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Water-Cherenkov detectors
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Here using the example of fiTQun

Ri n g -fitti n g e Maximize over track parameters for particle of
right now ==

e energy £

e Maximum-likelihood based reconstruction.

e position X

Super-Kamiokande IV
2¥ Beam Run 0 spil 797537

e timeft

e direction n

For PMTs i with hit: H YACUONAD,
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e charge Iikelihoodfq
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Here using the example of fiTQun
e Maximum-likelihood based reconstruction.

Ri n g -fitti n g optimal if model pdf = true pdf
right now
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Charge (pe)
. >26.7

500 1000 1500 2000

OD Times (ns)

Times (ns)




Here using the example of fiTQun

Ring-fitting

right now

Super-Kamiokande IV

Charge (pe)
. >26.7
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OD Times (ns)
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e Maximum-likelihood based reconstruction.
optimal U model F@ch = brue Fd§

NG wav!

For PMTs i with hit:(| ]\ (g, /()

e charge Iikelihoodfq
Mostly{poisson)with mean #photons as
function of opening angle ; and distance

R.
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PM [-correlations
their origins and magnitude

e Simulate many events with
500 MeV electron of same
position, direction etc. and
study correlation of charges for
PMT pairs.

Correlation coefficient

e For PMTs near Cherenkov angle,

— non-negligible? PMT correlations for on-ring PMT

+—

‘ For electrons correlations are mostly due
to showering. Essentially we have not a

single ring, but an ensemble of rings.

For y multiple-scattering also contributes, but
these are already modeled in fiTQun.




Photon direction tan® sind

Photon emission point x [mm]
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i+ Correlation matrix

Angular profile (true direction) 500 MeV electron (1000 events)
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* For simplicity study variance of
#photons integrated over longitudinal
emission direction

e Bins are chosen to capture most
important features with small number of
bins (30) ... see backup.
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Eigenvectors (principal modes)

Principal modes are mostly dipole and monopole, some quadrupole(#7)

Eigenvector 0, std. deviation = 758.023 Eigenvector 1, std. deviation = 645.028
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Basic symmetry structure

Expand in Fourier modes f(0, ¢) = % f,.(0) oime

Azimuthal symmetry

0 0
£<f<9, P)) = £<f<9, DO, dp+Ap)) =0

implies With convent.ional method (mean
profile) no azimuthal dependence

* <fm> =0unlessm=0 — /, Multipoles have non-zero variations.
Correlations between different multipoles
¢ <f;1<1 f,fn’> — O UnleSS | m | — | m,l cannot be captured with this method.
» Real and imaginary parts of f, can be seen as cos and sin
terms (f°, f*) with m > 0.

Then for same m: <fc fc’> = <f5f5’>, <fc fs’> =0
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Flux or stddev / cos8

Flux or stddev / cos9
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Electron track reconstruction performance

500 MeV electron emitted at center of tank moving in horizontal direction.
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Electron track reconstruction performance

500 MeV electron emitted at center of tank moving in horizontal direction.

Some are slightly better, some slightly worse.

Differences seen here could also be due to fitting artifacts.
note: #fit-params increases from 7 (no var) = 37 (m=0) = 67 (m<1) ...

In any case no significant improvements for reconstruction...
possibly the model is unable to capture essential features
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How to improve the model + next steps

m <1 m<?2 m < 10
Throw 7 Throw 7 Throw 7
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* Dipole variations correspond to vertex shift and should thus be impossible to fit.

Features such as double-rings demand quadrupole or higher modes.
Correlations between multipoles are essential, otherwise just adding “noise”.

e Also electrons have variation in track length, which is not seen for muons.

e Tried several approaches but not easy to realize efficiently. (ideas welcome)
PID performance also to be studied.
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Some properties of CNN that | think C N N — based

are key to its success:

* Captures geometrical information of reco n St ru Ct i O n

pixels

e Small number of parameters (esp.
compared to a fully-connected
layer)

— trainable

Super-Kamiokande IV
T2K Beam Run 0 spill 797537

e Translation invariance

When considering doing CNN for
water-Cherenkov, we have two
Issues to solve:

........

1. Correct boundary condition that
captures detector topology of 2-

sphere.

2. How to encode geometrical
information. Being in the pixel-

plane next to each other has On top of this we need to make sure we can

completely different meaning for do every computation efficiently on a GPU.
barrel and endcaps.
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Topological map
Cut open along solid line and map to square,

. . o 8(X+9X—)
with W(p, z) chosen to preserve area: dX, dX_ —( 3od) \dpdqs
nt ¢ 24+ 2Rz+ RH
X + — W( p . Z) W( P, Z) — P £ Solve differential
21 R2 + RH eq. for constant

Jacobian

Convolution X+
window

The PMTs are then put on a square grid which can be fed to machine
learning libraries. Prior to convolution, pad sides according to

identification given by arrows to embody topology of 2-sphere.
16



Passing geometry to
convolution

Normally convolution is performed over site indices

(n+1) — (n)
N = 2 KN,

J
where we have translation invariance because the integration kernel K only

depends on the relative position of the input and output layer sites (i.e. j-i)

For typical 3x3 convolution, this operation essentially is a weighted sum of
moving average, 1st, and 2nd order discrete derivatives.

Analogously propose a map invariant under spatial translations:
(I, J: spatial indices)

1
NOD(x) = <K+ K0, + EKU()I()J) N™(x) where the Taylor
expansion coefficients are learned: K, K! and KV (scalar, vector, ...)

17



Passing geometry to
convolution

The Taylor expansion can be implemented For each site i weights w, wj, wy;

as convolution on the 2D grid by inserting Lo 00 o e

precomputed weights w: sites J:
Ji= 2wyl

1 _
(n+1) _ B I, 4 _ gl B (n) Orfi = Zjwyif; where f; := f(x;)
Ni Z <le] +A Wrij ¥ 2 K Wity > ]\5 0;01f;i = 2wy ii;

J

— — e e — I —

| Analogously propose a map invariant under spatial translations:
(I, J: spatial indices)

l
|

|
NOD(x) = (K+ K0, + EKU()I()J) N™(x) where the Taylor

expansion coefficients are learned: K, K! and KV (scalar, vector, ...)

— — = = —
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Dataset

e Super-K simulated in WCSim [23]
* 50k events for {e-, y-, 11} each
e Uniform vertex distribution

(inside inner detector)

* |sotropic direction

(particles might leave the detector = no FC cut)

* Flat energy from 1 MeV to 1 GeV
* Only using charge information for now

Optimization target:
classification of three particle types (PIDs)
(cross-entropy)

Implemented in PyTorch on GPU. The Taylorizing and
random rotations introduce ~10x computing overhead.

PID performance study
e About 80% PID accuracy (e,pu,m+).

* At this stage, this Taylor-decomposition
technique is not that much better
(it does seem to somewhat generalize better?)

* | wonder how this looks like with position/
direction reconstruction which are
iInherently geometric

Ordinary convolution on
topological map
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Effective rotation

For example for a scalar input layer N(x) - N"™(Rx), demanding the
output layer N +1(x) to be scalar as well, the Taylor expansion coefficients
have a clear geometrical meaning:

K - K scalar
K' - RIMKM vector
1J I pJ pMN
K" — R'),R\,K™" tensor
this can be exploited to impose e.g. the ¢-rotation symmetry of the tank

upon the network by inserting a random rotation R about the z-axis during
the training, effectively making the training set larger:

1
(n+1) _ I M ~ pl pJ pMN (n)
N, = Kw; + Ry K" wy ;i + 5 Ry RWK™ Wy i ]\6
J
Any vectorial variables (vertex, direction) to compute the loss against would need to be
rotated too. It might be interesting to allow hidden channels to have vector indices too.

Tried training using 1000 events only.  — given small stats of neutrino
With rotations it seems overtraining is samples, such techniques might be
suppressed to some extent. valuable for data-driven training

21



Toward full reconstruction

oy Sl CEEeS  ThEne o Started experimenting

5 true: 396 MeV B, true: 908 MeV true: 665 MeV - toward fU” reconstruction,
2 . 22 2 . »  here PID + Energy reco.,
40 n O 5 how to combine loss
? 15 % o  functions etc.
80 10 80
00 5 100 5

. - g, ©° 0 wg, ©° - wog, e Still far from maximum-

example where PID/Erec falls likelihood fitters but fun

x pred e, true: p
pred: 254 MeV

v pred: e, true: e
pred: 599 MeV
true: 547 MeV

x pred n+, true: p
pred: 257 MeV

| __true: 714 Mev true: 46 MeV e
20 g
b 20
oo ;1':
00 ) 100
I o 50 100 |

2 likelihood fitters in the

15 future? | think yes, but

0 need to find data-driven
methods in order not to

* Can we beat maximum-
i rely on MC



Summary

Ring reconstruction in water-Cherenkov detectors might
benefit from modeling the PMT-correlations due to
Cherenkov profile variations

Working on two approaches (maximume-likelihood and CNN),
so far no significant improvement to conventional methods
but development is ongoing.

Proposed CNN architecture for topology and geometry of
cylinder, might be generalizable to other applications
(mostly embedded sub-manifolds?)

In general, should be careful whether correlations in MC can

be trusted. Data-driven approaches need to be Considere&mw\e‘.

. 1deas
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Find good basis

e For practical reasons it would be nice to have a basis with
sparse correlation matrix (to ignore off-diagonals)

® Wave I et tran Sfo rm See m S beSt (blue lines at >250 are artifact because original bin count was not power of 2)
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Find good bin width

* Ignoring off-diagonals in wavelet transform = combining neighboring bins
— suggest binning scheme by combining pairs with most negligible corr.

* Turns out simply choosing binning by requiring equal number of photons
In each bin gives almost the same result =& much easier, so let's use this

I I I I I I I | I I | I I I | I l I I | I l I I | I l +

Bins with equal content

From wavelet transform

I+Log (Number of bins to merge)
I

(S
IIII|IIIIIIIII|IIII|I]]I|III

O1111l1111|1111|1111|1111|1111|T'

0 0.5 ] 1.5 2 2.5 3
0 [rad]

20



Advanced symmetry
structure

* Further expand each Fourier coefficient into magnitude and complex
phase angle: 1, (0) = |f.(0) | o~ M, (6)

e Redefinition of azimuthal origin is gauge freedom, f should not change:

P —

=+

f—=f=s if a,0)— a,(0)+5

e £
o £
o £

| - ] = 0 unless gauge-singlet. For example:

| £, 1f,]]is singlet, can be non-zero for any m, m’ and 6, 6’

- _inma —in’m’am

e e 1 is singlet if nm = n'm’, in which case it can be non-

zero for any 0, 0. e.g. take nm = LCM(m, m’)

* Assuming parity invariance (no magnetic field etc.), we further have

e E[sin(nma, —n'm'a )] =0, i.e.only cosine correlations
m m

27
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m < 1 throws
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m < 2 throws

X
File Edit View Options Tools Help Flle Edit View Options Tools Help File Edit View Options Tools Help Flle Edit View Options Tools Help
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m < 10 throws

File Edit View Options Tools Help File Edit View Options Tools ﬂelp‘ File Edit View Options Tools Help File Edit View Options Tools Help
Throw 0 0 Throw 1 Throw 2 Throw 3
1.5 1.5 1.5 1.5
F 8 E E o
1;— 7 1;— 1;— 1;—
0.5 i— 6 0.5 i— 0.5 i— 0.5 f—
oF ; o o o
E 4 E E r
-0 5 -05F -05F -05F
i 2 A i A
c 1 = 1 F =
-1.5— —|.5_—l ) : 1 , 1 -1.5— -1.5— '
- 0 S15 -1 05 0 05 s 0 15 o1 05 0 05 1 15 0 C15 -1 05 0.5 s 0
- - - - - -
the nice thing about marginalization is we can
- u L}
easily implement these without much change
| X eo0e
File Edit View Options Tools Help File Edit View Options Tools ﬂelp} File Edit View Options Tools Help File Edit View Options Tools Help
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Histogram of LL[LL < median(LL) + 3 * mad(LL)]

Distribution of log-
likelihoods for throws .. - -

30 40

Frequency
20
L

e 1000 throws with m<1, no s-dependence

e Distribution is quite normal with somewhat = ’—Hmﬂ m
shorter tails (not sure if this is expected
( pected) l Th
* problem: —logL varies by orders of ~100! 10000 10100 10200 10300 10400 10500

— marginalized —logL (red line) is dominated by LL[LL < median(LL) + 3 * mad(LL)]
very few throws with small —logL

Normal Q-Q Plot

* three interpretations:
1. | made a mistake with calculation
2. need very large number of throws

3. this is really a problem where we should
be fitting (profiling), the data contains
“too much” information about these
variations

e However | should note this is the distribution at
the initial point for the likelihood fit found with

Sample Quantiles
10000 10100 10200 10300 10400 10500

grid search. Maybe at true values or best fit the
spread is a bit smaller.

Theoretical Quantiles
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Analytic marginalization

* If -logL distribution is normal, we

could simply measure mean and
variance (ideally with robust
methods) and compute analytically

Could be interesting for a SGD like
method where we compute a
running mean of mean and
variance (normal marginalization
has the nonlinear exp,log)

Another idea: introduce notion of
inverse temperature and perform
annealing?

Ly(x1) = 5 E e
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e-gamma separation?

Electron Gamma

x10° :
? :I T7T ] L ‘ 17T l T 17T l T 1 T T 171 l T T ] T 1T I T 1 ] T l: o f.lq T | T ‘ ™17 | | T [ 1T | T™TT I T T T | T |_
2 - — Mean flux = 2 i — Mean flux ]
> 600 — - > - .
3 600- M.onopole g B sl — M'onopole e
3 N Dipole E = C — Dipole ]
s °'[  — Quadrupole R 5 40f  — Quadrupole -
2 400 = z - .
= - 3 = 300 ]
?.OOE— _E 200;_ _;
IOOE &E f 100 EE ]
O:...l.‘l‘..l...l......-1 ! = O: N N B -

1 08 06 04 02 0 02 04 06 03 | 1

08 06 04 02 0 02 04 06 08 1
cos cos9

Angular profile (true direction) Angular profile (true direction)
400 AR 4(%0

Frres,
4

350, o s N - 10* 350-_ T A AT 10*
300 s 300E ' x ' =
250 P 10 2508 .
) : - .A.l : 200 I
15 =G 10°
1008 _ : k"
- 10 S 10
U it . .o . il For gamma | define s=0
s A 020 02 04 06 08 1 ! TR 06 0T 00 0 04 06 o8 1 1 atconversion point

* Integrated flux looks similar, but relative size of multipole variations look
slightly different — could be due to somewhat low stats here, but could
also give some handle on e-gamma separation
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s-dependent correlations

e-
Al
10°
| el
S
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“
= [i
‘5 10°
—E 10
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-1 DR -06-04 402 0 02 04 06 (0 COSQ
A 1
0.8
(s?) =
= X I 04
2 : —02
g E <S> —0
A - 04
1
(1) e
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cosf bins

For electrons we see very different
correlation of s-weighted projections
— changes in track length?

mu- pi+

Angular profile (rrue direction)
400

L S L S B B L T B B B B O B

S

2

|
£

II i IIIIIIIIIIIIII

S
%

S

-1 208060402 0 02 04 06 08 1

2

20 30 50

Multiple scattering is
intentionally not turned
off for muons and pions

dependence essentially has
no additional variations



Putting PMTs on a grid

no PMT at site

Prepare square grid with size Npumt + (0~2)

1.

2.

Sort by additional space helps 1
better arrangement
| Z]
P + rand()
H/2 1m

where a = 10 and H is tank height.

Assign to closest empty grid site with
distance given by formula:

(AW)? + B(AP)?

where S =3 and  Very likely there are

W==X +X better algorithms. Also
' + —  a,B can be optimized
— —_ if necessary.
P:=X_ —-X_ if
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filter 1

filter xy

filter x

filter xz

¢$-motion

filter y

Ly "\-/.

i;'ﬂ.f—r- ‘

filter yy
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filter z

filter yz
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TMatrixDBase
Entries 16384
Mean x 62.21

14000 pean y 62.64
StdDevx 39.15

~~  IWCD mPMTs

8000

- mapped onto grid
o eta e e s e s Gl o Same algorithm as before, see backup slide

TMatrixDBase . ) ) i TMatrixDBase TMatrixDBase
Entries 16384 - g e Entries 16384 ! Entries 16384
Meanx  2.746e+13 Meanx  3.216e+17 Meanx  1.31e+17
Meany 2.075e+13 Meany  -3.216e+17 Meany  1.311e+17
Std Dev x 2.746e+13 Std Devx 3.216e+17 StdDevx 1.31e+17
Std Devy 2.075e+13 StdDevy 3.216e+17 StdDevy 1.311e+17

0 20 40 60 80 100 120

TMatrixDBase . a1 - T TMatrixDBase TMatrixDBase
Entries 16384 - LY | Entries 16384 Entries 15876
Meanx  1.236e+14 Meanx  -9.02e+18 Mean x 61.07
Meany 6.339e+13 Meany  9.014e+18 14000 pean y 61.5
Std Dev x 1.236e+14 Std Devx 9.02e+18 StdDevx 38.49
Std Devy 6.339e+13 Std Devy 9.014e+18 1200¢ StdDevy  38.51

10000

o]

8000

6000

4000

2000

O ——— - 0
0

TR T Tl ey
100 120 20 40 60 80 100 120

dir_x dir y dir_z
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Event from WCsim mapped to grid

In [9]: plt.imshow(geometricPad(torch.tensor(event data[0,:,:,0]), 20))

Out[9]: <matplotlib.image.AxesImage at 0x7faa268cdcl8>

Identification of sides:

0

20

g8 8 &

original event

100

120 N

140

160
0 25 50 75 100 125 150

e Saved in format (HDF5) that can be read by pyTorch efficiently

e Padding that reflects geometry is applied inside pyTorch
using tensor operations
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Effective rotation

1. when requesting an event (get entry), randomly sample ¢ € [0, 27].
2. when taylorizing (the w-sum) insert a rotation matrix:
wr = (RTw)[ = RKIwK —: RIKwK
wry = (RTwR)U = RIKRJLwKL

in the case of ¢y this is

cos¢y —singg 0
R, (¢0) = | siny cosdy 0
0 0 1

so the whole convolution operation becomes:

n ]‘ n
N( 1) _ Z (Kwij + KIRKI'LUK,Z'J' + EKIJRKIRLJU)KL,Z'J-) N( )

¢ J
J

3. when comparing the output, we need to also rotate any vectors like the direction or position:
Ly = (Rm)[ - RL]JJJ

notice that w and x rotate in opposite direction. That's because w is related to derivatives and is
therefore covariant, whereas z is contravariant.

Maybe for efficiency reasons it's actually better to use the same ¢, for one batch.

should prevent overtraining when training set is small

(of course concept tkself is not new, but this way it's very simple and has no issues with grid-layout at endcaps)
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Network architecture
I

TaylorConv2d(Cin,Cout)
¢ Cin Input shape: (1,105,105)
Sample rand]gm
. -rotation R
Topological Pad ¥ each batcn Feature extractor
] . :
l Cin : :
Each channel is multiplied by ' TaylorBlock(1,16,32) | MaxPool2d(2,2) | *
: pre-computed tensors over . :
Taylorize 3x3 neighborhood to obtain , / (32,52,52) '
l f(xo), df(xo)/dx, df(xo)/dy, ... : .
CinxT SO T =1 + Ncoordinates ! l
- dt . TaylorBlock(32,32,32) | MaxPool2d(2,2) | .
Rotation Effective ' .
R g rotation : / (32,26,26) :
y CinxT t» TaylorBlock(32,64,64) | MaxPool2d(2,2) |
Batch-norm layers for each 1 ,
weighted sum helps . (64,13,13) '
BatchNorm2d normalizing scales from , / '
CoxT dimensionality of derivatives. . For the Taylor blocks after the max pooling
l inX +-» TaylorBlock(64,128,128) we use the coordinates passed through
' AvgPool2d to derive the weights.
Convad : .
1x1 ieielilially” ol il !
COUt (128,13,13) g
Classifier
v T TTTTEEEEEE Y
—1»| Linear(128,32) | !
| Take average ' '
TaylorBlock(Cin,Cmid,Cout) over grid . Y .
Rotation § Cin . RelLU "
R 1 1
Cmid Some of these steps 1 ! v !
» TaylorConv2d > RelLU have not been optimized ' 1
and could be improved : Linear(32,3) .
»| TaylorConv2d »| RelLU v Output
COUt
Cout




Dataset

SK 40% coverage in WCSim
/mygen/generator gps

Two wall-material sets: /gps/particle ###

/gps/pos/type Volume
{blacksheet, retro-reflector} Japs/pos/shape Cylinder
T contact me if interested

/gps/pos/centre 0 0 O

o /gps/pos/radius 17. m
50k events for {e-,u-,1t*} each Japs/pos/halfz 18, m

Uniform vertex inside ID /gps/ang/type iso
/gps/ene/type Pow

Isotropic direction (no FC cut yet) /gps/ene/min  0.001 GeV
/gps/ene/max 1. GeV

Flat energy from 1 MeV to 1 GeV /gps/ene/alpha 0.

Optimization target is classification of three PIDs (cross-entropy)
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Performance Study Effect of Taylorizing itself

Ordinary convolution on

. TaylorConv
Dataset topological map - y y
. ] . . . [2’3] 1.2 . Uuk
Super-K simulated in WCSim 2| il f‘ /\ & V? “ R .A#"\
e 50k events for {e-, u-, +} each .’(#,3 ! ,; s‘ LS _
.: ° [ ) L Traln loss 0.6 a w 0.8 [ ) o ‘té
* Uniform vertex distribution # oo :...}' -°.. o o ~- ° o ;:yngs;cm g f ;’g- R Lbab o) -2 ifjfn";iim 5
(|nS|de |nner deteCtOF) -l o ‘.... e e .. d ‘ .. ® Testaccurac Y 1loa 3 0.6 .’ @ ‘ L ‘.‘ (] .Te:ta.ccurac. 049
e Baiinn T e SV
* [sotropic direction ':“% IR a’q-"?,\. . RN U
(particles might leave the detector = no FC cut) ’
® Flat energy from 1 MeV tO 1 GeV v 00 05 10 15 20 Y 30 35 20 0.0 o 0.0 0.5 1.0 1.5 E 2.0 h 2.5 3.0 3.5 4.0 00
poc

Epoch

* Only using charge information for now

o No random rotations performed at this stage.
Optimization target:

classification of three particle types (PIDs)
(cross-entropy)

TaylorConv might show slightly better generalization, but at this stage no significant
difference compared to ordinary convolution (interesting). Should also compare with
more naive approaches that don’t use the topological map.

Implemented in PyTorch on GPU. The Taylorizing and Since particle ID depends on local features (blurriness) it would be interesting to see
random rotations introduce ~10x computing overhead. performance differences for full reconstruction of track parameters (vertex, energy, ...).
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Other aspects

1
J

o Since K, K;, K;; are geometric objects,
i rotating them effectively rotates the original event _
| — can randomly rotate during training to impose ¢-symmetry of tank |

 Dead PMTs could be removed by simply recomputing weights w
without much retraining, since training is in 3D-space, not in pixel-
space.

* PMT orientation could be passed as another “spatial” dimension.
(for mPMT etc.)
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PID training with just 1000 events

e e,u,ni+ classification in dataset with uniform, isotropic, flat energy £ € [1 MeV, 1 GeV]
e Training set: 1000 events, test set: 5000 events

1.6

1.0

[ J
® o
i 1.4 L * 0.8
Without random | . ¢ .« e,
. . ' o0 _.0° 0,0 ' b0y >
* ° A ] e e e Train loss )OU
rotations, quickly .. AL e g
=2 ° .. Taln ct:::cy 8
StArS “oo| sequs @ o o TN E 0k
o
. . o®
overtraining? -
_’ 0.4
0 2 4 6 8 10 12 14 0.0
Epoch
Accurac y mean 0.61150265 std 0.05824658
8 1050.0
E 3000
Q0
E 2500
O
O . 602.0 502.0
E @ - 2000
2
()]
- 1500
o
711.0 690.0 | 1000
<<‘"’ <'2"Q B
True label
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1.2

-
[

=
=]

o
©

0.7 |

1.0

o Wasds D . . With random
R ...0 «® . :‘ 0.6 > I
1 lHimi e o™ g rotations,
7 ..,.'.“""-'.:.. e e L8 learning at least
’ for 10 epochs?
{_
2 2 GEpochB 10 12 17 Y

* Does surprisingly well for
having seen only 1000 events

e |f O(1000 events) can already
give interesting results,
maybe training feature
extraction with data is
possible?



Hybrid training?

Feature extraction (CNN)

Classification (NN)

Normally: train everything at once
using MC

Feature extraction could be trained
using data (auto-encoder)
utilizing ¢-rotation presented today.

Take this data-trained feature
extractor and train classifier using
MC (where we have truth)

Can prevent picking up subtle
implementation issues of the MC in
feature extraction?
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Loss for energy
reconstruction

e Using mean-squared error on F' := \/E Thus assuming

typical resolution of energy is proportional to 6(E) \/E , We
dF o(E)

get: o(F) = —o(F) = = const

dE \/E

* | have batch-norm layers throughout the network. Maybe this
causes issues with energy reconstruction which is mostly
related to the total charge, | pass the raw total charge as an
additional input to the fully-connected layer.

* Might need to look at using Huber loss. In this case | think |
need to normalize the scale for the linear-quadratic transition,

maybe can assume typical error scale of 2% around 500 MeV
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Combining loss functions

* For CNN-based reconstruction, was stuck at how to combine loss functions (e.g. PID
classification and momentum reconstruction).

e Depending on relative weights only one or the other gets optimized, hard to get both
optimized. For example | get for cross entropy values like 0.5, whereas mean-squared
error loss of energy gives me values like 1000 (obviously this depends on the units!)

* Found simple method [1] by learning this weight (1/v), regularized by logarithm.
1
L=Y) —Li+logV,
; l
the idea is that by minimizing V;, they become equal in magnitude to the individual
losses L,

o (L) 1
O:a—Vi:_V_}«L")_V") =  V,=(L)

such that each individual loss is normalized by it's average magnitude:
L= + log ( L;
2 iy e

1. A. Kendall et al., “Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics” (2018)
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¢ Erec Close tO Etrue, and |t
seems to take PID into
account.

* For electrons resolution is
worse than total charge?

* For pions network does
better job than just
looking at total charge?

* Probably better to choose
different loss-scaling
factor based on PID.

 For whatever reason the
reconstructed energy
never goes below
200 MeV. Maybe easier to

reconstruct kinetic energy.

pions have large spread in total
charge (absorption? decay?)
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Erec only with variance function
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e Overall resolution is worse, but that might be
because | changed from reconstructing \/l_f
to log E (expecting the network would learn

this by itself). Also should train longer to get
rid of kink.
e bias is still present?

e underprediction when moving toward wall —
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class WeightedLoss(torch.nn.Module):
# losses should be a list of 2-tuples (Npred,Loss)
# where Npred is the number of prediction params to use for this loss,
# and Loss is the loss function to evaluate.
# The loss functions are applied to the input value in the given order.
#
# the initScale can be a list of typical scales for the losses, which is used to initialize logVar=log(initSca.
#
# from A. Kendall et al., “Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semant:
# the idea is to add weight parameters to the loss function as
# totalLoss = sum i [L i/V_i + log V_i]
# such that
# 0 = d(totalLoss)/dV_1i
# =-1/V.i*2 [L i -V i]
# so by optimizing V_i, it becomes equal to the typical scale of L 1
def init (self,losses,initScale=None):
super (WeightedLoss, self)._ init__ ()
self.predPartitions = []
self.losses = []
predCumsum = 0
for Npred,loss in losses:
self.predPartitions.append((predCumsum,Npred)) # start and length
predCumsum = predCumsum + Npred
self.losses.append(loss)
Nlosses = len(losses)
if initScale is None:
initScale = np.ones(Nlosses)
self.logVar = torch.nn.Parameter(torch.log(torch.tensor(initScale, dtype=torch.float)))
self.logVar.requires_grad = True
def forward(self, pred, true):

# pred is a 1d tensor with length sum(Npred)
# true is a normal python list of the true values to pass to each loss function (probably each a tensor)
oneOverVar = torch.exp(-self.logVar)
totalLoss = self.logVar.sum()
for i,loss in enumerate(self.losses):
thisPred = pred.narrow(l,self.predPartitions[i][0],self.predPartitions[i][1])
thisTrue = true[i]
totalLoss = totalLoss + oneOverVar[i]*loss(thisPred,thisTrue)

return totalloss

# the default implementation of cpu() and cuda() only passes this along to nn.Module instances
# since self.logSigma is a tensor, we need to take care of it ourselves

def

def

cpu(self):

super (WeightedLoss, self).cpu()
self.logVar.cpu()

return self

cuda(self):

super (WeightedLoss, self).cuda()
self.logVar.cuda()

return self
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import math

class BLOB:
pass
blob=BLOB()
Nlabel = 3
Nreco = 1
blob.net = TaylorCNN(Nlabel+Nreco, taylor0).cuda() # construct CNN for 3 labels + 1 energy, use GPU
blob.criterion = WeightedLoss(|
(Nlabel, torch.nn.CrossEntropylLoss()), # use softmax loss to define an error

(Nreco, torch.nn.MSELoss())
1, [0.5,200.]).cuda()
blob.optimizer = torch.optim.Adam(list(blob.net.parameters()) + list(blpbﬁcriterion.parameters())) # use Adam optii

 Might also be interesting to use a separate optimizer for
the loss weights, since we don't want these weights to
change as rapidly as the network weights
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