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CERN QTI and its
Roadmap
CERN established the QTI in 2020

T1 - Scientific and 
Technical Development 
and Capacity Building

T2 - Co-development

T3 - Community Building
T4 - Integration with 

national and 
international initiatives 

and programmes
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https://doi.org/10.5281/zenodo.5553774
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• Roadmap in 2021, after a process of 
iterative consultations

• Publicly available in Zenodo, it has 
been accessed more than 4,300 times



• Assess the areas of 
potential quantum 
advantage in HEP (QML, 
classification, anomaly 
detection, tracking)

• Develop common 
libraries of algorithms, 
methods, tools; 
benchmark as technology 
evolves

• Collaborate to the 
development of shared, 
hybrid classic-quantum 
infrastructures

Scientific Objectives
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Computing & Algorithms

• Identify and develop 
techniques for quantum 
simulation in collider 
physics, QCD, cosmology 
within and beyond the SM

• Co-develop quantum 
computing and sensing 
approaches by providing 
theoretical foundations 
to the identifications of 
the areas of interest

Simulation & Theory

• Develop and promote 
expertise in quantum 
sensing in low- and high-
energy physics 
applications

• Develop quantum sensing 
approaches with 
emphasis on low-energy 
particle physics 
measurements

• Assess novel 
technologies and 
materials for HEP 
applications

Sensing, Metrology & 
Materials

• Co-develop CERN 
technologies relevant to 
quantum infrastructures
(time synch, frequency 
distribution, lasers)

• Contribute to the 
deployment and 
validation of quantum 
infrastructures

• Assess requirements and 
impact of quantum 
communication on 
computing applications
(security, privacy)

Communications & 
Networks
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• Assess the areas of 
potential quantum 
advantage in HEP 
applications (QML, 
classification, anomaly 
detection, tracking)

• Develop common 
libraries of algorithms, 
methods, tools; 
benchmark as technology 
evolves

• Collaborate to the 
development of shared, 
hybrid classic-quantum 
infrastructures

Scientific Objectives
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Computing & Algorithms
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Assess the areas of potential quantum advantage in 
HEP applications (QML, classification, anomaly detection, 
tracking)



QC Algorithms 

• Quantum Machine Learning algorithms are a primary candidate for 
investigation

• Increasing use of such techniques in many computing and data analysis flows
• Can be built as hybrid models where quantum computers act as accelerators

where classic computing is not computationally efficient

• Classification, pattern recognition, anomaly detection

• Clustering, optimisation

• Efficient data handling is a challenge
• Data encoding or reduction is required for practical use of NISQ devices
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How do we represent classical data in quantum states?

How do we introduce non-linearities in quantum circuits?

SGD-based optimisation?
Back-propagation and automatic differentiation

QML in practice…
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K. Zhang et a. arXiv.org:2011.06258 Mitarai et al. (2018)
Schuld et al. (2018)Images from pennylane.ai tutorial

M. Schuld et al., arXiv: 2001.03622v2
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https://arxiv.org/abs/1803.00745
https://arxiv.org/abs/1811.11184


Quantum Advantage for QML?
Advantage definition

Runtime speedup 
Sample complexity
Representational power

Practical implementation vs asymptotic complexity
Data embedding
NISQ vs ideal quantum devices
Realistic applications

Performance metrics
Classical vs Quantum Data

A change of paradigm in the study of QML algorithms could reflect in interesting 
insights in classical models as well  

see recent work by M. Schuld and N. Killoran (arxiv:2203.01340)
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A. Abbas et al.,  arxiv:2011.00027



Quantum Classifiers for Higgs boson identification
arXiv:2104.07692
Quantum Tree Tensor Networks for particle trajectory reconstruction
arXiv:2007.06868, arXiv:2012.01379, arXiv:2109.12636 
Hybrid quantum-classical tracking hits embedding
EPJ Web of Conferences (Vol. 251, p. 03065)
Quantum Generative Adversarial Networks for detector simulation
arXiv:2103.15470, arXiv:2101.11132, arXiv:2203.01007
Quantum Born Machines for event generation
ACAT2021
Quantum Boltzmann Machines for beam optimization in accelerators
BQiT 2021
Quantum algorithms for anomaly detection

Example QML projects

809.03.22



The task of generalising from a finite set of samples drawn from a data set. 
• Learn the underlying probability distribution
• Generate new samples from the learned distribution

Classical Generative Models can simulate detector output and replace Monte Carlo
Explore quantum models:

• Compressed data representation in quantum states 
• Help understand convergence and generalization?
• Support space of the learned distribution?

Examples include quantum implementations of 
• Generative Adversarial Networks (GAN)
• Born Machines 
• Boltzman Machines
• Auto-Encoders

Generative Modelling

09.03.22 9

Classical GAN



Quantum generation of energy profiles

Simplify simulation problem
1D & 2D energy profiles from detector 

Train a hybrid classical-quantum GAN to generate average image

IBM qGAN can load probability distributions in quantum states

https://doi.org/10.1038/s41534-019-0223-2

R
el

at
iv

e 
En

er
gy

 P
ro

fil
e

Calorimeter Depth
Quantum Generator: 3 Ry layers

Need a way to sample single images

qGAN image

Calorimeter Depth

Real image

Calorimeter Depth

3 qubits

6 qubits

S.Y. Chang
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https://doi.org/10.1038/s41534-019-0223-2


Extending the qGAN model
Two-steps quantum generator to sample images
• PQC1 – Reproduce distribution over images

• PQC2 – Reproduce amplitudes over pixels on one image 

Su Yeon Chang
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Calorimeter Depth

Mean Image



Benchmarks on hardware

Train models using noisy simulator and  test the 
inference of the model on the  superconducting (IBMQ) 
and trapped-ion (IONQ) quantum hardware

• For IBMQ machines, choose the qubits with the lowest 
CNOT gate error

09.03.22 12

Chang S.Y. et al., Running the Dual-PQC GAN on Noisy Simulators and Real 
Quantum Hardware, QTML2021, ACAT21



Quantum integration of elementary particle processes 
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Use Quantum Amplitude Estimation to accelerate Monte Carlo Integration
Data encoding into quantum states affects the quality of the integration

Test different approaches including QGAN

Loading of 1 + 𝑥! distribution:
• 10k events
• 3 qubits
• best entanglement is the circular 

M. Grossi, arxiv:2201.01547



Muon Force Carriers predicted by several theoretical models:
• Could be detected by muon fixed-target experiments (FASER) or muon 

interactions in calorimeters (ATLAS). 

Quantum Circuit Born Machine for event generation

14Galon, I, Kajamovitz, E et al. "Searching for muonic forces with the ATLAS detector". In: Phys. Rev. D 101, 011701 (2020)
Coyle, B., Mills, D. et al, "The Born supremacy". In: npj Quantum Inf 6, 60 (2020)

Generate E, pt, η of outgoing muon and MFC

Sample from variational wavefunction |𝜓(𝜃)⟩
with  𝑝θ(𝑥) =|⟨𝑥|𝜓(𝜃)⟩|” given by the Born rule

Generate discrete PDFs (continuous in the 
limit #qubits → ∞)

Maximum Mean Discrepancy loss function 
and gaussian kernel with 𝜎 ∈ [0.1,1,10,100]

Kiss O. et al., ACAT21
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Encode Eμ,i condition using 
parametrized rotations
Interpolation: train on 150 and 
200 GeV muons and predict 175 
GeV signal

Conditional Born Machine

09.03.22 15

Data re-uploading makes the quantum circuit more expressive as function of the data
Noise model according to IBM Q Casablanca

150 GeV 200 GeV 175 GeV



• Assess the areas of 
potential quantum 
advantage in HEP 
applications (QML, 
classification, anomaly 
detection, tracking)

• Develop common 
libraries of algorithms, 
methods, tools; 
benchmark as technology 
evolves

• Collaborate to the 
development of shared, 
hybrid classic-quantum 
infrastructures

Scientific Objectives

09.03.22

Computing & Algorithms
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• Develop common libraries of algorithms, methods, 
tools; benchmark as technology evolves

• Collaborate to the development of shared, hybrid 
classic-quantum infrastructures



Hardware and Software Resources

• Focus on tools for software development and testing

• Access to resources: classical (simulators) and quantum hardware
• Cluster with different quantum computing simulators for 

development up to 20-25 qubits
• ATOS QLM appliance for simulations up to 34 qubits
• Access to the IBM Q systems

• Evaluate different hardware solutions: digital (semiconductors, 
ions, photons) and annealer

09.03.22 17

• Building shared experience on different computing simulators, real NISQ hardware, and hybrid 
infrastructures where cloud computing, HPC resources and quantum computers interact is 
key to capacity building for the future



Benchmarking platform to benchmark for software frameworks 
and hardware devices.
• Extensibility by-design
• Present results in a user-friendly way.
• A web application to interactively present results
Currently supports Qiskit State Vector (with and without GPU), 
Cirq and PennyLane

ABAQUS - Automated Benchmarking 
of Algorithms for QUantum Systems

09.03.22

Gonzalez Castillo S. et al., EQTC2021

18

ABAQUS: Automated Benchmarking of 
Algorithms for Quantum Systems
Elías F. Combarro (University of Oviedo), Alberto Di Meglio (CERN), 
Samuel González-Castillo (Maynooth University), Sofia Vallecorsa (CERN)

The goal: to build a benchmarking platform that can provide consistent and reliable 
benchmarks for both software frameworks and hardware devices.

How to achieve it:
• Extensibility by-design:

• Allow anyone to write new benchmark tests that can be run on any framework.
• Make it easy to consistently extend ABAQUS to new frameworks.

• Present results in a user-friendly way.

COMPUTING BENCHMARKS
We have developed a Python package that fulfills our ambition of allowing anyone to run any 
test on any device across any framework. With consistency and extensibility in mind.

Writing new tests
Just extend a 

Benchmark class 
providing a blueprint of 
the circuit you want to 
test. It will work on any 
supported framework –

present or future!

Running tests

import abaqus.benchmarking.all
abaqus.benchmarking.all.run_all()

Runs all the available tests on all the 
supported frameworks. Saves the data in 

simple CSV files.
ABAQUS can take care of all the details.

Supporting new 
frameworks

Write a subclass for a 
Framework class that 
tells ABAQUS how to 

execute any circuit from 
a blueprint.

PRESENTING RESULTS
We have also prepared a web application that, being 
tightly integrated with the ABAQUS package, can 
present interactive scores for devices and frameworks 
using the datafiles generated by ABAQUS in the 
benchmarking process. These scores are relative (0 = 
worst possible performance, 100 = best 
performance), and the user can choose which tests 
and frameworks to use in their computation.

REFERENCES
1. The Qiskit development team. Qiskit: An Open-source Framework for Quantum Computing. 2019.
2. Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, M. Sohaib Alam, Shahnawaz 
Ahmed, Juan Miguel Arrazola, Carsten Blank, Alain Delgado, Soran Jahangiri, Keri McKiernan, 
Johannes Jakob Meyer, Zeyue Niu, Antal Száva and Nathan Killoran. PennyLane: Automatic 

differentiation of hybrid quantum-classical computations. arXiv. Feb. 2020.

Device
Stores device information (RAM, 

processor, name, version…). An object 
corresponding to the current device can 

be obtained calling this_device() and 
modified with set_device(OPTIONS).

We currently support Qiskit Statevector (with and without GPU) [1] and PennyLane [2]. It will be 
very easy to add support for any other framework with a Python interface.

Benchmark
Stores framework version 
and benchmark results.
Implements methods for 

running tests on any 
framework.

Framework
Stores framework 
information (name, 

developer, etc.).
Implements an interface 
method that can run any 

ABAQUS test.



Research Collaborations (various stages of maturity)
Organizations and Projects Industry

Academia, Research Labs and Agencies

IBM Q-Net
Intel

Xanadu

09.03.22 19



ACAT2021 (arxiv:2203.01007)
Collaboration with DESY, RWTH 
AACHEN UNIVERSITY
(see K. Borras’ talk on wednesday) 



Synergies with other sciences

09.03.22 21

The ESA-CERN Joint Announcement at Phi-Week 2020



Convolutional Filters[1]  as  Parameterized 
Quantum Circuits (PQC) with single-qubit and 
two-qubit operations.

• Reduce risk of barren plateau

Alternative architecture: different 
parameters in each convolutional filters

• Increased model complexity and flexibility

Quantum Convolutions  

09.03.22 22

Chang, Su Yeon et al.,  
QTNML2021@NeurIPS2021 

N-class classification by measuring the
probability distribution for log2N qubit and using 
categorical cross entropy.

Confusion matrix of 4-class MNIST classification

[1] T. Hur, L. Kim, and D. K. Park. Quantum convolutional neural network for classical data classification, 2021.



Summary

The QTI coordinates quantum research at CERN
Quantum Computing is a wide active area

Extensively investigating QC and QML applications to HEP
Initial set of prototypes for different applications
Move on to more robustness studies 

Setting in place access to resources (classical and quantum) 
to ease community R&D

Build synergies and joint projects beyond HEP

09.03.22 23

https://zenodo.org/record/5553775



Sofia.Vallecorsa@cern.ch

Thanks!

https://quantum.cern/

https://openlab.cern/quantum
24

https://quantum.cern/
https://openlab.cern/quantum




Classical gradients vanish exponentially with the number of 
layers (J. McClean et al., arXiv:1803.11173)

• Convergence still possible if gradients consistent between 
batches.

Quantum gradient decay exponentially in the number of 
qubits

• Random circuit initialization
• Loss function locality in shallow circuits (M. Cerezo et al., arXiv:2001.00550)
• Ansatz choice: TTN, CNN (Zhang et al., arXiv:2011.06258, A Pesah, et al., Physical 

Review X 11.4 (2021): 041011. )

• Noise induced barren plateau (Wang, S et al., Nat Commun 12, 6961 (2021))

Model Convergence and Barren Plateau

09.03.22 26

QCNN: A Pesah, et al., Physical 
Review X 11.4 (2021): 041011

TTN for MNIST classification (8 qubits), 
Zhang et al., arXiv:2011.06258 

J. McClean et al., arXiv:1803.11173



Noise studies for qGAN

• Gate + readout noise (IBM Belem) 
seem to improve convergence

• Noiseless simulation converges at ~300 
epochs

• Stable performance of the inference 
process up to 2% error probability

F. Rehm, Grid2021 conference
https://indico.jinr.ru/event/1086/contributions/13067/

09.03.22 27

Rel Entropy measured during training



QML implementations
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Parametric ansatz
Can use  gradient-free methods
or stochastic gradient-descent

Data Embedding can be learned
Input 
data

〈Out〉

LossUpdates

Variational algorithms Kernel methods
Feature maps as quantum kernels
Use classical kernel-based training

Convex losses, global minimum
Compute pair-wise distances in Ndata

M. Schuld, QML seminar, 03/02/21 CERN
https://indico.cern.ch/event/893116/

Near term quantum hardware access & integration with classical computing?

09.03.22



Quantum SVM for Higgs 
classification

Classical models trained on 67 features
Test several dimensionality reduction strategies 
(PCA, AutoEncoder, Kmeans.. )
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V. Belis, S. Gonzalez-Castillo
BQiT 2021
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VQC for Higgs classification

Classical dense neural network to reduce dimensionality
• 4 qubits, 8 variables 

ZZ feature map with data-re-uploading
2-local variational form

Simultaneous training of  classical feature extraction strategy and 
quantum classifier  improves the accuracy

09.03.22 30



Agent interacts with environment
• Receives reward after every action
• Learns through trial-and-error

Decision making
• Agent follows certain policy 𝝅: 𝑆 → 𝐴
• Goal: find optimal policy 𝝅∗

• Optimal ó maximizing return: 𝐺" = ∑# 𝛾#𝑅"$#

Reinforcement learning in a nutshell

Expected return can be estimated by value function Q(s, a)
• Best action chosen through a greedy policy: take action that maximizes Q(s,a)
• Not a priori known, but can be learned iteratively
• This work: Q-learning – learn Q(s, a) using function approximator

• DQN: Deep Q-learning (feed-forward neural network)
• QBM-RL (Quantum Boltzmann Machine)

RL book: Sutton & Barto

source

M. Shenk, V. Kain
BQiT 2021
2021 CERN openlab Tech 
Workshop

https://indico.cern.ch/event/1009424
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https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://bair.berkeley.edu/blog/2019/05/28/end-to-end/


Q-learning

DQN: Q-net
• Feed-forward, dense neural network
• 2 hidden layers, 8 nodes each (≈ Chimera graph)
• Can handle discrete, binary-encoded state and action spaces

Learning: update Q by applying temporal difference rule to QBM and 
Q-net weights, respectively

Free Energy RL: clamped QBM
• Network of coupled, stochastic, binary units (spin up / down)
• +𝑸 𝒔, 𝒂 ≈ negative free energy of classical spin configurations 𝑐
• Sampling 𝑐 using (simulated) quantum annealing
• Clamped: visible nodes not part of QBM; accounted for as biases
• Using 16 qubits of D-Wave Chimera graph
• Discrete, binary-encoded state and action spaces !𝑄 𝑠, 𝑎 ≈ −𝐹 𝒗 = − 𝐻𝒗"## −
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https://arxiv.org/pdf/1706.00074.pdf


Beam steering through RL
• Fixed target experiments at CERN Super Proton 

Synchrotron
• OpenAI gym template
• Action: deflection angle (up or down by fixed amount)
• State: beam position at BPM
• Reward: integrated beam intensity on target

• Additional reward for success

State
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https://gym.openai.com/

