj

∂I ∂J fi = Σj wIJ,ij fj
fi := f(xi)where

the weights are calculated by least-squares, with a 
regularizer inserted to give zero in case a degeneracy 
prevents computation of the derivative.

� : radius, height of tank.R, H

Cut open along black line 
and map to square.

Q ∂xQ

∂zQ∂yQ

← Some components 
of the Taylor 
expansion on 
idealized charge 
distribution 
obtained using the 
weighted sums.

Effective rotation
For example for a scalar input layer � , demanding the 
output layer �  to be scalar as well, the Taylor expansion coefficients 
have a clear geometrical meaning:


�                    scalar  
�           vector  
�   tensor


this can be exploited to impose e.g. the � -rotation symmetry of the tank 
upon the network by inserting a random rotation �  about the z-axis during 
the training, effectively making the training set larger:


� 


Any vectorial variables (vertex, direction) to compute the loss against would need to be 
rotated too. It might be interesting to allow hidden channels to have vector indices too.

N(n )(x) → N(n )(Rx)
N(n + 1)(x)

K → K
KI → RI

MKM

KIJ → RI
MRJ

NKMN

ϕ
R

N(n + 1)
i = ∑

j
(Kwij + RI

MKMwI,ij + 1
2 RI

MRJ
NKMNwIJ,ij) N(n )

j

Network architecture

Passing geometry to convolution

Background
In water Cherenkov detectors, such as 
Super-Kamiokande, a huge volume of 
water is surrounded by light detectors 
(PMTs), which record the hit position 
and timing of photons emitted from 
relativistic particles inside the tank. 
Identification of particle type and 
reconstruction of track parameters like 
energy or interaction vertex, is usually 
performed using maximum-likelihood 
fits to an average emission profile.


These models do not capture the 
stochastic nature of Cherenkov 
emission. In addition to improving 
the existing emission models, we 
aim to separately develop deep 
learning based reconstruction 
which will hopefully improve the 

performance for more difficult 
tasks such as �  separation 
or multi-ring event 
reconstruction.

e − γ

�
�

↑ Rings generated by electrons (left) and muon (right) 
differ in the sharpness of the outer edge of the ring. 
Differences to other particles are more subtle

TaylorBlock(1,16,32)

TaylorBlock(32,32,32)

TaylorBlock(32,64,64)

TaylorBlock(64,128,128)

MaxPool2d(2,2)

MaxPool2d(2,2)

MaxPool2d(2,2)

Linear(128,32)

Linear(32,3)

Feature extractor

Classifier

Take average 
over grid

ReLU

Input shape: (1,105,105)

Output

(32,52,52)

(32,26,26)

(64,13,13)

(128,13,13)

(128)

For the Taylor blocks after the max pooling 
we use the coordinates passed through 
AvgPool2d to derive the weights.

Some of these steps ↑ 
have not been optimized 
and could be improved

Sample random 
� -rotation �  for 

each batch
ϕ R

Performance study
Ordinary convolution on 

topological map TaylorConvDataset

• Super-K simulated in WCSim [2,3]

• 50k events for {e–, μ–, π+} each

• Uniform vertex distribution 

(inside inner detector)

• Isotropic direction 

(particles might leave the detector = no FC cut)

• Flat energy from 1 MeV to 1 GeV

• Only using charge information for now


Optimization target: 
classification of three particle types (PIDs)  
(cross-entropy)


Implemented in PyTorch on GPU. The Taylorizing and 
random rotations introduce ~10x computing overhead.

Without random rotations Random rotation for each batch

Small training set with only 1000 events (test set: 5000 events).

Without random rotations, we quickly start overtraining. 
Random rotations seem prevent this and generalize better.

Since O(1000) is a realistic sample size for neutrinos observed at 
Super-K, this suggests the possibility of data-driven training.

No random rotations performed at this stage.

TaylorConv might show slightly better generalization, but at this stage no significant 
difference compared to ordinary convolution (interesting). Should also compare with 
more naïve approaches that don’t use the topological map.

Since particle ID depends on local features (blurriness) it would be interesting to see 
performance differences for full reconstruction of track parameters (vertex, energy, …).

Effect of Taylorizing itself Effect of random rotations

1 2

3

4 5

6

TaylorBlock(Cin,Cmid,Cout)

ReLU

Cin

Cmid

Cout

TaylorConv2d

TaylorConv2d ReLU
Cout

Cmid

R
Rotation

TaylorConv2d(Cin,Cout)

BatchNorm2d

Conv2d 
1x1

Taylorize

Topological Pad

Cin

Cin

Cin×T

Cin×T

Cout

Effective 
rotation

Cin×T

R
Rotation

R

Each channel is multiplied by 
pre-computed tensors over 
3x3 neighborhood to obtain 
f(x0), df(x0)/dx, df(x0)/dy, …  
so T = 1 + Ncoordinates

Batch-norm layers for each 
weighted sum helps 
normalizing scales from 
dimensionality of derivatives.

↑ Download PDF 
http://bit.ly/dlap19-lukasb


• About 80% PID accuracy (e,μ,π+).


• At this stage, this Taylor-decomposition 
technique is not that much better 
(it does seem to somewhat generalize better?)


• I wonder how this looks like with position/
direction reconstruction which are 
inherently geometric

!20

The Taylor expansion can be implemented as 
ordinary convolution on the 2D grid by inserting 
precomputed weights � :


This “Taylorizing” (sum over weights) is easily 
implemented using common tensor libraries like 
PyTorch, TensorFlow…

w
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depends on the relative position of the input and output layer sites (i.e. j–i)

For typical 3x3 convolution, this operation essentially is a weighted sum of 
moving average, 1st, and 2nd order discrete derivatives.


A “physical” model should respect the re-parametrization freedom of 
the sub-manifold coordinates, thus cannot depend on the 2d grid 
indices � derived from � . Instead, we define the “convolution” in 
terms of spatial coordinates � , corresponding to a differential map 
invariant under spatial translations:


�   where the 

Taylor expansion coefficients are learned: � , � , and �

N(n + 1)
i = ∑

j
Kj−i N(n )

j

i, j, ⋯ X±
I, J, ⋯

N(n + 1)(x) = (K + KI∂I + 1
2 KIJ∂I∂J) N(n )(x)

K KI KIJ

input layeroutput layer
N(n + 1)

i = ∑
j

(Kwij + KIwI,ij + 1
2 KIJwIJ,ij) N(n )

j
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derivatives by summing over neighboring grid sites j:
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the weights are calculated by least-squares, with a 
regularizer inserted to give zero in case a degeneracy 
prevents computation of the derivative.
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obtained using the 
weighted sums.

Effective rotation
For example for a scalar input layer � , demanding the 
output layer �  to be scalar as well, the Taylor expansion coefficients 
have a clear geometrical meaning:


�                    scalar  
�           vector  
�   tensor


this can be exploited to impose e.g. the � -rotation symmetry of the tank 
upon the network by inserting a random rotation �  about the z-axis during 
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Background
In water Cherenkov detectors, such as 
Super-Kamiokande, a huge volume of 
water is surrounded by light detectors 
(PMTs), which record the hit position 
and timing of photons emitted from 
relativistic particles inside the tank. 
Identification of particle type and 
reconstruction of track parameters like 
energy or interaction vertex, is usually 
performed using maximum-likelihood 
fits to an average emission profile.


These models do not capture the 
stochastic nature of Cherenkov 
emission. In addition to improving 
the existing emission models, we 
aim to separately develop deep 
learning based reconstruction 
which will hopefully improve the 

performance for more difficult 
tasks such as �  separation 
or multi-ring event 
reconstruction.
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�
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differ in the sharpness of the outer edge of the ring. 
Differences to other particles are more subtle
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For the Taylor blocks after the max pooling 
we use the coordinates passed through 
AvgPool2d to derive the weights.

Some of these steps ↑ 
have not been optimized 
and could be improved

Sample random 
� -rotation �  for 

each batch
ϕ R

Performance study
Ordinary convolution on 

topological map TaylorConvDataset

• Super-K simulated in WCSim [2,3]

• 50k events for {e–, μ–, π+} each

• Uniform vertex distribution 

(inside inner detector)

• Isotropic direction 

(particles might leave the detector = no FC cut)

• Flat energy from 1 MeV to 1 GeV

• Only using charge information for now


Optimization target: 
classification of three particle types (PIDs)  
(cross-entropy)


Implemented in PyTorch on GPU. The Taylorizing and 
random rotations introduce ~10x computing overhead.

Without random rotations Random rotation for each batch

Small training set with only 1000 events (test set: 5000 events).

Without random rotations, we quickly start overtraining. 
Random rotations seem prevent this and generalize better.

Since O(1000) is a realistic sample size for neutrinos observed at 
Super-K, this suggests the possibility of data-driven training.

No random rotations performed at this stage.

TaylorConv might show slightly better generalization, but at this stage no significant 
difference compared to ordinary convolution (interesting). Should also compare with 
more naïve approaches that don’t use the topological map.

Since particle ID depends on local features (blurriness) it would be interesting to see 
performance differences for full reconstruction of track parameters (vertex, energy, …).

Effect of Taylorizing itself Effect of random rotations

1 2

3

4 5

6

TaylorBlock(Cin,Cmid,Cout)

ReLU

Cin

Cmid

Cout

TaylorConv2d

TaylorConv2d ReLU
Cout

Cmid

R
Rotation

TaylorConv2d(Cin,Cout)

BatchNorm2d

Conv2d 
1x1

Taylorize

Topological Pad

Cin

Cin

Cin×T

Cin×T

Cout

Effective 
rotation

Cin×T

R
Rotation

R

Each channel is multiplied by 
pre-computed tensors over 
3x3 neighborhood to obtain 
f(x0), df(x0)/dx, df(x0)/dy, … 
so T = 1 + Ncoordinates

Batch-norm layers for each 
weighted sum helps 
normalizing scales from 
dimensionality of derivatives.

↑ Download PDF 
http://bit.ly/dlap19-lukasb
The Taylor expansion can be implemented as 

ordinary convolution on the 2D grid by inserting 
precomputed weights � :


This “Taylorizing” (sum over weights) is easily 
implemented using common tensor libraries like 
PyTorch, TensorFlow…

w

Lukas Berns from Kuze Group

Summary 
Formulated CNN on sub-manifold using 
Taylor expansion in background space.

Geometrical interpretation of kernels allows 
imposing additional symmetries which act 
as regularizer on small sets.

Development ongoing toward full CNN-based 
event reconstruction for water Cherenkov 
detectors.
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A new CNN architecture for sub-manifolds 
embedded into higher dimensional space  

DLAP 2019, Oct 31 – Nov 2.

Other features 
Dead PMTs could be removed by simply recomputing weights 
w without much retraining, since training is in 3D-space, not in 
pixel-space.

PMT orientation can be passed as another “spatial” 
dimension. This is especially interesting for so-called mPMTs 
planned for use in future experiments, that have many smaller 
PMTs collected in a shape compatible with the larger 20" PMTs.

Non-trivialities when using 
CNNs for water Cherenkov detectors 
1. Correct boundary condition that captures 

detector topology of 2-sphere.

2. How to encode geometrical 

information. Being in the pixel-plane 
next to each other has completely 
different meaning for barrel and endcaps.

On top of this we need to make sure we can 
do every computation efficiently on a GPU.

The PMTs are then put on a square grid which can be fed to machine 
learning libraries. Prior to convolution, pad sides according to 
identification given by arrows to embody topology of 2-sphere.

Convolution 
window

Barrel
↓ Bottom endcap

↑Top endcap

X± = W(ρ, z) π ± ϕ
2π W(ρ, z) = ρ2 + 2Rz + RH

R2 + RH

Topological map 
Consider cylinder surface as a sub-manifold embedded into 3D 
configuration space. Since isomorphic to a square with neighboring 
sides identified, we define sub-manifold the coordinates �  as:X±

X+

X−

Solve differential eq. 
for constant Jacobian

Normally convolution is performed over site indices


                                  �  

where we have translation invariance because the integration kernel K only 
depends on the relative position of the input and output layer sites (i.e. j–i)

For typical 3x3 convolution, this operation essentially is a weighted sum of 
moving average, 1st, and 2nd order discrete derivatives.


A “physical” model should respect the re-parametrization freedom of 
the sub-manifold coordinates, thus cannot depend on the 2d grid 
indices � derived from � . Instead, we define the “convolution” in 
terms of spatial coordinates � , corresponding to a differential map 
invariant under spatial translations:


�   where the 

Taylor expansion coefficients are learned: � , � , and �

N(n + 1)
i = ∑

j
Kj−i N(n )

j

i, j, ⋯ X±
I, J, ⋯

N(n + 1)(x) = (K + KI∂I + 1
2 KIJ∂I∂J) N(n )(x)

K KI KIJ

input layeroutput layer
N(n + 1)

i = ∑
j

(Kwij + KIwI,ij + 1
2 KIJwIJ,ij) N(n )

j

For each site i weights �  defined to obtain spatial 
derivatives by summing over neighboring grid sites j:

w, wI, wIJ

fi = Σj wij fj
∂I fi = Σj wI,ij fj

∂I ∂J fi = Σj wIJ,ij fj
fi := f(xi)where

the weights are calculated by least-squares, with a 
regularizer inserted to give zero in case a degeneracy 
prevents computation of the derivative.

� : radius, height of tank.R, H

Cut open along black line 
and map to square.

Q ∂xQ

∂zQ∂yQ

← Some components 
of the Taylor 
expansion on 
idealized charge 
distribution 
obtained using the 
weighted sums.

Effective rotation
For example for a scalar input layer � , demanding the 
output layer �  to be scalar as well, the Taylor expansion coefficients 
have a clear geometrical meaning:


�                    scalar  
�           vector  
�   tensor


this can be exploited to impose e.g. the � -rotation symmetry of the tank 
upon the network by inserting a random rotation �  about the z-axis during 
the training, effectively making the training set larger:


� 


Any vectorial variables (vertex, direction) to compute the loss against would need to be 
rotated too. It might be interesting to allow hidden channels to have vector indices too.

N(n )(x) → N(n )(Rx)
N(n + 1)(x)

K → K
KI → RI

MKM

KIJ → RI
MRJ

NKMN

ϕ
R

N(n + 1)
i = ∑

j
(Kwij + RI

MKMwI,ij + 1
2 RI

MRJ
NKMNwIJ,ij) N(n )

j

Network architecture

Passing geometry to convolution

Background
In water Cherenkov detectors, such as 
Super-Kamiokande, a huge volume of 
water is surrounded by light detectors 
(PMTs), which record the hit position 
and timing of photons emitted from 
relativistic particles inside the tank. 
Identification of particle type and 
reconstruction of track parameters like 
energy or interaction vertex, is usually 
performed using maximum-likelihood 
fits to an average emission profile.


These models do not capture the 
stochastic nature of Cherenkov 
emission. In addition to improving 
the existing emission models, we 
aim to separately develop deep 
learning based reconstruction 
which will hopefully improve the 

performance for more difficult 
tasks such as �  separation 
or multi-ring event 
reconstruction.

e − γ

�
�

↑ Rings generated by electrons (left) and muon (right) 
differ in the sharpness of the outer edge of the ring. 
Differences to other particles are more subtle

TaylorBlock(1,16,32)

TaylorBlock(32,32,32)

TaylorBlock(32,64,64)

TaylorBlock(64,128,128)

MaxPool2d(2,2)

MaxPool2d(2,2)

MaxPool2d(2,2)

Linear(128,32)

Linear(32,3)

Feature extractor

Classifier

Take average 
over grid

ReLU

Input shape: (1,105,105)

Output

(32,52,52)

(32,26,26)

(64,13,13)

(128,13,13)

(128)

For the Taylor blocks after the max pooling 
we use the coordinates passed through 
AvgPool2d to derive the weights.

Some of these steps ↑ 
have not been optimized 
and could be improved

Sample random 
� -rotation �  for 

each batch
ϕ R

Performance study
Ordinary convolution on 

topological map TaylorConvDataset

• Super-K simulated in WCSim [2,3]

• 50k events for {e–, μ–, π+} each

• Uniform vertex distribution 

(inside inner detector)

• Isotropic direction 

(particles might leave the detector = no FC cut)

• Flat energy from 1 MeV to 1 GeV

• Only using charge information for now


Optimization target: 
classification of three particle types (PIDs)  
(cross-entropy)


Implemented in PyTorch on GPU. The Taylorizing and 
random rotations introduce ~10x computing overhead.

Without random rotations Random rotation for each batch

Small training set with only 1000 events (test set: 5000 events).

Without random rotations, we quickly start overtraining. 
Random rotations seem prevent this and generalize better.

Since O(1000) is a realistic sample size for neutrinos observed at 
Super-K, this suggests the possibility of data-driven training.

No random rotations performed at this stage.

TaylorConv might show slightly better generalization, but at this stage no significant 
difference compared to ordinary convolution (interesting). Should also compare with 
more naïve approaches that don’t use the topological map.

Since particle ID depends on local features (blurriness) it would be interesting to see 
performance differences for full reconstruction of track parameters (vertex, energy, …).

Effect of Taylorizing itself Effect of random rotations

1 2

3

4 5

6

TaylorBlock(Cin,Cmid,Cout)

ReLU

Cin

Cmid

Cout

TaylorConv2d

TaylorConv2d ReLU
Cout

Cmid

R
Rotation

TaylorConv2d(Cin,Cout)

BatchNorm2d

Conv2d 
1x1

Taylorize

Topological Pad

Cin

Cin

Cin×T

Cin×T

Cout

Effective 
rotation

Cin×T

R
Rotation

R

Each channel is multiplied by 
pre-computed tensors over 
3x3 neighborhood to obtain 
f(x0), df(x0)/dx, df(x0)/dy, … 
so T = 1 + Ncoordinates

Batch-norm layers for each 
weighted sum helps 
normalizing scales from 
dimensionality of derivatives.

↑ Download PDF  
http://bit.ly/dlap19-lukasb


PID performance study
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Tried training using 1000 events only. 
With rotations it seems overtraining is 
suppressed to some extent.

The Taylor expansion can be implemented as 
ordinary convolution on the 2D grid by inserting 
precomputed weights � :


This “Taylorizing” (sum over weights) is easily 
implemented using common tensor libraries like 
PyTorch, TensorFlow…

w

Lukas Berns from Kuze Group

Summary 
Formulated CNN on sub-manifold using 
Taylor expansion in background space.

Geometrical interpretation of kernels allows 
imposing additional symmetries which act 
as regularizer on small sets.

Development ongoing toward full CNN-based 
event reconstruction for water Cherenkov 
detectors.
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A new CNN architecture for sub-manifolds 
embedded into higher dimensional space  

DLAP 2019, Oct 31 – Nov 2.

Other features 
Dead PMTs could be removed by simply recomputing weights 
w without much retraining, since training is in 3D-space, not in 
pixel-space.

PMT orientation can be passed as another “spatial” 
dimension. This is especially interesting for so-called mPMTs 
planned for use in future experiments, that have many smaller 
PMTs collected in a shape compatible with the larger 20" PMTs.

Non-trivialities when using 
CNNs for water Cherenkov detectors 
1. Correct boundary condition that captures 

detector topology of 2-sphere.

2. How to encode geometrical 

information. Being in the pixel-plane 
next to each other has completely 
different meaning for barrel and endcaps.

On top of this we need to make sure we can 
do every computation efficiently on a GPU.

The PMTs are then put on a square grid which can be fed to machine 
learning libraries. Prior to convolution, pad sides according to 
identification given by arrows to embody topology of 2-sphere.

Convolution 
window

Barrel
↓ Bottom endcap

↑Top endcap

X± = W(ρ, z) π ± ϕ
2π W(ρ, z) = ρ2 + 2Rz + RH

R2 + RH

Topological map 
Consider cylinder surface as a sub-manifold embedded into 3D 
configuration space. Since isomorphic to a square with neighboring 
sides identified, we define sub-manifold the coordinates �  as:X±

X+

X−

Solve differential eq. 
for constant Jacobian

Normally convolution is performed over site indices


                                  �  

where we have translation invariance because the integration kernel K only 
depends on the relative position of the input and output layer sites (i.e. j–i)

For typical 3x3 convolution, this operation essentially is a weighted sum of 
moving average, 1st, and 2nd order discrete derivatives.


A “physical” model should respect the re-parametrization freedom of 
the sub-manifold coordinates, thus cannot depend on the 2d grid 
indices � derived from � . Instead, we define the “convolution” in 
terms of spatial coordinates � , corresponding to a differential map 
invariant under spatial translations:


�   where the 

Taylor expansion coefficients are learned: � , � , and �

N(n + 1)
i = ∑

j
Kj−i N(n )

j

i, j, ⋯ X±
I, J, ⋯

N(n + 1)(x) = (K + KI∂I + 1
2 KIJ∂I∂J) N(n )(x)

K KI KIJ

input layeroutput layer
N(n + 1)

i = ∑
j

(Kwij + KIwI,ij + 1
2 KIJwIJ,ij) N(n )

j

For each site i weights �  defined to obtain spatial 
derivatives by summing over neighboring grid sites j:

w, wI, wIJ

fi = Σj wij fj
∂I fi = Σj wI,ij fj

∂I ∂J fi = Σj wIJ,ij fj
fi := f(xi)where

the weights are calculated by least-squares, with a 
regularizer inserted to give zero in case a degeneracy 
prevents computation of the derivative.

� : radius, height of tank.R, H

Cut open along black line 
and map to square.

Q ∂xQ

∂zQ∂yQ

← Some components 
of the Taylor 
expansion on 
idealized charge 
distribution 
obtained using the 
weighted sums.

Effective rotation
For example for a scalar input layer � , demanding the 
output layer �  to be scalar as well, the Taylor expansion coefficients 
have a clear geometrical meaning:


�                    scalar  
�           vector 
�   tensor


this can be exploited to impose e.g. the � -rotation symmetry of the tank 
upon the network by inserting a random rotation �  about the z-axis during 
the training, effectively making the training set larger:


� 


Any vectorial variables (vertex, direction) to compute the loss against would need to be 
rotated too. It might be interesting to allow hidden channels to have vector indices too.

N(n )(x) → N(n )(Rx)
N(n + 1)(x)

K → K
KI → RI

MKM

KIJ → RI
MRJ

NKMN

ϕ
R

N(n + 1)
i = ∑

j
(Kwij + RI

MKMwI,ij + 1
2 RI

MRJ
NKMNwIJ,ij) N(n )

j

Network architecture

Passing geometry to convolution

Background
In water Cherenkov detectors, such as 
Super-Kamiokande, a huge volume of 
water is surrounded by light detectors 
(PMTs), which record the hit position 
and timing of photons emitted from 
relativistic particles inside the tank. 
Identification of particle type and 
reconstruction of track parameters like 
energy or interaction vertex, is usually 
performed using maximum-likelihood 
fits to an average emission profile.


These models do not capture the 
stochastic nature of Cherenkov 
emission. In addition to improving 
the existing emission models, we 
aim to separately develop deep 
learning based reconstruction 
which will hopefully improve the 

performance for more difficult 
tasks such as �  separation 
or multi-ring event 
reconstruction.

e − γ

�
�

↑ Rings generated by electrons (left) and muon (right) 
differ in the sharpness of the outer edge of the ring. 
Differences to other particles are more subtle

TaylorBlock(1,16,32)

TaylorBlock(32,32,32)

TaylorBlock(32,64,64)

TaylorBlock(64,128,128)

MaxPool2d(2,2)

MaxPool2d(2,2)

MaxPool2d(2,2)

Linear(128,32)

Linear(32,3)

Feature extractor

Classifier

Take average 
over grid

ReLU

Input shape: (1,105,105)

Output

(32,52,52)

(32,26,26)

(64,13,13)

(128,13,13)

(128)

For the Taylor blocks after the max pooling 
we use the coordinates passed through 
AvgPool2d to derive the weights.

Some of these steps ↑ 
have not been optimized 
and could be improved

Sample random 
� -rotation �  for 

each batch
ϕ R

Performance study
Ordinary convolution on 

topological map TaylorConvDataset

• Super-K simulated in WCSim [2,3]

• 50k events for {e–, μ–, π+} each

• Uniform vertex distribution 

(inside inner detector)

• Isotropic direction 

(particles might leave the detector = no FC cut)

• Flat energy from 1 MeV to 1 GeV

• Only using charge information for now


Optimization target: 
classification of three particle types (PIDs)  
(cross-entropy)


Implemented in PyTorch on GPU. The Taylorizing and 
random rotations introduce ~10x computing overhead.

Without random rotations Random rotation for each batch

Small training set with only 1000 events (test set: 5000 events).

Without random rotations, we quickly start overtraining. 
Random rotations seem prevent this and generalize better.

Since O(1000) is a realistic sample size for neutrinos observed at 
Super-K, this suggests the possibility of data-driven training.

No random rotations performed at this stage.

TaylorConv might show slightly better generalization, but at this stage no significant 
difference compared to ordinary convolution (interesting). Should also compare with 
more naïve approaches that don’t use the topological map.

Since particle ID depends on local features (blurriness) it would be interesting to see 
performance differences for full reconstruction of track parameters (vertex, energy, …).

Effect of Taylorizing itself Effect of random rotations

1 2

3

4 5

6

TaylorBlock(Cin,Cmid,Cout)

ReLU

Cin

Cmid

Cout

TaylorConv2d

TaylorConv2d ReLU
Cout

Cmid

R
Rotation

TaylorConv2d(Cin,Cout)

BatchNorm2d

Conv2d 
1x1

Taylorize

Topological Pad

Cin

Cin

Cin×T

Cin×T

Cout

Effective 
rotation

Cin×T

R
Rotation

R

Each channel is multiplied by 
pre-computed tensors over 
3x3 neighborhood to obtain 
f(x0), df(x0)/dx, df(x0)/dy, … 
so T = 1 + Ncoordinates

Batch-norm layers for each 
weighted sum helps 
normalizing scales from 
dimensionality of derivatives.

↑ Download PDF  
http://bit.ly/dlap19-lukasb


→ given small stats of neutrino 
samples, such techniques might be 
valuable for data-driven training



Toward full reconstruction
• Started experimenting 

toward full reconstruction, 
here PID + Energy reco., 
how to combine loss 
functions etc.


• Still far from maximum-
likelihood fitters but fun


• Can we beat maximum-
likelihood fitters in the 
future? I think yes, but 
need to find data-driven 
methods in order not to 
rely on MC

!22

example where PID/Erec fails



Summary
• Ring reconstruction in water-Cherenkov detectors might 

benefit from modeling the PMT-correlations due to 
Cherenkov profile variations


• Working on two approaches (maximum-likelihood and CNN), 
so far no significant improvement to conventional methods 
but development is ongoing.


• Proposed CNN architecture for topology and geometry of 
cylinder, might be generalizable to other applications 
(mostly embedded sub-manifolds?)


• In general, should be careful whether correlations in MC can 
be trusted. Data-driven approaches need to be considered.

!23 Ideas welcome!



backup

!24



Find good basis
• For practical reasons it would be nice to have a basis with 

sparse correlation matrix (to ignore off-diagonals)


• Wavelet transform seems best (blue lines at >250 are artifact because original bin count was not power of 2)

!25



Find good bin width
• Ignoring off-diagonals in wavelet transform = combining neighboring bins 
→ suggest binning scheme by combining pairs with most negligible corr.


• Turns out simply choosing binning by requiring equal number of photons 
in each bin gives almost the same result → much easier, so let's use this

!26



Advanced symmetry 
structure

• Further expand each Fourier coefficient into magnitude and complex 
phase angle: �

• Redefinition of azimuthal origin is gauge freedom, �  should not change: 
�  
�    iff  � 


• �  unless gauge-singlet. For example:


• �  is singlet, can be non-zero for any �  and � 


• �  is singlet if � , in which case it can be non-
zero for any � . e.g. take � 


• Assuming parity invariance (no magnetic field etc.), we further have


• � , i.e. only cosine correlations

fm(θ) = | fm(θ) |e−imαm(θ)

f
ϕ → ϕ′� = ϕ + δ
f → f′� = f αm(θ) → αm(θ) + δ

𝔼[ ⋅ ] = 0
𝔼[ | fm | | fm′ �| ] m, m′� θ, θ′�
𝔼[einmαm e−in′ �m′ �αm′ �] nm = n′�m′ �

θ, θ′� nm = LCM(m, m′�)

𝔼[sin(nmαm − n′ �m′ �αm′ �)] = 0

!27
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m ≤ 1 m ≤ 2 m ≤ 10

Need at least quadrupole variations to see ring-like structures of variations. 
Correlations between multipoles is essential.



Correlations between 
multipoles

!29
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m ≤ 1 throws

!30



m ≤ 2 throws

!31



m ≤ 10 throws

!32

the nice thing about marginalization is we can 
easily implement these without much change



Distribution of log-
likelihoods for throws
• 1000 throws with m≤1, no s-dependence


• Distribution is quite normal with somewhat 
shorter tails (not sure if this is expected)


• problem: –logL varies by orders of ~100! 
→ marginalized –logL (red line) is dominated by 
very few throws with small –logL


• three interpretations:

1. I made a mistake with calculation

2. need very large number of throws

3. this is really a problem where we should 

be fitting (profiling), the data contains 
“too much” information about these 
variations


• However I should note this is the distribution at 
the initial point for the likelihood fit found with 
grid search. Maybe at true values or best fit the 
spread is a bit smaller.

!33



Analytic marginalization
• If –logL distribution is normal, we 

could simply measure mean and 
variance (ideally with robust 
methods) and compute analytically


• Could be interesting for a SGD like 
method where we compute a 
running mean of mean and 
variance (normal marginalization 
has the nonlinear exp,log)


• Another idea: introduce notion of 
inverse temperature and perform 
annealing? 

�Lm(x |β) :=
1
β

𝔼 [e−βΛ]

!34



e-gamma separation?

• Integrated flux looks similar, but relative size of multipole variations look 
slightly different → could be due to somewhat low stats here, but could 
also give some handle on e-gamma separation

!35

For gamma I define s=0 
at conversion point



s-dependent correlations

!36

cosθ

s [
cm

]

〈1〉

〈s〉

〈s2〉

cosθ bins

M
on

op
ol

e 
m

 =
 0

D
ip

ol
e 

m
 =

 1 Multiple scattering is 
intentionally not turned 
off for muons and pions

For mu and pi+, the s-
dependence essentially has 
no additional variations

For electrons we see very different 
correlation of s-weighted projections 
→ changes in track length?



1. Sort by  
 

�  

 
where α = 10 and H is tank height.

2. Assign to closest empty grid site with 
distance given by formula: 
 
�  
 
where β = 3 and 
�  
�

α ( |z |
H/2

−
ρ

1 m ) + rand()

(ΔW )2 + β(ΔP)2

W := X+ + X−
P := X+ − X−

!37

3 means we 
need 7x7 grid

Prepare square grid with size √NPMT + (0~2)
additional space helps 

better arrangement ↑

Very likely there are 
better algorithms. Also 
α,β can be optimized 
if necessary.

Putting PMTs on a grid
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φ-motion



IWCD mPMTs 
mapped onto grid

!39

x y z

dir_x dir_y dir_z

PMT id
Same algorithm as before, see backup slide



Event from WCsim mapped to grid

• Saved in format (HDF5) that can be read by pyTorch efficiently

• Padding that reflects geometry is applied inside pyTorch 

using tensor operations

!40

original event

pa
dd

in
g

pa
dd

in
g

padding

padding

Identification of sides:



Effective rotation

!41

should prevent overtraining when training set is small
(of course concept itself is not new, but this way it's very simple and has no issues with grid-layout at endcaps)



The Taylor expansion can be implemented as 
ordinary convolution on the 2D grid by inserting 
precomputed weights � :


This “Taylorizing” (sum over weights) is easily 
implemented using common tensor libraries like 
PyTorch, TensorFlow…

w

Lukas Berns from Kuze Group

Summary 
Formulated CNN on sub-manifold using 
Taylor expansion in background space.

Geometrical interpretation of kernels allows 
imposing additional symmetries which act 
as regularizer on small sets.

Development ongoing toward full CNN-based 
event reconstruction for water Cherenkov 
detectors.
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Other features 
Dead PMTs could be removed by simply recomputing weights 
w without much retraining, since training is in 3D-space, not in 
pixel-space.

PMT orientation can be passed as another “spatial” 
dimension. This is especially interesting for so-called mPMTs 
planned for use in future experiments, that have many smaller 
PMTs collected in a shape compatible with the larger 20" PMTs.

Non-trivialities when using 
CNNs for water Cherenkov detectors 
1. Correct boundary condition that captures 

detector topology of 2-sphere.

2. How to encode geometrical 

information. Being in the pixel-plane 
next to each other has completely 
different meaning for barrel and endcaps.

On top of this we need to make sure we can 
do every computation efficiently on a GPU.

The PMTs are then put on a square grid which can be fed to machine 
learning libraries. Prior to convolution, pad sides according to 
identification given by arrows to embody topology of 2-sphere.

Convolution 
window

Barrel
↓ Bottom endcap

↑Top endcap

X± = W(ρ, z) π ± ϕ
2π W(ρ, z) = ρ2 + 2Rz + RH

R2 + RH

Topological map 
Consider cylinder surface as a sub-manifold embedded into 3D 
configuration space. Since isomorphic to a square with neighboring 
sides identified, we define sub-manifold the coordinates �  as:X±

X+

X−

Solve differential eq. 
for constant Jacobian

Normally convolution is performed over site indices


                                  �  

where we have translation invariance because the integration kernel K only 
depends on the relative position of the input and output layer sites (i.e. j–i)

For typical 3x3 convolution, this operation essentially is a weighted sum of 
moving average, 1st, and 2nd order discrete derivatives.


A “physical” model should respect the re-parametrization freedom of 
the sub-manifold coordinates, thus cannot depend on the 2d grid 
indices � derived from � . Instead, we define the “convolution” in 
terms of spatial coordinates � , corresponding to a differential map 
invariant under spatial translations:


�   where the 

Taylor expansion coefficients are learned: � , � , and �

N(n + 1)
i = ∑

j
Kj−i N(n )

j

i, j, ⋯ X±
I, J, ⋯

N(n + 1)(x) = (K + KI∂I + 1
2 KIJ∂I∂J) N(n )(x)

K KI KIJ

input layeroutput layer
N(n + 1)

i = ∑
j

(Kwij + KIwI,ij + 1
2 KIJwIJ,ij) N(n )

j

For each site i weights �  defined to obtain spatial 
derivatives by summing over neighboring grid sites j:

w, wI, wIJ

fi = Σj wij fj
∂I fi = Σj wI,ij fj

∂I ∂J fi = Σj wIJ,ij fj
fi := f(xi)where

the weights are calculated by least-squares, with a 
regularizer inserted to give zero in case a degeneracy 
prevents computation of the derivative.

� : radius, height of tank.R, H

Cut open along black line 
and map to square.

Q ∂xQ

∂zQ∂yQ

← Some components 
of the Taylor 
expansion on 
idealized charge 
distribution 
obtained using the 
weighted sums.

Effective rotation
For example for a scalar input layer � , demanding the 
output layer �  to be scalar as well, the Taylor expansion coefficients 
have a clear geometrical meaning:


�                    scalar  
�           vector  
�   tensor


this can be exploited to impose e.g. the � -rotation symmetry of the tank 
upon the network by inserting a random rotation �  about the z-axis during 
the training, effectively making the training set larger:


� 


Any vectorial variables (vertex, direction) to compute the loss against would need to be 
rotated too. It might be interesting to allow hidden channels to have vector indices too.

N(n )(x) → N(n )(Rx)
N(n + 1)(x)

K → K
KI → RI

MKM

KIJ → RI
MRJ

NKMN

ϕ
R

N(n + 1)
i = ∑

j
(Kwij + RI

MKMwI,ij + 1
2 RI

MRJ
NKMNwIJ,ij) N(n )

j

Network architecture

Passing geometry to convolution

Background
In water Cherenkov detectors, such as 
Super-Kamiokande, a huge volume of 
water is surrounded by light detectors 
(PMTs), which record the hit position 
and timing of photons emitted from 
relativistic particles inside the tank. 
Identification of particle type and 
reconstruction of track parameters like 
energy or interaction vertex, is usually 
performed using maximum-likelihood 
fits to an average emission profile.


These models do not capture the 
stochastic nature of Cherenkov 
emission. In addition to improving 
the existing emission models, we 
aim to separately develop deep 
learning based reconstruction 
which will hopefully improve the 

performance for more difficult 
tasks such as �  separation 
or multi-ring event 
reconstruction.

e − γ

�
�

↑ Rings generated by electrons (left) and muon (right) 
differ in the sharpness of the outer edge of the ring. 
Differences to other particles are more subtle

TaylorBlock(1,16,32)

TaylorBlock(32,32,32)

TaylorBlock(32,64,64)

TaylorBlock(64,128,128)

MaxPool2d(2,2)

MaxPool2d(2,2)

MaxPool2d(2,2)

Linear(128,32)

Linear(32,3)

Feature extractor

Classifier

Take average 
over grid

ReLU

Input shape: (1,105,105)

Output

(32,52,52)

(32,26,26)

(64,13,13)

(128,13,13)

(128)

For the Taylor blocks after the max pooling 
we use the coordinates passed through 
AvgPool2d to derive the weights.

Some of these steps ↑ 
have not been optimized 
and could be improved

Sample random 
� -rotation �  for 

each batch
ϕ R

Performance study
Ordinary convolution on 

topological map TaylorConvDataset

• Super-K simulated in WCSim [2,3]

• 50k events for {e–, μ–, π+} each

• Uniform vertex distribution 

(inside inner detector)

• Isotropic direction 

(particles might leave the detector = no FC cut)

• Flat energy from 1 MeV to 1 GeV

• Only using charge information for now


Optimization target: 
classification of three particle types (PIDs)  
(cross-entropy)


Implemented in PyTorch on GPU. The Taylorizing and 
random rotations introduce ~10x computing overhead.

Without random rotations Random rotation for each batch

Small training set with only 1000 events (test set: 5000 events).

Without random rotations, we quickly start overtraining. 
Random rotations seem prevent this and generalize better.

Since O(1000) is a realistic sample size for neutrinos observed at 
Super-K, this suggests the possibility of data-driven training.

No random rotations performed at this stage.

TaylorConv might show slightly better generalization, but at this stage no significant 
difference compared to ordinary convolution (interesting). Should also compare with 
more naïve approaches that don’t use the topological map.

Since particle ID depends on local features (blurriness) it would be interesting to see 
performance differences for full reconstruction of track parameters (vertex, energy, …).

Effect of Taylorizing itself Effect of random rotations

1 2

3

4 5

6

TaylorBlock(Cin,Cmid,Cout)

ReLU

Cin

Cmid

Cout

TaylorConv2d

TaylorConv2d ReLU
Cout

Cmid

R
Rotation

TaylorConv2d(Cin,Cout)

BatchNorm2d

Conv2d 
1x1

Taylorize

Topological Pad

Cin

Cin

Cin×T

Cin×T

Cout

Effective 
rotation

Cin×T

R
Rotation

R

Each channel is multiplied by 
pre-computed tensors over 
3x3 neighborhood to obtain 
f(x0), df(x0)/dx, df(x0)/dy, … 
so T = 1 + Ncoordinates

Batch-norm layers for each 
weighted sum helps 
normalizing scales from 
dimensionality of derivatives.

↑ Download PDF 
http://bit.ly/dlap19-lukasb
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The Taylor expansion can be implemented as 
ordinary convolution on the 2D grid by inserting 
precomputed weights � :


This “Taylorizing” (sum over weights) is easily 
implemented using common tensor libraries like 
PyTorch, TensorFlow…

w

Lukas Berns from Kuze Group

Summary 
Formulated CNN on sub-manifold using 
Taylor expansion in background space.

Geometrical interpretation of kernels allows 
imposing additional symmetries which act 
as regularizer on small sets.

Development ongoing toward full CNN-based 
event reconstruction for water Cherenkov 
detectors.
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Other features 
Dead PMTs could be removed by simply recomputing weights 
w without much retraining, since training is in 3D-space, not in 
pixel-space.

PMT orientation can be passed as another “spatial” 
dimension. This is especially interesting for so-called mPMTs 
planned for use in future experiments, that have many smaller 
PMTs collected in a shape compatible with the larger 20" PMTs.

Non-trivialities when using 
CNNs for water Cherenkov detectors 
1. Correct boundary condition that captures 

detector topology of 2-sphere.

2. How to encode geometrical 

information. Being in the pixel-plane 
next to each other has completely 
different meaning for barrel and endcaps.

On top of this we need to make sure we can 
do every computation efficiently on a GPU.

The PMTs are then put on a square grid which can be fed to machine 
learning libraries. Prior to convolution, pad sides according to 
identification given by arrows to embody topology of 2-sphere.

Convolution 
window

Barrel
↓ Bottom endcap

↑Top endcap

X± = W(ρ, z) π ± ϕ
2π W(ρ, z) = ρ2 + 2Rz + RH

R2 + RH

Topological map 
Consider cylinder surface as a sub-manifold embedded into 3D 
configuration space. Since isomorphic to a square with neighboring 
sides identified, we define sub-manifold the coordinates �  as:X±

X+

X−

Solve differential eq. 
for constant Jacobian

Normally convolution is performed over site indices


                                  �  

where we have translation invariance because the integration kernel K only 
depends on the relative position of the input and output layer sites (i.e. j–i)

For typical 3x3 convolution, this operation essentially is a weighted sum of 
moving average, 1st, and 2nd order discrete derivatives.


A “physical” model should respect the re-parametrization freedom of 
the sub-manifold coordinates, thus cannot depend on the 2d grid 
indices � derived from � . Instead, we define the “convolution” in 
terms of spatial coordinates � , corresponding to a differential map 
invariant under spatial translations:


�   where the 

Taylor expansion coefficients are learned: � , � , and �

N(n + 1)
i = ∑

j
Kj−i N(n )

j

i, j, ⋯ X±
I, J, ⋯

N(n + 1)(x) = (K + KI∂I + 1
2 KIJ∂I∂J) N(n )(x)

K KI KIJ

input layeroutput layer
N(n + 1)

i = ∑
j

(Kwij + KIwI,ij + 1
2 KIJwIJ,ij) N(n )

j

For each site i weights �  defined to obtain spatial 
derivatives by summing over neighboring grid sites j:

w, wI, wIJ

fi = Σj wij fj
∂I fi = Σj wI,ij fj

∂I ∂J fi = Σj wIJ,ij fj
fi := f(xi)where

the weights are calculated by least-squares, with a 
regularizer inserted to give zero in case a degeneracy 
prevents computation of the derivative.

� : radius, height of tank.R, H

Cut open along black line 
and map to square.

Q ∂xQ

∂zQ∂yQ

← Some components 
of the Taylor 
expansion on 
idealized charge 
distribution 
obtained using the 
weighted sums.

Effective rotation
For example for a scalar input layer � , demanding the 
output layer �  to be scalar as well, the Taylor expansion coefficients 
have a clear geometrical meaning:


�                    scalar  
�           vector  
�   tensor


this can be exploited to impose e.g. the � -rotation symmetry of the tank 
upon the network by inserting a random rotation �  about the z-axis during 
the training, effectively making the training set larger:


� 


Any vectorial variables (vertex, direction) to compute the loss against would need to be 
rotated too. It might be interesting to allow hidden channels to have vector indices too.

N(n )(x) → N(n )(Rx)
N(n + 1)(x)

K → K
KI → RI

MKM

KIJ → RI
MRJ

NKMN

ϕ
R

N(n + 1)
i = ∑

j
(Kwij + RI

MKMwI,ij + 1
2 RI

MRJ
NKMNwIJ,ij) N(n )

j

Network architecture

Passing geometry to convolution

Background
In water Cherenkov detectors, such as 
Super-Kamiokande, a huge volume of 
water is surrounded by light detectors 
(PMTs), which record the hit position 
and timing of photons emitted from 
relativistic particles inside the tank. 
Identification of particle type and 
reconstruction of track parameters like 
energy or interaction vertex, is usually 
performed using maximum-likelihood 
fits to an average emission profile.


These models do not capture the 
stochastic nature of Cherenkov 
emission. In addition to improving 
the existing emission models, we 
aim to separately develop deep 
learning based reconstruction 
which will hopefully improve the 

performance for more difficult 
tasks such as �  separation 
or multi-ring event 
reconstruction.

e − γ

�
�

↑ Rings generated by electrons (left) and muon (right) 
differ in the sharpness of the outer edge of the ring. 
Differences to other particles are more subtle

TaylorBlock(1,16,32)

TaylorBlock(32,32,32)

TaylorBlock(32,64,64)

TaylorBlock(64,128,128)

MaxPool2d(2,2)

MaxPool2d(2,2)

MaxPool2d(2,2)

Linear(128,32)

Linear(32,3)

Feature extractor

Classifier

Take average 
over grid

ReLU

Input shape: (1,105,105)

Output

(32,52,52)

(32,26,26)

(64,13,13)

(128,13,13)

(128)

For the Taylor blocks after the max pooling 
we use the coordinates passed through 
AvgPool2d to derive the weights.

Some of these steps ↑ 
have not been optimized 
and could be improved

Sample random 
� -rotation �  for 

each batch
ϕ R

Performance study
Ordinary convolution on 

topological map TaylorConvDataset

• Super-K simulated in WCSim [2,3]

• 50k events for {e–, μ–, π+} each

• Uniform vertex distribution 

(inside inner detector)

• Isotropic direction 

(particles might leave the detector = no FC cut)

• Flat energy from 1 MeV to 1 GeV

• Only using charge information for now


Optimization target: 
classification of three particle types (PIDs)  
(cross-entropy)


Implemented in PyTorch on GPU. The Taylorizing and 
random rotations introduce ~10x computing overhead.

Without random rotations Random rotation for each batch

Small training set with only 1000 events (test set: 5000 events).

Without random rotations, we quickly start overtraining. 
Random rotations seem prevent this and generalize better.

Since O(1000) is a realistic sample size for neutrinos observed at 
Super-K, this suggests the possibility of data-driven training.

No random rotations performed at this stage.

TaylorConv might show slightly better generalization, but at this stage no significant 
difference compared to ordinary convolution (interesting). Should also compare with 
more naïve approaches that don’t use the topological map.

Since particle ID depends on local features (blurriness) it would be interesting to see 
performance differences for full reconstruction of track parameters (vertex, energy, …).

Effect of Taylorizing itself Effect of random rotations

1 2

3

4 5

6

TaylorBlock(Cin,Cmid,Cout)

ReLU

Cin

Cmid

Cout

TaylorConv2d

TaylorConv2d ReLU
Cout

Cmid

R
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TaylorConv2d(Cin,Cout)

BatchNorm2d

Conv2d 
1x1

Taylorize

Topological Pad

Cin

Cin

Cin×T

Cin×T

Cout

Effective 
rotation

Cin×T

R
Rotation

R

Each channel is multiplied by 
pre-computed tensors over 
3x3 neighborhood to obtain 
f(x0), df(x0)/dx, df(x0)/dy, …  
so T = 1 + Ncoordinates

Batch-norm layers for each 
weighted sum helps 
normalizing scales from 
dimensionality of derivatives.

↑ Download PDF  
http://bit.ly/dlap19-lukasb


The Taylor expansion can be implemented as 
ordinary convolution on the 2D grid by inserting 
precomputed weights � :


This “Taylorizing” (sum over weights) is easily 
implemented using common tensor libraries like 
PyTorch, TensorFlow…
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Summary 
Formulated CNN on sub-manifold using 
Taylor expansion in background space.

Geometrical interpretation of kernels allows 
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event reconstruction for water Cherenkov 
detectors.
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Other features 
Dead PMTs could be removed by simply recomputing weights 
w without much retraining, since training is in 3D-space, not in 
pixel-space.

PMT orientation can be passed as another “spatial” 
dimension. This is especially interesting for so-called mPMTs 
planned for use in future experiments, that have many smaller 
PMTs collected in a shape compatible with the larger 20" PMTs.

Non-trivialities when using 
CNNs for water Cherenkov detectors 
1. Correct boundary condition that captures 

detector topology of 2-sphere.

2. How to encode geometrical 

information. Being in the pixel-plane 
next to each other has completely 
different meaning for barrel and endcaps.

On top of this we need to make sure we can 
do every computation efficiently on a GPU.

The PMTs are then put on a square grid which can be fed to machine 
learning libraries. Prior to convolution, pad sides according to 
identification given by arrows to embody topology of 2-sphere.

Convolution 
window

Barrel
↓ Bottom endcap

↑Top endcap

X± = W(ρ, z) π ± ϕ
2π W(ρ, z) = ρ2 + 2Rz + RH

R2 + RH

Topological map 
Consider cylinder surface as a sub-manifold embedded into 3D 
configuration space. Since isomorphic to a square with neighboring 
sides identified, we define sub-manifold the coordinates �  as:X±

X+

X−

Solve differential eq. 
for constant Jacobian

Normally convolution is performed over site indices


                                  �  

where we have translation invariance because the integration kernel K only 
depends on the relative position of the input and output layer sites (i.e. j–i)

For typical 3x3 convolution, this operation essentially is a weighted sum of 
moving average, 1st, and 2nd order discrete derivatives.


A “physical” model should respect the re-parametrization freedom of 
the sub-manifold coordinates, thus cannot depend on the 2d grid 
indices � derived from � . Instead, we define the “convolution” in 
terms of spatial coordinates � , corresponding to a differential map 
invariant under spatial translations:


�   where the 

Taylor expansion coefficients are learned: � , � , and �

N(n + 1)
i = ∑

j
Kj−i N(n )

j

i, j, ⋯ X±
I, J, ⋯

N(n + 1)(x) = (K + KI∂I + 1
2 KIJ∂I∂J) N(n )(x)

K KI KIJ

input layeroutput layer
N(n + 1)

i = ∑
j

(Kwij + KIwI,ij + 1
2 KIJwIJ,ij) N(n )

j

For each site i weights �  defined to obtain spatial 
derivatives by summing over neighboring grid sites j:

w, wI, wIJ

fi = Σj wij fj
∂I fi = Σj wI,ij fj

∂I ∂J fi = Σj wIJ,ij fj
fi := f(xi)where

the weights are calculated by least-squares, with a 
regularizer inserted to give zero in case a degeneracy 
prevents computation of the derivative.

� : radius, height of tank.R, H

Cut open along black line 
and map to square.

Q ∂xQ

∂zQ∂yQ

← Some components 
of the Taylor 
expansion on 
idealized charge 
distribution 
obtained using the 
weighted sums.

Effective rotation
For example for a scalar input layer � , demanding the 
output layer �  to be scalar as well, the Taylor expansion coefficients 
have a clear geometrical meaning:


�                    scalar 
�           vector  
�   tensor


this can be exploited to impose e.g. the � -rotation symmetry of the tank 
upon the network by inserting a random rotation �  about the z-axis during 
the training, effectively making the training set larger:


� 


Any vectorial variables (vertex, direction) to compute the loss against would need to be 
rotated too. It might be interesting to allow hidden channels to have vector indices too.

N(n )(x) → N(n )(Rx)
N(n + 1)(x)

K → K
KI → RI

MKM

KIJ → RI
MRJ
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N(n + 1)
i = ∑
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(Kwij + RI

MKMwI,ij + 1
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Network architecture

Passing geometry to convolution

Background
In water Cherenkov detectors, such as 
Super-Kamiokande, a huge volume of 
water is surrounded by light detectors 
(PMTs), which record the hit position 
and timing of photons emitted from 
relativistic particles inside the tank. 
Identification of particle type and 
reconstruction of track parameters like 
energy or interaction vertex, is usually 
performed using maximum-likelihood 
fits to an average emission profile.


These models do not capture the 
stochastic nature of Cherenkov 
emission. In addition to improving 
the existing emission models, we 
aim to separately develop deep 
learning based reconstruction 
which will hopefully improve the 

performance for more difficult 
tasks such as �  separation 
or multi-ring event 
reconstruction.

e − γ
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↑ Rings generated by electrons (left) and muon (right) 
differ in the sharpness of the outer edge of the ring. 
Differences to other particles are more subtle
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over grid
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Input shape: (1,105,105)

Output

(32,52,52)
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(64,13,13)

(128,13,13)
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For the Taylor blocks after the max pooling 
we use the coordinates passed through 
AvgPool2d to derive the weights.

Some of these steps ↑ 
have not been optimized 
and could be improved

Sample random 
� -rotation �  for 

each batch
ϕ R

Performance study
Ordinary convolution on 

topological map TaylorConvDataset

• Super-K simulated in WCSim [2,3]

• 50k events for {e–, μ–, π+} each

• Uniform vertex distribution 

(inside inner detector)

• Isotropic direction 

(particles might leave the detector = no FC cut)

• Flat energy from 1 MeV to 1 GeV

• Only using charge information for now


Optimization target: 
classification of three particle types (PIDs)  
(cross-entropy)


Implemented in PyTorch on GPU. The Taylorizing and 
random rotations introduce ~10x computing overhead.

Without random rotations Random rotation for each batch

Small training set with only 1000 events (test set: 5000 events).

Without random rotations, we quickly start overtraining. 
Random rotations seem prevent this and generalize better.

Since O(1000) is a realistic sample size for neutrinos observed at 
Super-K, this suggests the possibility of data-driven training.

No random rotations performed at this stage.

TaylorConv might show slightly better generalization, but at this stage no significant 
difference compared to ordinary convolution (interesting). Should also compare with 
more naïve approaches that don’t use the topological map.

Since particle ID depends on local features (blurriness) it would be interesting to see 
performance differences for full reconstruction of track parameters (vertex, energy, …).

Effect of Taylorizing itself Effect of random rotations
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Each channel is multiplied by 
pre-computed tensors over 
3x3 neighborhood to obtain 
f(x0), df(x0)/dx, df(x0)/dy, … 
so T = 1 + Ncoordinates

Batch-norm layers for each 
weighted sum helps 
normalizing scales from 
dimensionality of derivatives.

↑ Download PDF 
http://bit.ly/dlap19-lukasb




Dataset

• SK 40% coverage in WCSim

• Two wall-material sets: 

{blacksheet, retro-reflector}


• 50k events for {e–,μ–,π+} each

• Uniform vertex inside ID

• Isotropic direction (no FC cut yet)

• Flat energy from 1 MeV to 1 GeV 
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/mygen/generator gps 
/gps/particle ### 
/gps/pos/type  Volume 
/gps/pos/shape Cylinder 
/gps/pos/centre 0 0 0 
/gps/pos/radius 17. m 
/gps/pos/halfz  18. m 
/gps/ang/type iso 
/gps/ene/type Pow 
/gps/ene/min   0.001 GeV 
/gps/ene/max   1.    GeV 
/gps/ene/alpha 0.

Optimization target is classification of three PIDs (cross-entropy)

↑ contact me if interested
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The Taylor expansion can be implemented as 
ordinary convolution on the 2D grid by inserting 
precomputed weights � :


This “Taylorizing” (sum over weights) is easily 
implemented using common tensor libraries like 
PyTorch, TensorFlow…

w

Lukas Berns from Kuze Group

Summary 
Formulated CNN on sub-manifold using 
Taylor expansion in background space.

Geometrical interpretation of kernels allows 
imposing additional symmetries which act 
as regularizer on small sets.

Development ongoing toward full CNN-based 
event reconstruction for water Cherenkov 
detectors.
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Other features 
Dead PMTs could be removed by simply recomputing weights 
w without much retraining, since training is in 3D-space, not in 
pixel-space.

PMT orientation can be passed as another “spatial” 
dimension. This is especially interesting for so-called mPMTs 
planned for use in future experiments, that have many smaller 
PMTs collected in a shape compatible with the larger 20" PMTs.

Non-trivialities when using 
CNNs for water Cherenkov detectors 
1. Correct boundary condition that captures 

detector topology of 2-sphere.

2. How to encode geometrical 

information. Being in the pixel-plane 
next to each other has completely 
different meaning for barrel and endcaps.

On top of this we need to make sure we can 
do every computation efficiently on a GPU.

The PMTs are then put on a square grid which can be fed to machine 
learning libraries. Prior to convolution, pad sides according to 
identification given by arrows to embody topology of 2-sphere.

Convolution 
window

Barrel
↓ Bottom endcap

↑Top endcap

X± = W(ρ, z) π ± ϕ
2π W(ρ, z) = ρ2 + 2Rz + RH

R2 + RH

Topological map 
Consider cylinder surface as a sub-manifold embedded into 3D 
configuration space. Since isomorphic to a square with neighboring 
sides identified, we define sub-manifold the coordinates �  as:X±

X+

X−

Solve differential eq. 
for constant Jacobian

Normally convolution is performed over site indices


                                  �  

where we have translation invariance because the integration kernel K only 
depends on the relative position of the input and output layer sites (i.e. j–i)

For typical 3x3 convolution, this operation essentially is a weighted sum of 
moving average, 1st, and 2nd order discrete derivatives.


A “physical” model should respect the re-parametrization freedom of 
the sub-manifold coordinates, thus cannot depend on the 2d grid 
indices � derived from � . Instead, we define the “convolution” in 
terms of spatial coordinates � , corresponding to a differential map 
invariant under spatial translations:


�   where the 

Taylor expansion coefficients are learned: � , � , and �

N(n + 1)
i = ∑

j
Kj−i N(n )

j

i, j, ⋯ X±
I, J, ⋯

N(n + 1)(x) = (K + KI∂I + 1
2 KIJ∂I∂J) N(n )(x)

K KI KIJ

input layeroutput layer
N(n + 1)

i = ∑
j

(Kwij + KIwI,ij + 1
2 KIJwIJ,ij) N(n )

j

For each site i weights �  defined to obtain spatial 
derivatives by summing over neighboring grid sites j:

w, wI, wIJ

fi = Σj wij fj
∂I fi = Σj wI,ij fj

∂I ∂J fi = Σj wIJ,ij fj
fi := f(xi)where

the weights are calculated by least-squares, with a 
regularizer inserted to give zero in case a degeneracy 
prevents computation of the derivative.

� : radius, height of tank.R, H

Cut open along black line 
and map to square.

Q ∂xQ

∂zQ∂yQ

← Some components 
of the Taylor 
expansion on 
idealized charge 
distribution 
obtained using the 
weighted sums.

Effective rotation
For example for a scalar input layer � , demanding the 
output layer �  to be scalar as well, the Taylor expansion coefficients 
have a clear geometrical meaning:


�                    scalar  
�           vector  
�   tensor


this can be exploited to impose e.g. the � -rotation symmetry of the tank 
upon the network by inserting a random rotation �  about the z-axis during 
the training, effectively making the training set larger:


� 


Any vectorial variables (vertex, direction) to compute the loss against would need to be 
rotated too. It might be interesting to allow hidden channels to have vector indices too.

N(n )(x) → N(n )(Rx)
N(n + 1)(x)

K → K
KI → RI

MKM

KIJ → RI
MRJ

NKMN

ϕ
R

N(n + 1)
i = ∑

j
(Kwij + RI

MKMwI,ij + 1
2 RI

MRJ
NKMNwIJ,ij) N(n )

j

Network architecture

Passing geometry to convolution

Background
In water Cherenkov detectors, such as 
Super-Kamiokande, a huge volume of 
water is surrounded by light detectors 
(PMTs), which record the hit position 
and timing of photons emitted from 
relativistic particles inside the tank. 
Identification of particle type and 
reconstruction of track parameters like 
energy or interaction vertex, is usually 
performed using maximum-likelihood 
fits to an average emission profile.


These models do not capture the 
stochastic nature of Cherenkov 
emission. In addition to improving 
the existing emission models, we 
aim to separately develop deep 
learning based reconstruction 
which will hopefully improve the 

performance for more difficult 
tasks such as �  separation 
or multi-ring event 
reconstruction.

e − γ

�
�

↑ Rings generated by electrons (left) and muon (right) 
differ in the sharpness of the outer edge of the ring. 
Differences to other particles are more subtle

TaylorBlock(1,16,32)

TaylorBlock(32,32,32)

TaylorBlock(32,64,64)

TaylorBlock(64,128,128)

MaxPool2d(2,2)

MaxPool2d(2,2)

MaxPool2d(2,2)

Linear(128,32)

Linear(32,3)

Feature extractor

Classifier

Take average 
over grid

ReLU

Input shape: (1,105,105)

Output

(32,52,52)

(32,26,26)

(64,13,13)

(128,13,13)

(128)

For the Taylor blocks after the max pooling 
we use the coordinates passed through 
AvgPool2d to derive the weights.

Some of these steps ↑ 
have not been optimized 
and could be improved

Sample random 
� -rotation �  for 

each batch
ϕ R

Performance study
Ordinary convolution on 

topological map TaylorConvDataset

• Super-K simulated in WCSim [2,3]

• 50k events for {e–, μ–, π+} each

• Uniform vertex distribution 

(inside inner detector)

• Isotropic direction 

(particles might leave the detector = no FC cut)

• Flat energy from 1 MeV to 1 GeV

• Only using charge information for now


Optimization target: 
classification of three particle types (PIDs)  
(cross-entropy)


Implemented in PyTorch on GPU. The Taylorizing and 
random rotations introduce ~10x computing overhead.

Without random rotations Random rotation for each batch

Small training set with only 1000 events (test set: 5000 events).

Without random rotations, we quickly start overtraining. 
Random rotations seem prevent this and generalize better.

Since O(1000) is a realistic sample size for neutrinos observed at 
Super-K, this suggests the possibility of data-driven training.

No random rotations performed at this stage.

TaylorConv might show slightly better generalization, but at this stage no significant 
difference compared to ordinary convolution (interesting). Should also compare with 
more naïve approaches that don’t use the topological map.

Since particle ID depends on local features (blurriness) it would be interesting to see 
performance differences for full reconstruction of track parameters (vertex, energy, …).

Effect of Taylorizing itself Effect of random rotations

1 2

3

4 5

6

TaylorBlock(Cin,Cmid,Cout)

ReLU

Cin

Cmid

Cout

TaylorConv2d

TaylorConv2d ReLU
Cout

Cmid

R
Rotation

TaylorConv2d(Cin,Cout)

BatchNorm2d

Conv2d 
1x1

Taylorize

Topological Pad

Cin

Cin

Cin×T

Cin×T

Cout

Effective 
rotation

Cin×T

R
Rotation

R

Each channel is multiplied by 
pre-computed tensors over 
3x3 neighborhood to obtain 
f(x0), df(x0)/dx, df(x0)/dy, … 
so T = 1 + Ncoordinates

Batch-norm layers for each 
weighted sum helps 
normalizing scales from 
dimensionality of derivatives.

↑ Download PDF 
http://bit.ly/dlap19-lukasb




Other aspects

• Since �  are geometric objects, 
rotating them effectively rotates the original event 
→ can randomly rotate during training to impose φ-symmetry of tank


• Dead PMTs could be removed by simply recomputing weights w 
without much retraining, since training is in 3D-space, not in pixel-
space.


• PMT orientation could be passed as another “spatial” dimension. 
(for mPMT etc.)

K, KI, KIJ
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N(n+1)
i = ∑

j
(Kwij + KIwI,ij +

1
2

KIJwIJ,ij) N(n)
j



PID training with just 1000 events

• Does surprisingly well for 
having seen only 1000 events


• If O(1000 events) can already 
give interesting results, 
maybe training feature 
extraction with data is 
possible?
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Pr
ed
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l

True label

ε = 67%

ε = 40%

ε = 76%

Without random 
rotations, quickly 

starts 
overtraining?


→

With random 
rotations, 
learning at least 
for 10 epochs?

←

• e,μ,π+ classification in dataset with uniform, isotropic, flat energy � 

• Training set: 1000 events, test set: 5000 events

E ∈ [1 MeV, 1 GeV]



Hybrid training?
• Normally: train everything at once 

using MC


• Feature extraction could be trained 
using data (auto-encoder) 
utilizing φ-rotation presented today.


• Take this data-trained feature 
extractor and train classifier using 
MC (where we have truth)


• Can prevent picking up subtle 
implementation issues of the MC in 
feature extraction?

!47

Feature extraction (CNN)

Classification (NN)



Loss for energy 
reconstruction

• Using mean-squared error on � . Thus assuming 
typical resolution of energy is proportional to � , we 

get: � 


• I have batch-norm layers throughout the network. Maybe this 
causes issues with energy reconstruction which is mostly 
related to the total charge, I pass the raw total charge as an 
additional input to the fully-connected layer.


• Might need to look at using Huber loss. In this case I think I 
need to normalize the scale for the linear-quadratic transition, 
maybe can assume typical error scale of 2% around 500 MeV 

F := E
σ(E) ∝ E

σ(F) =
dF
dE

σ(E) =
σ(E)

E
= const
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Combining loss functions
• For CNN-based reconstruction, was stuck at how to combine loss functions (e.g. PID 

classification and momentum reconstruction).


• Depending on relative weights only one or the other gets optimized, hard to get both 
optimized. For example I get for cross entropy values like 0.5, whereas mean-squared 
error loss of energy gives me values like 1000 (obviously this depends on the units!)


• Found simple method [1] by learning this weight (� ), regularized by logarithm. 

�  

the idea is that by minimizing � , they become equal in magnitude to the individual 
losses �  
 

�  

 
such that each individual loss is normalized by it's average magnitude: 

�

1/Vi

L = ∑
i

1
Vi

Li + log Vi

Vi
Li

0 =
∂ ⟨L⟩
∂Vi

= −
1

V2
i

(⟨Li⟩ − Vi) ⇒ Vi = ⟨Li⟩

L = ∑
i

Li

⟨Li⟩
+ log ⟨Li⟩
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1. A. Kendall et al., “Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics” (2018)



• Erec close to Etrue, and it 
seems to take PID into 
account.


• For electrons resolution is 
worse than total charge?


• For pions network does 
better job than just 
looking at total charge?


• Probably better to choose 
different loss-scaling 
factor based on PID.


• For whatever reason the 
reconstructed energy 
never goes below 
200 MeV. Maybe easier to 
reconstruct kinetic energy.
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True PID: e μ π+

True PID: e μ π+

True Energy [MeV]

Re
co

ns
tru

ct
ed

 E
ne

rg
y 

[M
eV

] Erec = Etrue line

True Energy [MeV]

To
ta

l C
ha

rg
e

pions have large spread in total 
charge (absorption? decay?)
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example where energy reconstruction fails

PI
D

 +
 E

re
c
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• Overall resolution is worse, but that might be 
because I changed from reconstructing �  
to �  (expecting the network would learn 
this by itself). Also should train longer to get 
rid of kink. 


• bias is still present?


• underprediction when moving toward wall →

E
log E

!53



!54



• Might also be interesting to use a separate optimizer for 
the loss weights, since we don't want these weights to 
change as rapidly as the network weights
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