
QC Applications to HEP Applications
Christian Bauer

Quantum Computing 
Applications for HEP 

simulations



Christian Bauer
QC Applications to HEP Applications

Major goal of HEP is to stress-test the SM and to find 
extensions that we know have to exist

For this, need to be able to go from Lagrangian 
to fully exclusive events

An important requirement in this regard is the ability to compare experimental 
measurements directly to theoretical predictions
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The issue with simulating full collider events is the high 
multiplicity of the final state

While the hard interaction
     only produces small number 
           of particles, subsequent 
             radiation produces lots 
             more in final state. 

             Essentially impossible
             to compute full results
             in perturbation theory
             for such high multiplicity
             final states

       Need ways to perform
    calculations that allows to 
deal with this high multiplicity

No known (classical) algorithm to do the required calculations in full 
generality
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The usual derivation of parton showers is in terms of the 
collinear limit

In θ→0 limit, cross sections simplify
2 2

= [∑ ]2x

𝜎N 𝜎N-1 x ∑ SP(t,z)=
Conservation of probability:

P(no-emission) + P(≥1emission) = 1

Probabilistic nature of algorithm means most quantum interference effects 
are lost
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Several different interference effects can arise in the 
parton showers

1/NC effects in dipole 
showers

γ/Z interference in EW 
showers

CKM interference in 
EW showers

None of them described by traditional parton showers based on 
probabilistic MC approaches
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Consider a simpler toy model that exhibits interference

effects similar to the CKM case

L =f̄1(i/@ +m1)f1 + f̄2(i/@ +m2)f2 + (@µ�)
2

+ g1f̄1f1�+ g2f̄2f2�+ g12
⇥
f̄1f2 + f̄2f1

⇤
�

<latexit sha1_base64="KsAvf/PIKodS0nGXOONo+byeMZk="></latexit>

The mixing g12 gives several interesting effects

Different real emission amplitudes
give rise to interference

Virtual diagrams give rise to
flavor change without radiation

Need to correct both real and virtual effects
Similar to including subleading color
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Including the full interference effects of this toy model takes 
exponential resources classically using best algorithms

For each final state fermion, there are 2 possible amplitudes

For N final state fermions, there are  possible amplitudes that contribute2N

Best known classical algorithms scale with the number of amplitudes present

Makes impossible for classical shower to compute the relevant physics
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A quantum computer can compute the 2N amplitudes 
using polynomial number of operators

3

type of fermion can be treated using a density matrix for-
malism [23], where each splitting function is represented
through a splitting matrix as

Pi!j�(✓) |fii hfj | . (10)

In the limit of g12 ! 0 we have Pi!j�(✓) ! �i,jg
2
i P̂ (✓),

but for non-zero g12 the full matrix structure of the split-
ting function needs to be retained. The complexity of
taking this into account to all orders, reduces to the full
amplitude calculation.

In what follows, we construct a quantum algorithm
to sample from the full amplitude, including all interfer-
ence e↵ects. We consider the complete case, including
� ! ff̄ , which still follows the Markov Chain of ampli-
tudes in Eq. (5). The core idea of the quantum algorithm
is to encode the particles as qubits (Appendix A) and
first rotate to a particle basis where there is no mix-
ing between fermion states (Appendix B). In this su-
perposition basis, emissions between states are uncorre-
lated. Sudakov factors can then be used to govern the no
emission probability of the uncorrelated fermions. The
bulk of the quantum circuitry will then be dedicated to
book-keeping, to encode the emission history and decide
which fermions/bosons radiate/split at a given step in
the shower.

Figure 1 is the quantum circuit implementing the
quantum final state radiation algorithm for one of N

steps. The circuit calls for six registers, which are are de-
tailed in Appendix A and summarized in Table I. The ini-
tial state consists of nI particles (which can be fermions
or bosons) in the f1/2 basis. One starts by rotating this
initial particle state from the f1/2 basis to the fa/b ba-
sis, using a simple unitary R operation discussed in Ap-
pendix B. Then, a series of operations evolving the par-
ticles states are applied: the number of particles of each
type are counted (Ucount), Sudakov factors are used to de-
termine if an emission occurred (Ue), given an emission, a
particular particle is chosen to radiate/branch (Uh), and

the resulting particle state is updated (U (m)
p ). Finally,

the state is rotated back to the f1/2 basis through the
R

† operation. This process is repeated for all of the N

steps. The rotation needs to be performed separately at
each step because in general the matrix R depends on ✓

through the running of the couplings. At each step, there
are four operations, which are summarized in Table II.
More details can be found in the appendices.

Performing the evolution in the fa/b basis and then
rotating to the f1/2 basis, creates interferences between
equivalent final states which had di↵erent intermediate
fermions. One event is generated by measuring all of
the qubits after the final rotation back to the f1/2 basis.
By repeating the entire process, we can generate a large
number of events which we can then use to compute phys-
ical observables for our theory. The number of standard
quantum gates (single qubit and CNOT gates) required
at each step is discussed in Appendix I and summarized
in Table II.

Register Purpose # of qubits

|pi Particle state 3(N + nI)

|hi Emission history Ndlog2(N + nI)e
|ei Did emission happen? 1

|n�i Number of bosons dlog2(N + nI)e
|nai Number of fa dlog2(N + nI)e
|nbi Number of fb dlog2(N + nI)e

TABLE I: All of the registers in the quantum circuit with
the number of qubits they require for N steps and nI initial
particles. The symbol d. . .e denotes the ceiling function.

|pi / R
(m) p p U

(m)
p R

(m)†

|hi / Uh h

|ei U
(m)
e e

|n�i /

Ucount

n�

Uh|nai / na

|nbi / nb

FIG. 1: Quantum circuit block for one step, to be repeated
N times for the full circuit.

The practical challenge with above circuit is that it
requires more connected qubits and operations than are
currently available in state-of-the-art hardware. In order
to show an implementation of our algorithm, we there-
fore consider a special case that is amenable to measure-
ment on existing technology. This special case ignores
the � ! ff̄ splitting (naturally suppressed in gauge the-
ories, but not in the scalar-only theory), ignores the run-
ning coupling, and has only a single fermion (possibly
in a superposition) as the initial state. This results in
a much simpler circuit since there is only one fermion,
but an arbitrary number of scalars (Appendix I). A de-
composition of the resulting circuit into single qubit and
CNOT gates requires ngates = 12N + 2 (Appendix G).
This model is however still su�ciently complex that the
classical MCMC described earlier2 fails to capture im-
portant quantum e↵ects when g12 6= 0.
Figure 2 presents the normalized di↵erential cross sec-

tions of four examples from a class of observables,
P

i ✓
↵
i ,

for both classical simulations/calculations, quantum sim-
ulators [29], and chip experiments of public and Hub

2
While the standard parton shower-inspired MCMC algorithm

fails, we have discovered a quantum-inspired classical algorithm

that can e�ciently sample from the full probability distribution

- see Appendix K. However, this algorithm only works when ne-

glecting the � ! ff̄ and cannot solve our full model.

Operation Scaling

count particles Ucount N lnN

decide emission Ue N4 lnN

create history Uh N5 lnN

adjust particles Up N2 lnN

CWB, Freytsis, Nachmann, PRL  127, 212001
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Figure 1: The normalized differential cross section for log ✓max (a,c) and the number of emissions

(b,d). Interference effects are turned on (g12 = 1) and off (g12 = 0), where the classical simu-

lations/calculations are expected to agree with the quantum simulations and measurements. The

top plots (a,b) show results for the case where � ! ff̄ is excluded as this can be run on current

quantum hardware. The bottom plots (c,d) include the � ! ff̄ with fewer steps to reduce the

computational complexity. The ratio plots compare the g12 = 0 and g12 = 1 simulation. Over 105

events contribute to each line and the statistical uncertainties are therefore negligible. Quantum

measurements are corrected for readout errors, as described in the Methods section.

19

CWB, Freytsis, Nachmann, PRL  127, 212001

Currently working on improved algorithms, which take advantage of recently 
added remeasuring capabilities
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Can simulate full dynamics of QFT on quantum computer 
by reducing to finite dimensional Hilbert space

For scalar field theory, instead of having a continuous field  at each position , 
we put a digitized field  at discrete points  arranged on a lattice

ϕ x
ϕn xk

Hilbert space has dimension

Problem reduced to matrix multiplication

(nϕ)
Nd  # of digitized field values

 # of lattice points per dim
 # of dimensions

nϕ :
N :
d :

ϕn1
ϕn2

ϕn3
ϕn4

l
L

L = N l
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Let’s try to estimate the resources we need to simulate 
physics at the LHC

Energy rage that can be 
described by lattice is given by

1
Nl

≲ E ≲
1
l

To simulate full energy range 
of LHC need 

100 MeV ≲ E ≲ 7 TeV

This needs  lattice sites𝒪(70,0003) ∼ 1014

Assume I need at least 5 bit digitization ⇒ nϕ = 25 = 32

Dimension of Hilbert space is 
321014 ∼ ∞

Number of qubits required
5 × 1014
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Effective theories allow to separate short and long 
distance physics from one another

Goal is to separate ingredients that are calculable in perturbation theory from 
those that really benefit from non-perturbative techniques

Effective Field Theories (SCET)

dσ = H ⊗ J1 ⊗ … ⊗ Jn ⊗ S

Most interesting object in above equation is the soft function , 
which lives at the lowest energies

S

For 1TeV jets with 100GeV mass, find 
ΛS = (100 GeV)2/(1000 GeV) = 10 GeV
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Let’s try to estimate the resources we need to simulate 
physics at the LHC

In the effective field theories required energy range is limited to 

100 MeV ≲ E ≲ 10 GeV

This needs  lattice sites𝒪(1003) ∼ 106

Dimension of Hilbert space is 
32106 ∼ ∞

Number of qubits required
5 × 106
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Soft function is the expectation value of a “Wilson line” 
operator between initial and final state

S = ⟨X |T[YnY†
n̄] |Ω⟩

2

Have worked out quantum circuit to create vacuum state , circuit for  
and circuit to measure final state 

|Ω⟩ T[YnY†
n̄]

|X⟩

4

To implement the Wilson line operator we first rewrite
the time-ordered product of the two Wilson lines as

T[Yn Y
†
n̄ ] = e

�iH n0�x exp
⇥
ig �x

�
�x2n0

� �x0

�⇤
(13)

⇥ e
iH�x exp

⇥
ig �x

�
�x2n0�1 � �x1

�⇤

⇥ · · ·⇥ e
iH�x exp

⇥
ig �x

�
�xn0

� �xn0

�⇤
,

where we have used the time translation operator to
make the time dependence on the field operators explicit.
Thus, the Wilson line operator consists of a sequence of
time-evolution operators for a time interval correspond-
ing to the lattice spacing and exponentials of the field
operator. The last time evolution evolves the state back
from the largest time to which the Wilson lines can be
sensibly evolved, namely tmax = n0 �x, to t = 0 at which
all states are defined.

Ultimately, to make contact with the continuum field
theory any such simulation will have to be performed on
a series of increasing lattices, and the result extrapolated
to the N ! 1, �x ! 0 limit. Any parameters of the the-
ory present in the continuum must be suitably matched
for this procedure to yield meaningful results. For lo-
cal terms in the Hamiltonian, this procedure is discussed
in detail in [5]. Dealing with a massless theory simpli-
fies this procedure since only local interactions (of which
in the present case there are none) need to be matched.
However, the EFT will also require the matching of Wil-
son line operators, which is complicated by their non-
local nature and sensitivity to total lattice size, as dis-
cussed in the Supplemental Materials. In this letter, we
work at fixed lattice size and we leave the detailed inves-
tigation of these issues to future work.

The implementation of the exponential of the field op-
erator, as well as the time evolution operator, follows
the discussion in [8] and uses the fact that the digitized

field �
(k)
i

can be written in terms of sums of �z opera-
tors. This implies that the exponential of products of
fields �i can be implemented through combinations of
CNOT gates and RZ rotations [6–8]. The exponential of
the conjugate operator �̇

2 can be implemented by tak-
ing a quantum Fourier transformation of the exponential
of the operator �

2. These can then be combined via
the Suzuki–Trotter formula [49–51]. For details, see the
Supplemental Materials. The initial ground state of the
scalar field theory is a multi-variate Gaussian distribu-
tion, which can be created using the approach of Kitaev
and Webb (KW) [52]. To identify states of definite multi-
plicity and momentum in |Xi one can follow the general
ideas laid out in [1, 5].

Our quantum circuit has been implemented in
Qiskit [53] and is available from the authors upon re-
quest. In this first exploratory paper we compute the
foundational quantities, namely

YX =
���hX|T[Yn Y

†
n̄ ]|⌦i

���
2

(14)

for |Xi = |⌦i and |Xi = |pii, the one-particle momentum
eigenstates of the theory. It should be noted that these
quantities are not infrared (IR) safe, and will therefore
depend on the IR scale in the problem, the lattice size L.
However, as discussed in more detail in the Supplemental
Materials, there is no non-trivial IR safe observable that
can be defined in (1+1) dimensions, and these transition
rates are therefore representative quantities of what can
be computed in this theory.

The quantum circuit for this measurement can be rep-
resented as

|l0i /

U⌦ UY U
†
X

|. . .i /

|lN�1i /

where |lni denotes the register of qubits for the n
th lat-

tice site. This creates the multivariate Gaussian vacuum
state from the initial state with all qubits zero using U⌦,
acts on this vacuum with the time ordered product of
the two Wilson lines using UY , and finally applies the in-
verse of the state preparation of state |Xi. The details of
these various circuits can be found in the Supplementary
Material.
For our numerical results, we work with an N = 3 site

lattice with spacing �x = 1. With only 3 lattice sites, the
Wilson line operator simplifies to

YX =
���hX|T[Yn Y

†
n̄ ]|⌦i

���
2
=

���hX|e
ig�x(�x2��x0)|⌦i

���
2
,

(15)

since all time evolution operators act on the initial or fi-
nal eigenstate of the Hamiltonian only and can therefore
be neglected as contributing an overall phase. In Fig. 1
we show the dependence of the expectation values YX

on the coupling g for nQ = 2 qubits per lattice site for
di↵erent final states, and compare them against the ana-
lytical results, shown by black lines. Results are given for
both a quantum simulation and from the 65-qubit IMBQ
Manhattan quantum computer. The operators for imple-
menting all states are exact, as the resources for doing so
on a small lattice are modest. On a larger lattice approx-
imate methods, such as KW ground state approximation
and the excited state preparation techniques of [5] will be
necessary; the e↵ect of such approximations is presented
in the Supplementary Material.
Errors in the quantum circuits, especially readout er-

rors and CNOT gate errors are quite large on existing
hardware. As discussed in the Supplemental Materials,
the exponential of the field operator at a given position
requires only nQ single qubit gates, such that the opera-
tor in Eq. (15) requires no CNOT gates. For nQ = 2, he
state preparation requires 6 CNOT gates for gates. Note
that for more than 3 lattice sites the time evolution op-
erator is required, which requires a much larger amount

CWB, Freytsis, Nachman, PRL 127 (2021), 212001
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Soft function is the expectation value of a “Wilson line” 
operator between initial and final state

Quantum computer gives a good description of the analytical result

CWB, Freytsis, Nachman, PRL 127 (2021), 212001

Currently working on implementing of these ideas for U(1) gauge theories
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The continuum Hamiltonian of QED is very simple, 
consisting of a magnetic and electric component

H = ∫ddx [E2(x) + B2(x)]

⃗B (x) = ⃗∇ × ⃗A (x)

⃗E (x) = − ∂ ⃗A (x)/∂t

E and B have simple relations to the gauge field
(working in  gauge)A0 = 0
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One can write Lattice version of Hamiltonian entirely in 
terms of rotors and magnetic fields

H = ∑
p∈plaq

[g2HE[Ri] +
1
g2

HM[Bi]]

Since ,  and  can not be diagonalized simultaneously[HE, HM] ≠ 0 HE HB

There is considerable interest in “compact” U(1) gauge theory, where 
−π < Bi < π

In limit  useful to work in electric basis, where  is diagonalg → ∞ HE

In limit  useful to work in magnetic basis, where  is diagonalg → 0 HB
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One can construct both magnetic and electric basis, and 
each work in the coupling limit they are designed for

characteristic of the mentioned freezing e↵ect.
Concluding, both the Fourier and the sequence fi-

delities in Eqs. (31) and (33) are two tools to assess
the convergence of and agreement between the two
representations. While the sequence fidelity must be
applied in the extremal regimes, the Fourier fidelity
yields a valuable quantification of the combined ca-
pabilities of the two representations for intermediate
values of the bare coupling.

4.3 Estimation of È⇤Í
We now apply the tools developed in Sec. 4.2 to calcu-
late the expectation value È⇤Í as defined in Eq. (16).
The value of È⇤Í with respect to the system’s ground
state is an important quantity in LGTs, as it can be
related to the running of the coupling [31].

In the absence of dynamical matter, the total
Hamiltonian solely consists of the two gauge field con-
tributions. Therefore, we may determine a value gm
separating the regimes where either of the respective
representations is advantageous.

Let gm be the value of g for which the Fourier
fidelity in Eq. (31) is maximal with respect to the
ground state, i.e.

Fgm(l) = max
L>l

g

---ÈGS
(b)

(L, l, g)|F̂(L, l)|GS
(e)

(l, g)Í
--- .

(34)

Since the electric (magnetic) representation shows
exceeding performance in the strong (weak) coupling
regime, we can assume that for a given truncation l,
the best approximation is achieved by considering the
electric representation in the range g œ [gm, Œ) and
the magnetic one for g œ [0, gm] (compare also Sec. 4.2
and Fig. 3).

Fig. 4 shows È⇤Í for various truncations, derived
both in the electric [panel (a)] and magnetic [panel
(b)] representation. In the latter, we obtained the
Lopt values that have been used for plotting via the
sequence fidelity as described above. From here, the
true curve as it would be obtained from the untrun-
cated U(1) theory can be estimated via the asymp-
totic values of the di↵erent representations when the
truncation l is increased, since in the limit l æ Œ both
representations converge to the full theory. We exem-
plify such an estimation with the inset in Fig. 4(a),
that contains the results for di↵erent l at g

≠2
= 10.

The convergence can be clearly observed, and both
representations yield the same result up to the fourth
decimal at l = 10 (È⇤Í = 0.9572 ± 0.0001). Note that
this convergence is not necessarily monotonic. How-
ever, in the extremal regimes, we observe that the
expectation value of ⇤ increases with the truncation
l when employing the electric representation, while it
decreases with the magnetic one, for which we will
provide analytical arguments in App. D.

To summarize this section, we recall that a naive
approximation of U(1) with 2L+1 (with L fixed)

Figure 4: Estimation the plaquette operator. Panel (a)
displays the obtained curves in the electric representation,
where the line styles correspond to di�erent values of the
truncation l. For the magnetic representation in panel (b),
each point has been obtained via the optimisation of the
sequence fidelity over L. We stress the considerably higher
resource requirements (l) of the electric representation for
calculations in the regime g≠2 > 1. The inset in (a) shows
the values for the di�erent representations for all values of l
shown here when g≠2 = 10.

leads to dramatically increasing computational costs
when working on a wide range of g-values. As ex-
plained intuitively in Sec. 3, the problem originates
from the fact that 2L+1 converges not uniformly but
pointwise to U(1). For fixed resolution L and fixed
computational resources l, there is always a coupling
g small enough such that the Z2L+1 description dis-
plays freezing and hence cannot approximate the U(1)

continuum physics accurately. This can be under-
stood by noting that the magnetic field Hamiltonian
is gapless in both the continuum theory and in the
U(1)-lattice description, but gapped in the 2L+1-
formulation. For fixed L and decreasing g, the o↵-
diagonal elements in the Hamiltonian ĤE decrease
with respect to the energy gap in ĤB (as explained
in more detail in Sec. 4.1). If the energy in the sys-
tem becomes comparable to the gap, the di↵erence
between 2L+1 and the true gauge group U(1) be-
comes noticeable, which leads to the freezing e↵ect
(see Fig. 3). Crucially, working with a value of L

suitable for the regime g π 1 will lead to exploding
computational costs, i.e. will require very large val-
ues of l, in the intermediated coupling regime g ¥ 1

to capture the relevant physics there. Our solution
to this problem is the dynamical adjustment of the
parameter L with the coupling g, that allows us to
approximate U(1) well for a wide range of couplings
while including only a minimal number of states in
our simulation (see Fig. 2).

Accepted in Quantum 2021-01-20, click title to verify. Published under CC-BY 4.0. 14
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We developed a new representation of Hilbert space, that 
works in both limits of the coupling
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CWB, Grabowska, 2111.08015

Currently working on 
similar ideas for non-

Abelian gauge 
theories
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