Belle II実験 シリコンストリップ崩壊点検出器 を用いた ビームバックグラウンドの研究

東京大学後田研究室 D1

谷川 輝

第26回 ICEPPシンポジウム, 2020/2/17

1

Belle II 実験

e+ *e*- 衝突

• $\sqrt{s} = 10.58 GeV : B\overline{B}$ threshold

世界最高の瞬間ルミノシティ(KEKB)の40倍を目指す

⇒ クリーンなB,D, T 事象を大量に蓄積
 • 標準模型の精密測定による新物理の間接探索

ルミノシティの増強

- 。ビーム電流の増強
- 。ナノビーム衝突方式 … 極薄ビーム・大交差角

ビームバックグラウンド (以下BG)

軌道を外れたビーム粒子 → 電磁シャワー・中性子 → 検出器の放射線損傷・偽ヒットなど

ビームバックグラウンド (以下BG)

軌道を外れたビーム粒子 → 電磁シャワー・中性子 → 検出器の放射線損傷・偽ヒットなど

ビーム強度・ルミノシティの増強 ⇒ BG増加、検出器の運用を妨げる BGの理解・制御が重要

SVD (Silicon Vertex Detector)

SVD (Silicon Vertex Detector)

- 4 層の**両面シリコンストリップ検出器**
- 。荷電粒子の飛跡再構成・親粒子の崩壊点を決定

readout Al

SVDへのBGの影響

影響	指標	許容量	見積もり(MC)
放射線指傷	TID	10 Mrad	1 Mrad
	NIEL	10 ¹³ n _{eq} /cm ²	2x10 ¹² n _{eq} /cm ²
偽ヒット	occupancy*	2-3 %	~1 %

*occupancy: 1センサー当たり、鳴ったストリップの割合

※以降、SVD最内層のBG量について言及する

シミュレーションによる見積もりはSVDの許容範囲内

 ・設計ルミノシティでの10年間 (10⁸sec)の運転を仮定

だが、MCの妥当性を確認する必要がある。

① BGの測定・切り分け

SVDへのBG量をOccupancyとして測定(昨年12月)

		total BG		
e ⁺ sing	le-beam	e ⁻ singl	e-beam	
<u>e+ Touschek</u>	<u>e⁺ Beam-gas</u>	<u>e⁻ Touschek</u>	<u>e⁻ Beam-gas</u>	<u>Collision</u>
γ				

。<u>5つのBG成分</u>に分解 ↓

② それぞれMC予想値と比較

• MCと実際のズレを評価

③ 設計ルミノシティでのBG量の予想 ⇒ SVDの許容量に収まるか?

MCと実際のズレを考慮

①-1 Single-beam BGの測定

モデル: 3つの測定量でSVD Occupancyを表す

方法:

- 一方のビームのみを蓄積、occupancyを擬似ランダムトリガーで測定
- 異なるバンチ数 n_bで繰り返す(393, 793, 1565バンチ)

 \rightarrow バンチ数 n_b への依存性から、Touschek, Beam-gas成分を分離

フィット結果

・Touschek, Beam-gasでよく説明できる

・フィット結果から任意の条件 (*I*, *σ*_y, *n*_b)でのBG量を推定可能

①-2 Collision BGの測定

Collision $BG(\mathcal{L}) = \text{total } BG(测定) - \text{Single-beam } BGs(推定) \propto \mathcal{L}$

single-beam BGを差し引いた残りを、**ルミノシティLの関数として**測定

①-2 Collision BGの測定結果

Collision BG(L) = total BG (測定) - Single-beam BGs(推定)

 $\propto \mathcal{L}$

まとめ:BG成分表

以上の測定結果から、2019年12月の物理ラン中のBG構成を推定

陽電子ビーム由来のBGが支配的

。特にBeam-gas

現時点では全く問題にならない • 許容量: 2-3 %

BG成分	測定値
e ⁺ Beam-gas	0.082 %
e ⁺ Touschek	0.053 %
e [−] Beam-gas	0.009 %
e ⁻ Touschek	0.002 %
Collision	0.015 %

MCとの比較

MCの結果と比較

• 測定時のビーム光学系、コリメータ設定を再現

測定されたBGは**MCより多い(特にe⁻ ビーム**)

- MCの予想値が非常に小さい
- 考えられる原因:
 - リング内の真空度の偏りを考慮していない

理想的なコリメータを仮定(tip scatteringなし)

BG成分	測定値	MC予想值	測定/MC
e ⁺ Beam-gas	0.082 %	0.009 %	8.9
e ⁺ Touschek	0.053 %	0.044 %	1.2
e [−] Beam-gas	0.009 %	0.0003 %	25
e ⁻ Touschek	0.002 %	0.00001 %	160
Collision	0.015 %	0.01 %	1.5

③設計ルミノシティでのBG量予想

設計ルミノシティを仮定した**MCを補正** 測定値とMCのずれでスケール

 $\sum_{i} MC_{\text{design}}^{i} \times \frac{\mathbb{N}\mathbb{E}_{2019}^{i}}{MC_{2019}^{i}}$ i =各BG成分 MC_{2019}^{i} :測定時の条件を再現したMC $MC_{design}^{\overline{i}}$:設計ルミノシティを仮定したMC e⁺ Beam-gas x 8.9 4 SVD occupancy [%] e⁺ Touschek × 1.2 e⁻ Beam-gas x 25 許容量 e⁻ Touschek x 160 Collision x 1.5 0 補正前 補正後

補正後のBG量はSVDの許容量を超過
 ヒット時刻を用いたBG除去
 → 許容量の引き上げの見込み

課題:

BGの低減 コリメータ・シールド追加
 真空の改善

・予想の信頼性向上 MCとのズレの追究 Collision BGの理解

まとめ

Belle II実験ではビームバックグラウンドの理解・制御が重要

SVDへのBG量を実測し、要因ごとに切り分けた

- 初めてCollision BGを観測
- ●実際のBGはMCより多い(特に電子ビーム)
- ・
 → 設計ルミノシティではSVDのBG許容量を超えるおそれがある
 BGを低減する必要

今後の課題

- Collision BGのより良い理解
- MCを実際に近づけ、予想の信頼性を高める

backup

Structure of Belle II SVD

Each of 4 layers is a cylindrical array of **Ladders** mounted on end rings supported by carbon fiber structure.

Electric signals from sensors are processed by front-end ASICs on the ladder, guided by flex circuits and read out at the ladder ends.

Evaporative CO2 cooling system with thin SUS304 pipes

• Average material budget 0.7% X₀ per layer

SVD Sensor

*readout strips – one floating strip on both sides

SVD standa	lone trackin	g		
bkg scale	efficiency	fake rate	hit efficiency	occupancy L3 U/V
bkg x 1	0.961	0.054	0.957	0.013/0.012
bkg x 2	0.946	0.098	0.948	0.023/0.021
bkg x 3	0.935	0.136	0.937	0.032/0.030
bkg x 5	0.907	0.227	0.920	0.052/0.047
bkg x 10	0.819	0.488	0.884	0.102/0.090
	·	·		·
Full tracking	g chain			
Full tracking bkg scale	g chain efficiency	fake rate	hit efficiency	occupancy L3 U/V
Full tracking bkg scale bkg × 1	g chain efficiency 0.955	fake rate 0.053	hit efficiency 0.818	occupancy L3 U/V 0.013/0.012
Full tracking bkg scale bkg × 1 bkg × 2	g chain efficiency 0.955 0.939	fake rate 0.053 0.086	hit efficiency 0.818 0.744	occupancy L3 U/V 0.013/0.012 0.023/0.021
Full tracking bkg scale bkg x 1 bkg x 2 bkg x 3	chain efficiency 0.955 0.939 0.919	fake rate 0.053 0.086 0.119	hit efficiency 0.818 0.744 0.635	occupancy L3 U/V 0.013/0.012 0.023/0.021 0.032/0.030
Full tracking bkg scale bkg × 1 bkg × 2 bkg × 3 bkg × 5	chain efficiency 0.955 0.939 0.919 0.856	fake rate 0.053 0.086 0.119 0.189	hit efficiency 0.818 0.744 0.635 0.422	occupancy L3 U/V 0.013/0.012 0.023/0.021 0.032/0.030 0.052/0.047

- Note: hit efficiency only on matched TC \Rightarrow biased!
- ave. # tracks in $B\overline{B}$ event = 11 \Rightarrow prob. fully reconstruct = ϵ^{11} :

• $\epsilon = 0.955 \Rightarrow \epsilon^{11} = 0.603$ • $\epsilon = 0.939 \Rightarrow \epsilon^{11} = 0.500$

Thomas Lück for the Bellell tracking group, at the 31st B2GN

Validation method

- generate 1000 MC events of $\Upsilon(4S) \rightarrow B\overline{B}$
- use MC-true tracks for normalization:
 - use true information to connect detector hits into a track candidate (TC) ⇒ MC-track candidate
 - a reconstructed TC is matched to a MC-TC if at least 60% of the contained hits are also contained in the MC-TC

T. Lueck

- finding efficiency: # reconstructed TC matched to MC-TC/ # MC- TC
- fake rate: # unmatched TC / # total TC

occupancy 2-3%

-> BBbar事象のうち、50%を完全再構成

(ロ) (目) (目) (目) (日) (日) (の)

SuperKEKB collimation system

D03H1

DO2H1

D02V1

LER \rightarrow 10 collimators:

7 horizontal:

3 vertical:

HER \rightarrow 20 collimators:

11 horizontal:

9 vertical:

Two-sides collimator SuperKEKB type

One-side collimator KEKB type

data vs MC, Spatial distribution

Touschek / Beam-gas decomposition and data/MC comparison are done per

- Layer (r dependence)
- Ladder (phi dependence)
- Z position (z dependence)

Summary:

the shape of phi, z distributions reasonably agree low LER BGs in Layer 3 (especially in BWD) … missing hot spot in MC?

LER data vs MC

HIKARU TANIGAWA

HER data vs MC

HIKARU TANIGAWA

2020/2/17

26TH ICEPP SYMPOSIUM - 谷川輝

2020/2/17

HER highE cluster

