MEG 152 5% D B [A] H? tg L 7-
HBIEYE = A teHzzRPCOFF
‘Eju’lj(é: T&\‘

Atsushi Oya (University of Tokyo)

Core-to-Core Program = g




MEG Il experiment for u—>ey search

ILiquid Xenon Gamma-ray Detector

® MEG Il: u=>ey branching ratio sensitivity

goal iS 6)(10_14 ’ aChieved by I\gﬂt?pBe?éionducting
® High statistics using world’s most intense e
DC muon beam @ PSI (108 u /s)
® Signal identification utilizing the kinematics y
v Muon stopped on target -4
v'52.8 MeV energy for both e and y | Drift Chiamber | s
v 180° relative angle g I Positron
v ' same timing IPositron Timing Counteil ,
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ldentification of BG- y

® 2 sources for BG-y

v Radiative Muon Decay (RMD): u=>ev v y RMD
v’ Positron’s annihilation in flight (AIF)

>As RMD accompanies low energy
positron, BG-y from RMD can be
identified by detecting positron

MEG II RMD AlF
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Detector for RMD-y (1/2)

A Positron energy B

® Detector to tag RMD-vy,
but practically detect RMD positron

v 1-5MeV positron is accompanied by RMD
(for E, > 48 MeV)

® RMD positron
v" Timing coincidence b/w positron and y

v lower positron energy compared to
u—>ev v decay (Michel decay)

- RMD- y can be identified
from these measurements
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Detector for RMD-y (2/2)

Planning to install to upstream & downstream of the target

- downstream =>15% sensitivity improvement \ /wlt o
- upstream > 10% sensitivity improvement COBRA magner

12224 i <

RDC 7 (RMD)*, N RDC

put beam k
Downstream | R ]
\ € Spectrometer

v' Measure positron energy & timing
v' Demonstrated the performance with u beam test

flight around the beam axis
(magnetic field is applied)

upstream
v under development
v’ 1 beam (21 MeV/c) must pass through the detector

v |dentify RMD gamma by only measuring the timing difference b/w low
energy positron & gamma



Requirements to the upstream detector

1. Material budget: < 0.1% X, (beam must pass through the detector)
2. 90% efficiency for 1-6bMeV positron

3. 1 ns Timing resolution
(RMD identification with the timing difference b/w positron & y)

4. Rate capability and radiation hardness
(108 u /s with 21 MeV/c , >60 weeks run)

5. Detector size: 20 cm in diameter (45% acceptance-:-total 90% w/ DS)

> ?andidate: low-material RPC detector using Diamond Like Carbon
DLC)



® Detector for background y
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RPC based on DLC technology

RPC performance in general

v’ time resolution < ns

v’ material: 1% X, =2 must be improved

_ v' Efficiency ~90% - still requires study
v Gas: R134a (Freon) based v’ rate ~kHz/cm? = must be improved

® RPC: Gaseous detector with high
resistive electrodes placed face to face

v’ Gap thickness: 200 um—2 mm

® Diamond Like Carbon is used for resistive electrodes

v' DLC: high resistive material w/ mixed structure of
sp2bond and sp3bond resistive plate

v' Advantages of DLC made of DLC sputtered
: Kapton film
1. low material > Sputter DLC on 50 u m Kapton

Y
2. Adjustable resistivity r-r
- Resistivity must be optimized for high rate environment )éwr/v\f*

v' Firstly developed by a group of Kobe Univ
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RPC based on DLC technology

+HV & -HV
- common value
spacers (200-500 g m) \
® Readout: Al —~3 -HV
DLC sputtered on LHY
- aluminized Kapton will Kapton(~100 nm) =

-HV
be used on the top & bottom (o ) etk — tHY

-H

Al readout (~100 nm) +HV
“HV
+HV

® \\Vith multilayer design, better efficiency
can be achieved

v' From requirement on material budget,
4 layer at maximum

v n-layer efficiency: e, =1-(1—¢)"

Material budget

® Kaptonb0um > 0.018 % X,
® Al100 nm x 2#%=> 0.0023 % X,

2> < 0.1 % X, is satisfied
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Prototype detector for performance study

gas :R134a/SFg = 93/7
® Size: 3cmx 3cm

= seen from top B9
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IT attenuator

Aluminium 38 dB amplifier

3cm (100nm thick)
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Measurement

2 mm
M/ collimation

® \easurement setup
v’ Collimated beta-ray RPC 38 d
v’ Reference counter is used for fol‘;etfgg?q
rigger .
trige plastic trigger (700 MHz)
scintillator

® Signal is readout by 700 MHz
waveform digitizer

[mV]

® \|leasurement purpose
v’ Check whether the 90% efficiency &
< 1 ns timing resolution can be achieved

v Check dependence on gap thickness
> RPC performance is known to depend on the gap thickness i



Performance for 384 um gap 4-layer RPC

Efficiency vs RPC operating voltage

—~ 100
o=

® Efficiency "
v’ Determined from the fraction of RPC hits w " bredicted behavior
in the triggered events wf- from 1-layer result
v RPC threshold = 10 mV ‘3‘2 (next slide)
v 90% efticiency can be achieved S 4-layer measured
03706 2756 2a0b 2ssD 2900 2950 3000 305%0“%1;0&]‘
® [iming resolution - oreetestontne—
v’ Determined from the timing difference b/w — E?&”i?;fffjrfﬁfj fo/l\jvnter
RPC and reference counter -
v RPC timing: 50% constant fraction o

v’ 250 ps timing resolution




Gap thickness optimization (1/2)

® \While 384 um gap RPC has already shown good performance,
further optimization is also considered 384 1 m discussed

: : in the previous slide
—->Dependence on gap thickness is measured - .
efficiency vs electric field /

Gap thickenss °
—e— 520 micron L
60 —&- 435 micron ¢

° A

efficiency [%]

® Single layer efficiency is measured s
changing the gap thickness 50| 70 it
v 40% single layer efficiency is 4

required to achieve 90% w/ 4-layer
\/ anl—(l—él)n

|
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o
| |
[ ]
A o)
|
o
[ ]

Maximum voltage
. N (to avoid discharge)

® For each thickness, measured Fewm b .., (toavoiddisc

changing the operating voltage T TR TR TR TR i feld i
sufficient efficiency for

>400 u m thickness

30

20
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Gap thickness optimization (2/2)

® \While 384 um gap RPC has already shown good performance,
further optimization is also considered

->Dependence on gap thickness is measured

timing resolution vs electric field

w
N
o

® Timing resolution is measured Aaln T
changing the gap thickness £l s mren
v single layer resolution is shown 280/~

v Normally, 4-layer resolution is better  af

240|—

At least, gap thickness can be | i

7 72 74 76 78 8 82 84 86

b/w 370 um and 520 um s

» Timing resolution is good

enough at least for <520 um .
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Summary and prospect

® Following requirements have already been satisfied
v’ Material budget: <0.1% X,
v Timing resolution: < 1ns = 300 ps achieved
v’ Detection efficiency: >90% = shown to be reachable

® [he remaining works are
v Construction of 20 cm detector

v’ Rate capability measurement
v’ Pileup (next talk for detail)

® Possibility for further detector design optimization
v  Widening gap thickness to 500 um is a possible option



BackUp



u=>eysearch

® Motivation for u >e y decay
v Mixing in the charged lepton sector (cLFV),

u=>ey enhanced
by slepton mixing

2
Amaé
i e

which is forbidden In the SM (even w/ v oscillation)
v Related bSM models: SUSY-GUT, SUSY-seesaw
v Simple kinematics of two body decay

® Recent cLFV searches with other modes
v u=> eee @Mu3e
v uN->eN @COMET & Fermilab

vV T uy, 1ouu u@Bellell (&LHCbH?)
v' Z,H or meson decay (e.g. Z> 1 u)

u*/
LN

Both 52.8MeV

u=>evy is complementary with these other cLFV search;
2> Strengthen the model discrimination power for bSM test
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Single layer efficiency — detail -

® Pulse height spectra for different conditions
v' Dependence on applied voltage (for 384 um)
v Dependence on gap thickness (maximum voltage before spark)

384 micron height
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timing resolution vs # of layer

384 micron
. g B —o— 1 layer
® 250 ps resolution 5 300 - 2layer
g B —v—4la§er
o 280—
. . . . £ i
® dominant contribution is from = [ .
260—v ° ° ° [ ]
S/N } ;
240:— . _
220/ '
D I T T T T

Voltage [V]



Design parameters to be studied

® Design optimization is required
v 40% single layer efficiency and 1 ns timing resolution is required
- Gap thickness to be optimized

> For wider gap, better efficiency but worse timing resolution

v' Resistivity of DLC electrode ——  Will not be reported today

v' Optimization of readout
- Signal waveform and pileup effect to be studied next talk
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