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CERN QTI and its « Roadmap in 2021, after a process of

iterative consultations

Roadmap - Publicly available in Zenodo, it has
been accessed more than 4,300 times

CERN established the QTI in 2020

—— T1 - Scientific and
CERN meets quantum technology Technical Development

The CERN Quantum Technology Initiative will explore the potential of devices

harnessing perplexing quantum phenomena such as entanglement to enrich and an d Ca pa Clty B u | I d | N g

expand its challenging research programme

T2 - Co-development

ICATIONS | NEWS

CERN unveils roadmap for quantum technology

4 November 2021
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Credit: CERN

30 SEPTEMBER, 2020 | By Matthew Chalmers

T4 - Integration with
national and
international initiatives
and programmes

T3 - Community Building

https://doi.org/10.5281/zenodo0.5553774 ,_
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» Assess the areas of

potential quantum
advantage in HEP (QML,
classification, anomaly
detection, tracking)

Develop common
libraries of algorithms,
methods, tools;
benchmark as technology
evolves

Collaborate to the
development of shared,
hybrid classic-quantum
infrastructures

Computing & Algorithms Simulation & Theory
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Scientific Objectives

Identify and develop
techniques for quantum
simulation in collider
physics, QCD, cosmology
within and beyond the SM

Co-develop quantum
computing and sensing
approaches by providing
theoretical foundations
to the identifications of
the areas of interest

09.03.22

Develop and promote
expertise in quantum
sensing in low- and high-
energy physics
applications

Develop quantum sensing
approaches with
emphasis on low-energy
particle physics
measurements

Assess novel
technologies and
materials for HEP
applications

Sensing, Metrology &

Materials

+ Co-develop CERN

technologies relevant to
quantum infrastructures
(time synch, frequency
distribution, lasers)

Contribute to the
deployment and
validation of quantum
infrastructures

Assess requirements and
impact of quantum
communication on
computing applications
(security, privacy)

Communications &
Networks
3
\ 4



Scientific Objectives
e

* Assess the areas of
potential quantum
advantage in HEP
applications (QML,
classification, anomaly
detection, tracking)

Assess the areas of potential quantum advantage in
HEP applications (QML, classification, anomaly detection,
tracking)

* Develop common
libraries of algorithms,
methods, tools;
benchmark as technology
evolves

» Collaborate to the
development of shared,
hybrid classic-quantum
infrastructures

Computing & Algorithms
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QC Algorithms

* Quantum Machine Learning algorithms are a primary candidate for
Investigation

* Increasing use of such techniques in many computing and data analysis flows

« Can be built as hybrid models where quantum computers act as accelerators
where classic computing is not computationally efficient

» Classification, pattern recognition, anomaly detection
 Clustering, optimisation

» Efficient data handling is a challenge

- Data encoding or reduction is required for practical use of NISQ devices
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PENNYLANE

QML in practice... X

a. Training the embedding b. Classification

How do we represent classical data in quantum states?

How do we introduce non-linearities in quantum circuits?
SG D_based Optl m isation? M. Schuld et al., arXiv: 2001.03622v2

Back-propagation and automatic differentiation

2 ]"—

_)
X
z=f(x,y)

10 )

3 lxy—""=0

as oo
. . Mitarai et al. (2018)
Images from pennylane.ai tutorial

Schuld et al. (2018)
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https://arxiv.org/abs/1803.00745
https://arxiv.org/abs/1811.11184

A. Abbas et al., arxiv:2011.00027

Quantum Advantage for QMVIL? i el

casy quantum model

quantum neural network

ibmq montreal backend

Advantage definition
Runtime speedup
Sample complexity
Representational power

Practical implementation vs asymptotic complexity

loss value

Data embedding T A o
NISQ VS ideal quantum deViCGS number of iterations
Realistic applications

Performance metrics

Classical vs Quantum Data
A change of paradigm in the study of QML algorithms could reflect in interesting

insights in classical models as well
see recent work by M. Schuld and N. Killoran (arxiv:2203.01340)
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Example QML projects '?:l' openlab

Quantum Classifiers for Higgs boson identification
arXiv:2104.07692

Quantum Tree Tensor Networks for particle trajectory reconstruction
arXiv:2007.06868, arXiv:2012.01379, arXiv:2109.12636

Hybrid quantum-classical tracking hits embedding
EPJ Web of Conferences (Vol. 251, p. 03065)

Quantum Generative Adversarial Networks for detector simulation
arXiv:2103.15470, arXiv:2101.11132, arXiv:2203.01007

Quantum Born Machines for event generation
ACAT2021

Quantum Boltzmann Machines for beam optimization in accelerators
BQIT 2021
Quantum algorithms for anomaly detection
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Generative Modelling

The task of generalising from a finite set of samples drawn from a data set.
* Learn the underlying probability distribution

» Generate new samples from the learned distribution
Classical Generative Models can simulate detector output and replace Monte Carlo

Explore quantum models:
« Compressed data representation in quantum states
* Help understand convergence and generalization?

» Support space of the learned distribution? Bl s
Examples include quantum implementations of
» Generative Adversarial Networks (GAN) Classical GAN
 Born Machines . a
* Boltzman Machines Input Fake Data

Auto-Encoders | | Predicted
Generator ' ‘ Discriminator L:li ell(:e

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Fine Tune Training
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Quantum generation of energy profiles SY. Chang
IBM qGAN can load probability distributions in quantum states

[ Simulation

[}
E _ —o— Target
Simplify simulation problem £ "1 3 qubits
1D & 2D energy profiles from detector 3°
(O}
. . . . C 11
Train a hybrid classical-quantum GAN to generate average image u !
= )5t
E )
&J ¢ n 1 9 24 A R A 7
Calorimeter Depth
Quantum Generator: 3 R, layers
N = E——— - _ 6 qubits
—[ R0} | Ry (69) [ ; Ry (49) P Real image _qGANimage
|Lm) T R-y(Qﬁ(l)) :C/ Ry(@% :— :\J R-y(‘f’llc) :— |g(¢)> 02 6
—{ Ry ——{ Ry () — ——b—{ R, (6D | |
B o e ST ' L e ] g . °§ 4 0.15
layer 1 layer k g i 23 o
https://doi.org/10.1038/s41534-019-0223-2 = = 5 ’
Need a way to sample single images : 2 ‘ o 7 K 2 ‘ o
Calorimeter Depth Calorimeter Depth
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https://doi.org/10.1038/s41534-019-0223-2

CGC EPFL 4550

Cambridge
Quantum
Extending the qGAN model
%\ [ ] Sirlnulat ioln y |
.5 0.4 |—e—Target Mean| Image
. v
Two-steps quantum generator to sample images £ 0.3
S
* PQC1 - Reproduce distribution over images £0.2
>
* PQC2 - Reproduce amplitudes over pixels on one image g 0.1
=l 5
0 1 2 3
Calorimeter Depth
. = Real Dat
j0y@na—m 2 M a2 2 " [l Discard = 0.6 - ,
T Generated samples
depth dgo n, /7t Classical Predicted
— 7 Discriminator Labels © 0.4
| @) 5
. Fake Data A . B
: by sampling | ] E=|
: : | g" ——Image( ’
——————————— e < 0.2 —o—Imagel i
Classical Optimization ’ Image2
) ——Image3
0¢ : :
0 1 2 3
Calorimeter Depth
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Chang S.Y. et al., Running the Dual-PQC GAN on Noisy Simulators and Real
Quantum Hardware, QTML2021, ACAT21

& 1Q)
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Benchmarks on hardware =
.04 Target e
:‘_‘éos gO.S
Train models using noisy simulator and test the Soz =
inference of the model on the superconducting (IBMQ) £ -
and trapped-ion (IONQ) quantum hardware ool : : : : : : :
* For IBMQ machines, choose the qubits with the lowest colonmeterdenth celonmeterdepth
CNOT gate error (@) (b)
—e— Simulation — g
d D /D 60.4 Target G0.5 et ;1
: Readout error kKL/DKL ind g S0 — "
Demiee CX error (x1072) 50_3 E :
. . 0.028 0.14 £0.14 €02 s
ibmq_jakarta | a5 02 | 649 +0.54 : =
b 1 0.01 0.26 + 0.11 o Hoa
Sl 5.582 - 103 6.92 & 0.71 e B Sy B ool 1 ; ;
' 002 6 4 03 :l: 1 08 Calorimeter depth Calorimeter depth
ibmq_casablanca | 4 ;o' 102 6.58 + 0.81 (c) (d)
ON NULL 1.24+0.74
Q 1.59.10~2 0.9 L BB Figure 4: Mean (a,c) and individual images (b,d) obtained

by inference test on ibmq_jakarta (a,b) and IONQ (c,d).




uantum integration of elementary particle processes

Use Quantum Amplitude Estimation to accelerate Monte Carlo Integration

Data encoding into quantum states affects the quality of the integration
Test different approaches including QGAN

Classical Quantum data
preparation

preprocessing

Distribution Distribution

reparation . X
(sr;mf)ling and E> gGAN training _ loading
. . through qGAN
discretisation) gna
Distribution
e (14+Xx7°2)*3/8
0.175 A [ simulation seed 1 /
[ simulation seed 2 vy =
0.150 4 [ simulation seed 3 7/
[ simulation seed 4
[ simulation seed 5
0.125 A -
X 0.100 A
[«
0.075 A
0.050 A
0.025 A

Core quantum Classical
algorithm

postprocessing

Application of
the domain
filter through
quantum gates

Integration
through QAE

Loading of 1 + x? distribution:

« 10k events
» 3 qubits

best entanglement is the circular

arXiv:2201.01547v1 [hep-ph] 5 Jan 2022

M. Grossi, arxiv:2201.01547

FR-PHENO-2022-01

Quantum integration
of elementary particle processes

Gabriele Agliardi*; Michele Grossi®| Mathieu Pellen*? Enrico Prati®®$

! Dipartimento di Fisica, Politecnico di Milano,
Piazza Leonardo da Vinei 32, 1-20133 Milano, Italy
2 IBM Italia S.p.A.,
Via Circonvallazione Idroscalo, 1-20090 Segrate (M), Italy

* CERN, 1 Esplanade des Particules, Geneva CH-1211, Switzerland

4 Albert-Ludwigs-Us it Freiburg, Physikalisches Institut,
Hermann-Herder-Strafie 3, D-79104 Freiburg, Germany

5 Istituto di Fotonica e N Consiglio Nazionale delle Ricerche,
Piazza Leonardo da Vinci 32, 1-20133 Milano, Italy
S National Inter-university Consortium for Tel ications (CNIT),
Viale G.P. Usherti, 181/A Pal.3, 1-43124 Parma, Italy

Abstract

We apply quantum integration to el 'y particle-physics In

we look at scattering processes such as ete™ — ¢g and e*e™ —» ¢¢'W. The corresponding
probability distributions can be first appropriately loaded on a quantum computer using
either quantum Generative Adversarial Networks or an exact method. The distributions
are then integrated using the method of Quantum Amplitude Estimation which shows a
quadratic speed-up with respect to classical techni In simulations of noiseless
computers, we obtain per-cent accurate results for one- and two-dimensional integration with
up to six qubits. This work paves the way towards taking advantage of quantum algorithms
for the integration of high-energy processes.

“E-mail: gabrielefrancesco.agliardifipolini.it
'E-mail: michele.grossi@cern.ch

*E-mail: mathieu. pellentphysik.uni-freiburg.de
9E-mail: enrico.prati®ifn.cnr.it




Kiss O. et al., ACAT21
Quantum Circuit Born Machine for event generation

Muon Force Carriers predicted by several theoretical models:

» Could be detected by muon fixed-target experiments (FASER) or muon
interactions in calorimeters (ATLAS).

Generate E, py, n of outgoing muon and MFC

. . A —~ ol - — 0@l  energy
Sample from variational wavefunction |y(8)) @ &
with pg(x) =|(x|(6))]” given by the Born rule A . B —(Local 17| pt
Generate discrete PDFs (continuous in the - —— - o
limit #qubits — )
. . N L AE
MaX|mum.Mean Discrepancy loss function l B e I I Rz
and gaussian kernel with ¢ € [0.1,1,10,100] . Ry
- &
MMD(PQ) = Ex~p|K(X,Y)] + Ex~olK(X,Y)] — 2Ex~p[K(X,Y)]
Y~P _Y~Q ¥4
RN QUANTUM 965’5‘2 I, Kajamovitz, E et al. "Searching for muonic forces )
Il | IQ) e : oy ) y




Conditional Born Machine

Encode E,; condition using 7Ry (B) 7Ry (B) €
parametrized rotations

Interpolation: train on 150 and H — Ry (E) — Local H | Ry (E) | Local |——*
200 GeV muons and predict 175

GeV signal H | Ry (E) H | Ry (E) >

Data re-uploading makes the quantum circuit more expressive as function of the data
Noise model according to IBM Q Casablanca

1600

1600{ — target 1600 { [ target [a_x] tar'get
noisy Born noisy Born 1400 noisy Born
14001 — Born machine 14005 (1 Born machine - [ Born machine
1200 1 1200 -
() 0] @ J
2 1000 - 2 1000 A § 1000
[J] [ st
S 800 150 GeV S 800 200 GeV s 8001 175 GeV
(9] [w] (U]
o) o © 600
- . =
400 - 400 - 400 - E—
200 A ’ﬁ='l 200 - 200 A e
1
0 : : : ; : : 0 . , ; . : :
10 20 30 40 50 60 70 10 20 30 40

E [GeV] E [GeV]




Scientific Objectives
e

* Assess the areas of
potential quantum
advantage in HEP
applications (QML,
classification, anomaly
detection, tracking)

* Develop common
libraries of algorithms,

methods, tools; » Develop common libraries of algorithms, methods,

SIS IIELL e e tools; benchmark as technology evolves

» Collaborate fo the « Collaborate to the development of shared, hybrid
development of shared,

hybrid classic-quantum classic-quantum infrastructures
infrastructures

Computing & Algorithms
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Hardware and Software Resources

* Focus on tools for software development and testing

« Access to resources: classical (simulators) and quantum hardware

 Cluster with different quantum computing simulators for
development up to 20-25 qubits

« ATOS QLM appliance for simulations up to 34 qubits

« Access to the IBM Q systems

- Evaluate different hardware solutions: digital (semiconductors,
ions, photons) and annealer

 Building shared experience on different computing simulators, real NISQ hardware, and hybrid
infrastructures where cloud computing, HPC resources and quantum computers interact is
key to capacity building for the future
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ABAQUS - Automated Benchmarking
of Algorithms for QUantum Systems

Benchmarking platform to benchmark for software frameworks

and hardware devices.
- Extensibility by-design

* Present results in a user-friendly way.

« A web application to interactively present results
Currently supports Qiskit State Vector (with and without GPU),

Cirg and PennyLane

Framework

Device

QUANTUM
TECHNOLOGY
INITIATIVE

Data

Misc

Time logging, Data I/0...

Benchmarking

CSYV files storing all the data

Interfaces to QC software frameworks

09.03.22

Gonzalez Castillo S. et al.,, EQTC2021

ABAQUS: Automated Benchmarking of
Algorithms for Quantum Systems

o000
Elias F. Combarro (University of Oviedo), Alberto Di Meglio (CERN), ABAOUS
Samuel Gonzalez-Castillo (Maynooth University), Sofia Vallecorsa (CERN)

The goal: to build a benchmarking platform that can provide consistent and reliable
benchmarks for both software frameworks and hardware devices.

How to achieve it:

*  Extensibility by-design:
«  Allow anyone to write new benchmark tests that can be run on any framework.
« Make it easy to consistently extend ABAQUS to new frameworks.

«  Present results in a user-friendly way.

COMPUTING BENCHMARKS
We have developed a Python package that fulfills our ambition of allowing anyone to run any
test on any device across any framework. With consistency and extensibility in mind.

Writing new tests Running tests Supporting new

Just extend a import abaqus.benchmarking.all frameworks
Be.n_chmark cla.ss abaqus.benchmarking.all.run_all()
providing a blueprint of
the circuit you want to Runs all the available tests on all the
test. It will work on any supported frameworks. Saves the data in
supported framework — simple CSV files.
present or future! ABAQUS can take care of all the details.

Write a subclass for a
Framework class that
tells ABAQUS how to
execute any circuit from
a blueprint.

Framework
Stores framework
} information (name,

Device Benchmark
Stores device information (RAM, Stores framework version
processor, name, version...). An object { and benchmark results.
corresponding to the current device can Implements methods for
be obtained calling this_device() and running tests on any
modified with set_device(OPTIONS). framework.

developer, etc.).
Implements an interface
method that can run any

ABAQUS test.

We currently support Qiskit Statevector (with and without GPU) [1] and PennyLane [2]. It will be
very easy to add support for any other framework with a Python interface.

PRESENTING RESULTS

We have also prepared a web application that, being
tightly integrated with the ABAQUS package, can
present interactive scores for devices and frameworks
using the datafiles generated by ABAQUS in the
benchmarking process. These scores are relative (0 =
worst possible performance, 100 = best
performance), and the user can choose which tests
and frameworks to use in their computation.

REFERENCES
1. The Qiskit development team. Qiskit: An Open-source Framework for Quantum Computing. 2019.
2. Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, M. Sohaib Alam, Shahnawaz QUANTUM
Ahmed, Juan Miguel Arrazola, Carsten Blank, Alain Delgado, Soran Jahangiri, Keri McKiernan, ) TECHNOLOGY
Johannes Jakob Meyer, Zeyue Niu, Antal Szava and Nathan Killoran. PennyLane: Automatic D INITIATIVE

i of hybrid quantt lassical { arXiv. Feb. 2020.




Research Collaborations (various stages of maturity)

Organizations and Projects GO g|e _2_?:_ i/ﬁntel” Industry
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STUDY ONIMPACTS OF QUANTUM NOISES ON QGAN TRAINING

S.Y. CHANG'? , F. REHM!?, S. KUHN*, S. VALLECORSA!, K. JANSEN®, L. FUNCKE®, T. HARTUNG*7, M. GROssI', K. BORRAS*?, D. KRUECKER® ,
'CERN, Openlab, *EPFL, * RWTH Aachen University * The Cyprus Institute, * Deutsches Elektronen-Synchrotron DESY, *MIT, "University of Bath

RWTHAACHEN
UNIVERSITY
>\ INNOVATION&

y‘) TECHNOLOGIE
®/ TRANSFER

®
DES'
e

INTRODUCTION QUANTUM GAN INSTABILITY OF QGAN TRAINING ERROR MITIGATION

B Artificial noises are often injected in machine
learning for a more robust, more stable and faster
converging model.

B Current and near future quantum devices still have
considerable levels of noise.

B Possibility to replace the artificial noise in classical
9 ML with the intrinsic noise in quantum ML (QML).

OBJECTIVES

B Investigate the impact of different errors in the
training of quantum Generative Adversarial Net-
works (@QGAN) [1] for a simplified High-Energy
Physics (HEP) use case.

B Provide a broad exploratory study to unfold the
hidden impact of noise in OML.

ACAT2021 (arxiv:2203.01007)
Collaboration with DESY, RWTH

AACHEN UNIVERSITY
(see K. Borras’ talk on wednesday)

B Hybrid model with a n-qubit quantum generator
and a classical discriminator [1]

.o S, Oeorbar

#v(8[0])

&Y(8[1])

RY(8[2])

Figure 3: Schematic Diagram of gGAN.

B Relative entropy (or Kullback-Leibler (KL) divergence)
Dic(pllg) = X, p(i) log B3

) as accuracy metrics.

\.
ERPARAMETER SCAN

perform a scan on different subsets of hyperpa-
eters: decay rate v, generator Ir,, and discrimi-
r learning rate Irgq.

the qGAN training using a noise model with
out error in form of bit flips occurring indepen-
ly for each qubit with a flip probability p.

getting state |y = normalized energy at pixel k.
B Input dataset = scalars following the real energy
distribution

Transverse
Normalized Energy

2 6
Calorimeter depth
(@) (b)
Figure 2: (a) Original calorimeter output generated by
Geant4. (b) Reduced energy distribution used for our qGAN
training.
&

REFERENCES

[1] Christa Zoufal, Aurélien Lucchi, and Stefan Woerner.
Quantum generative adversarial networks for learning
and loading random distributions. npj Quantum Infor-

Longitudinal

Best (p = 0.01)
Mean (p = 0.01)
=
E Best (p = 0.1)
© 0.50 Mean (p =0.1)
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2 0.25
20.23
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Epochs

(a) Progress in relative entropy

-l p=01
. =001

Hyperparameter
5
o

[, 1
=3

02 0.4 0.6 0.8
Importance for objective value
(b) Hyperparamter importance

Figure 5: Results of the scan on different hyperparameters
for the readout error p = 0.01 and 0.1

B Higher relative entropy for higher noise level, even
with the optimal hyperparameters.

B Impact of generator learning rate becomes higher

mation, 5(1):103, Nov 2019.

B Repeat the qGAN training with the giskit noise
model with readout error only using the same hy-
perparameters and investigate its statistical error.

. —— Mean for n,,, =20
=
£0.4 Mean for e, = 100
g
3
202
=
o
-4 N
0.0
0 200 400 600 800 1000
Epochs
(@p=0.01
~ —— Mean for ., = 20
a
% 0.4 Mean for n,., = 100
S
3
A
502
-4
0 200 400 600 800 1000
Epochs
(b)p=0.1

Figure 4: Progress in relative entropy averaged over n,., =
20 and 100 runs for p = 0.01 and 0.1.

Flip probability p Nrep = 20 Nyep = 100
0.01 0.026 + 0.028 | 0.028 = 0.040
0.05 0.029 £ 0.022 | 0.027 £ 0.020
0.1 0.153 £ 0.097 | 0.159 £ 0.077

Table 1: Relative entropy at the end of the training

B The model is stable on the “ensemble” of simula-
tions, but unstable for the individual runs.
— Fixed standard deviation despite increase in the
\3 number of simulations.

DISCUSSION

B The instability of the qGAN model cannot be re-
solved even with large number of simulations.

— Further study going on to find the origin of the
instability.

Small levels of quantum noise help to improve the
performance of the model, while error mitigation is
required for large noise.

Effect of error mitigation in the full noise model
and the real quantum hardware needs to be further
studied.

\__as the flip probability increases.

B We compare the training results with and without
error mitigation method implemented by qiskit.

=02
? —=— Without error mitigation
E With error mitigation
201
3 : P
-4 - —k"*“f""'- | 1 |
0.02 0.04 0.06 0.08 0.10
Flip probability, p
0.1
_»3-_ 0.0{-F—} i {, E } I ’
—0.1 1
0.02 0.04 0.06 0.08 0.10

Flip probability, p
Figure 6: Mean (above) and standard deviation (below)
of the final relative entropy, averaged over 20 simulations,
with and without error mitigation w.r.t. the readout error.

B Low readout error (p < 0.06) helps the qGAN train-
ing, while error mitigation plays an important role
for high readout error.

B Large standard deviation in the relative entropy
which cannot be overcome with error mitigation.

INCLUDING CNOT ERROR

B We run the training with a custom noise model con-
sisting of 2.5% readout noise per qubit and 1.5%
two qubit gate level noise (called CNOT error).

We found new optimized hyperparameters to re-
duce the number of epochs to only 300 while reach-
ing a good accuracy.

= Mean without error mitigation

éOA ~—— Mean with error mitigation
5
o
=02
=
=]
&

0.0

0 50 100 150 200 250 300
Epochs

Figure 7: Progression in relative entropy using a custom
noise model with and without error mitigation.

B For the chosen noise levels one cannot see any im-
\_ provement when including error mitigation.

ONGOING RESEARCH

B Train the qGAN on real quantum hardware.

B Apply other error mitigation methods and compare

L the resulting outcomes.




Synergies with other sciences

The ESA-CERN Joint Announcement at Phi-Week 2020

= Q  » THE EUROPEAN SPACE AGENCY

¢'Iab WE EXPLORE WE INVEST COMMUNITY AND %AIOIAT!UHS FLAGSHIP PROGRAMMES ABOUT OUR PEOPLE PUBLICATIONS NEWS & EVENTS

esa

Special announcement

Exploring the next frontiers of disruptive innovation

®-DEPARTMENT / ®-LAB / EXPLORE / THE ®-LAB EXPLORE OFFICE / Al ENHANCED QUANTUM COMPUTING FOR EARTH OBSERVATION

QC4EQ is a recent ®-lab initiative established in collaboration
with CERN. Quantum computing has the potential to improve
performance, decrease computational costs and solve
previously intractable problems in EO by exploiting quantum
phenomena such as superposition, entanglement and
tunnelling.

The initiative involves creating a quantum capability in ESA-ESRIN (Frascati) which will

Al-enhanced Quantum Computing for EO

by using Quantum Computing to support programmes such as Destination Earth and ERA UNCLASSIFIED - For Official Use

~- -
Copernicus. This collaboration will be extended to link the CERN Quantum Technology. I -y F 2N - % THE EUROPEAN SPACE AGENCY
Initiative, which was announced in June 2020 by the CERN Director General, Fabiola e - — S - s —_—

Gianotti. Through this partnership, ESA and CERN will create new synergies, building

on their common experience in big data, data mining and pattern recognition.
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Chang, Su Yeon et al.,

Quantum Convolutions QTNML2021@NeurlPS2021
Convolutional Filters!'l as Parameterized N-class classification by measuring the
Quantum Circuits (PQC) with single-qubit and probabl!lty distribution for logoN qubit and using
two-qubit operations. categorical cross entropy.
« Reduce risk of barren plateau B -
. . . — a| Data 1 ‘NN /7(
Alternative architecture: different Jpteiteheingl IR0 —

parameters in each convolutional filters

* Increased model complexity and flexibility
Confusion matrix of 4-class MNIST classification

- B=(61) H R-(03) | R=(5) 7 R.(67) H R.(00) |- 08
— Rz (62) H R=(64) l R.(06) H R.(6:) { R.(610) |- 0.6

1T, Hur, L. Kim, and D. K. Park. Quantum convolutional neural network for classical data classification, 2021.
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Summary

The QTI coordinates quantum research at CERN
Quantum Computing is a wide active area

Extensively investigating QC and QML applications to HEP
Initial set of prototypes for different applications
Move on to more robustness studies

Setting in place access to resources (classical and quantum)
to ease community R&D

Build synergies and joint projects beyond HEP
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CERN Quantum Technology Initiative

Accelerating Quantum Technology Research and Applications

-

Thanks!

Sofia.Vallecorsa@cern.ch

https://quantum.cern/



https://quantum.cern/
https://openlab.cern/quantum
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Model Convergence and Barren Plateau

J. McClean et al., arXiv:1803.11173

Classical gradients vanish exponentially with the number of w018 R T
layers (4. McClean et al., arxiv:1803.11173) 102 ] \\ o]
» Convergence still possible if gradients consistent between 107 ‘b\
batches. 2 28 . T 104
Quantum gradient decay exponentially in the number of £ 0] .
quitS — \ 10
. 5
« Random circuit initialization oy e il
« Loss function locality in shallow circuits (M. cerezo et al. arxiv:2001.00550) o Bl = < R T
» Ansatz choice: TTN, CNN (znhang et al., arXiv:2011.06258, A Pesah, et al., Physical
Review X 11.4 (2021): 041011. )
(o P C P F

» Noise induced barren plateau (wang, s et al., Nat Commun 12, 6961 (2021))

Nia

e
\

\ QCNN: A Pesah, et al., Physical
Review X 11.4 (2021): 041011

=}
w»

o
S

TTN for MNIST classification (8 qubits),
Zhang et al., arXiv:2011.06258

o
w

test error

o
N

|4

1 —— TT-QNN
= SC-QNN
= Random-QNN

o
=

°
=)

0 20 40 60 80 100
training iteration
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Noise studies for gGAN

« Gate + readout noise (IBM Belem)
seem to improve convergence
* Noiseless simulation converges at ~300
epochs

« Stable performance of the inference
process up to 2% error probability

QUANTUM
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Rel Entropy measured during training ***;

F. Rehm, Grid2021 conference
https://indico.jinr.ru/event/1086/contributions/13067/

Statistics for Multiple Trials

—— Best trial
0.7 — Mean
N STD
0.6
> NB Trials: 22
Sos Mean : 0.054
] STD : 0.051
T Best Entropy: 0.0295
o 0.4
=
® 0.3
&
0.2
0.1
0.00 50 100 150 200 250 300

Epoch

0200 Noise Study: Inference of a pre-trained Model

- Readout Noise
0.175 — Gate Level Noise
- Readout + Gate Level Noise

0.150

Relative Entropy
o o
=

o
o
<
wu

0.050
Number of Repetitions: 20

6 8 10
Inference Noise Level in %




QML implementations

Variational algorithms

Parametric ansatz
Can use gradient-free methods
or stochastic gradient-descent
Data Embedding can be learned

Input
data
10) — W
10) —
0 Usz) w(o)

(=)
S SRS~ T R o R S

|

T

(=]

¢Updates ( Loss

= (Out)
l data space
v

access via kcrnol

Kernel methods

Feature maps as quantum kernels

Use classical kernel-based training
Convex losses, global minimum
Compute pair-wise distances in Nyaig

KERNEL METHODS QUANTUM COMPUTING

quantum
Hilbert space

[¢(2)) Q \

—
-

feature space

AV N\ 1nput space X' J

J— access via
measurements

M. Schuld, QML seminar, 03/02/21 CERN
https://indico.cern.ch/event/893116/

Near term quantum hardware access & integration with classical computing?
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Quantum SVM for Higgs
classification

Classical models trained on 67 features

Test several dimensionality reduction strategies
(PCA, AutoEncoder, Kmeans.. )

Signal Efficiency (TPR)

N(train): 1827808, N(test) 456952

1.0

0.8

0.6

0.4

0.2

g
/'/::'/’
v
//://
o/ -
s
'/ ¢/
'/ /’
/'//'
/'//
iy
1/ I/
O/ l/
l/ I/
'/ l/
// //
V4
/7
S -
7/ —— DNN, AUC = 0.704 * 0.001
[ e DNN(latent), AUC = 0.623 + 0.002
/ .~ —— BDT, AUC = 0.691 * 0.001
P e BDT(latent), AUC = 0.652 = 0.002

.0 0.2 0.4 0.6 0.8

Background Efficiency (FPR)
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1.0

1.0

N'2in=576, N't=720 (x5)

0.8

o
o

Signal Efficiency (TPR)
o
>

o
N

/—— QSVM (6 qubits): AUC = 0.676 + 0.017

—— SVM linear: AUC = 0.672 + 0.017
—————— Random Classifier

(b) Models trained on the original input features
(67), discarding the 3 least informative ones (64).

0.2 0.4 0.6 0.8
Background Efficiency (FPR)

1.0

V. Belis, S. Gonzalez-Castillo
BQIT 2021

vCHEP2021
arXiv:2104.07692
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Ntrain=576, Ntest=720 (x5)

1.0
0.8
3
a
E
>, 0.61
o
c
2
v
E
w
= 0.4
c
2
1]
0.2 —— QSVM (4 qubits): AUC = 0.621 + 0.031
—— SVMrbf: AUC = 0.619 + 0.024
—— QSVM (8 qubits): AUC = 0.620 + 0.032
—— Random Classifier
0'%.0 0.2 0.4 0.6 0.8 1.0

Background Efficiency (FPR)

(a) Models trained on the AE latent space features

(16).




VQC for Higgs classification

Classical dense neural network to reduce dimensionality
* 4 qubits, 8 variables

ZZ feature map with data-re-uploading ——,  ©o—{F-Re)]
10) —{ H }{Rz(2x) |—&—{ Rz Cx — x ) )x — x)) |

s

2-local variational form

\ 10) Rz(2x3) 5% {Rz(2("—x1)("—x3)) '—9
—{Ry©®) —&—|Ry (6o [ - — R Q@ — - %) | ——
Ry(0,)
— Nyain = 2000
—{Ry(©3) |—@—{ Ry (6y3) [———— |
—|RY(94)
0.8
Simultaneous training of classical feature extraction strategy and 0:6
quantum classifier improves the accuracy 3
__Hybrid VQC '
AUC = 0.696 + 0.013
___Neural Network 02
AUC =0.698 + 0.013
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M. Shenk, V. Kain

BQIT 2021
u - - 2021 CERN openlab Tech
Reinforcement learning in a nutshell o
Agent interacts with environment =! g8t )
- Receives reward after every action e N action
» Learns through trial-and-error ;? i P ]
- RL book: Sutton & Barto

Decision making
« Agent follows certain policy m: S — A
» Goal: find optimal policy "
 Optimal < maximizing return: G, = Y, y*R.4x

e 3 L
1h 15 minutes

source

15 minutes

Expected return can be estimated by value function Q(s, a)
+ Best action chosen through a greedy policy: take action that maximizes Q(s,a)

* Not a priori known, but can be learned iteratively
* This work: Q-learning — learn Q(s, a) using function approximator
* DQN: Deep Q-learning (feed-forward neural network)

* QBM-RL (Quantum Boltzmann Machine)
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https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://bair.berkeley.edu/blog/2019/05/28/end-to-end/

Clamped QBM

Q-learning

)
O
Free Energy RL: clamped QBM é % o“‘i\f
« Network of coupled, stochastic, binary units (spin up / down) e o
« Q(s, a) = negative free energy of classical spin configurations c g - O/, ;;,j‘f:.
= o)
« Sampling c using (simulated) quantum annealing 2 8 oA
« Clamped: visible nodes not part of QBM; accounted for as biases \ )
« Using 16 qubits of D-Wave Chimera graph
* Discrete, binary-encoded state and action spaces 0(s,a) ~ —F(v) = _(Hgff> _ %Z P(c|v) log P(c|v)
Q-net ‘
DQN: Q-net ] ] e O
- Feed-forward, dense neural network 11 O o o
« 2 hidden layers, 8 nodes each (= Chimera graph) 1 g C_> C_> o 0.45
« Can handle discrete, binary-encoded state and action spaces | D | : : O 5 |1.23
Learning: update Q by applying temporal difference rule to QBM and 1 ' o O R
Q-net weights, respectively -] © o o ~Q(s,a)
State O O
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https://arxiv.org/pdf/1706.00074.pdf

Beam steering through RL

Monitor (BPM)
Dipole A
magnet
» Fixed target experiments at CERN Super Proton  stor
Synchrotron ---=-------’---------?-‘3 -------------
Action
 OpenAl gym template
« Action: deflection angle (up or down by fixed amount)
« State: beam position at BPM
. . . 100
 Reward: integrated beam intensity on target 108
«  Additional reward for success _8a ;@90
s <80
260 £
= £70
£4¢ 2
61 [0 & | DQN without ER 060
R e S 5 ae— s % 50 [ QBM without/ER
= 0
= 27 £ 250 350
E o 0 2000 Trg?noigg 6000 8000 50 150 Traming 450
g 01 2 - - [ interactions ]
3 g 10( 1 10
- _80 _80
41 —— BPM pos. (= state) § é
ey - 02 260 £
B Al’SO 1’00 _%O 6 Sb 160 150 .T-U %
B B B MSSB angle (urad) %4(: %4(:
o O20
20 pDQN with ER | QBMwith ER
0

100 120

100 200 300 400 500 20 40 60 80
‘i@ IQ) gg@ﬂﬁgfoev Training Training
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https://gym.openai.com/

