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Who we are

• A particle physics lab at UTokyo, established 1974

• 10 PIs, ~20 scientific staff members, ~40 graduate students

• ATLAS, MEG, ILC, Belle 2, smaller-scale experiments (photons, 

positronium, neutrons, ...)


• One of the key strengths: HEP computing & software

• Hosts a computing grid site for ATLAS
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Why we are in the quantum business
Particle physics needs a computing breakthrough

• HEP research is compute-hungry

• Conventional computing cannot scale 

to the needs of near-future experiments


 
 
 
 
→ Can quantum computing be (a part of) the solution? 
    Combinatorial optimization, machine learning, physics simulation, ...
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At ICEPP:
2018

Exploratory projects

2020

Launch of IBM-UTokyo Lab

Joined university-wide QC 
initiative

2021

Dedicated division created

Full-time QC research staff added



Main research thrusts
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Quantum machine learning
• HEP data analysis

• Quantum data learning

Combinatorial optimization
• Charged particle tracking

Particle physics simulation
• HEP event generator

• Dynamics simulation

Understanding variational circuits

Circuit optimization

Efficient classical data encoding

Exploring NISQ applications



Variational quantum algorithm
• Iterative quantum-classical hybrid numerical optimizer


• Can be used for machine learning


• Considered a promising NISQ application 
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Quantum Machine Learning
K. Mitarai et al., arXiv:1803.00745
V. Havlicek et al., arXiv:1804.11326
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Iterative algorithm with quantum-classical hybrid calculation 
‣ Quantum ➡ Calculate expectation value of certain observable under quantum states produced from input data 
‣ Classical ➡ Calculate cost function and update parameters

〈 Z! 〉

Update ! 
parameters 

Evaluate cost 
function
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Quantum 
Calculation
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Classical Calculation
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Fig. 2 Uin(x) and U(✓) circuits used in this study for the
QCL algorithm.

both real quantum computer and simulator with small
samples.

2.1.1 Quantum Circuit Learning

A QCL circuit used in this study for the 3-variable
classification is shown in Fig. 2. The Uin(x) in QCL
is characterized by the series of single-qubit rotation
gates RY and RZ [19]. The angles of the rotation gates
are obtained from the input data x to be sin�1(x) and
cos�1(x2), respectively. The input data are needed to
be normalized within the range [�1, 1] by scaling lin-
early using the maximum and minimum values of the
input variables. The normalization is performed sepa-
rately for the training and testing samples to avoid data
beyond the [�1, 1] range. In this case, the classification
performance is slightly suboptimal for the testing sam-
ple. The e↵ect is however checked to be small by com-
paring the performance with the case where the testing
sample is normalized with the scaling derived from the
training sample and clipped to [�1, 1]. The U(✓) is con-
structed using a time-evolution gate, denoted as e�iHt,
with the Hamiltonian H of an Ising model with random
coe�cients (for creating entanglement between qubits)
and the series of RX , RZ and RX gates with angles as
parameters. The nominal Ndepth

var value is set to 3 af-
ter optimization studies. This results in 27 parameters
in total for the 3-variable case. The structure for the
5- and 7-variable circuits is the same as the 3-variable
case, leading to the total parameters of 45 and 63, re-
spectively. The measurement is performed on the first
two qubits using the Pauli-Z operators, and the out-
come of the measurement is fed into the cost function
via softmax. The cost function is defined using a cross-
entropy function in scikit-learn package [21], and the
minimization of the cost function is performed using
COBYLA. See [19] for more details about the imple-
mentation.
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Fig. 3 Uin(x) and U(✓) circuits used in this study for the
VQC algorithm.

2.1.2 Variational Quantum Classification

Figure 3 shows a VQC circuit for the 3-variable classi-
fication used in this study. The Uin(x) consists of a set
of Hadamard gates and rotation gates with angles from
the input data x (the latter is represented as U�(x) in
the figure). The U�(x) is composed of single-qubit ro-
tation gates of the form U�{k}(x) = exp (i�{k}(x)Zk), a
diagonal phase gate with the linear function of �{k}(x) =
xk. This is identical to the one used in Ref. [20] as the
single-qubit gate (see Eq. (32) of the supplementary in-
formation of Ref. [20]), and is referred to as the“First
Order Expansion” (FOE). The U�(x) is not repeated

in this study unless otherwise stated, thus Ndepth
in = 1.

The U(✓) part of the circuit is also taken from that in
[20] but simplified by not repeating a set of entangling
gate (Uent) and single-qubit rotation gates RY and RZ

(surrounded by the dashed box in Fig. 3). The Uent is
implemented using the Hadamard and CNOT gates, as
in Fig. 3. The total number of ✓ parameters is 12 (20,
28) for the 3 (5, 7)-variable classification. The measure-
ment is performed on all the qubits using the Pauli Z
operators, and the measured outcomes are fed into the
cost function. The cost function for the VQC algorithm
is a cross-entropy function and the minimization is per-
formed using COBYLA as well.

2.2 Classical Approaches

The ML application to the classification of events has
been widely attempted in HEP data analyses. Among
others, a Boosted Decision Tree (BDT) in the TMVA
framework [22] is one of the most commonly used algo-
rithms. A neural network (NN) is another class of multi-
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For example

Parametric circuit = “ansatz”



HEP event classification

Novel particle (SUSY) signature: 
2 ℓ± and large “missing energy”

Known-physics (background) signature: 
2 ℓ± and large “missing energy”

→ Discrimination only through 
distributions in the event feature space

(Classical) ML methods able to capture 
the difference. 
Can variational circuits too?
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! stransverse mass MT2: estimating the mass of particles
produced in pairs and decaying semi-invisibly17,18,

! T
Rel: T if DfZp/2, T sin(Df) if Dfop/2, where Df is the

minimum angle between T and a jet or lepton,
! razor quantities b,R and MR (ref. 19),
! super-razor quantities bRþ 1, cos(yRþ 1), DfR

b, MR
D, M

T
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ŝR
p

(ref. 20).

See Fig. 6 for distributions of these high-level features for both
signal and background processes.

A data set containing five million simulated collision events is
available for download at archive.ics.uci.edu/ml/datasets/SUSY.

Current approach. Standard techniques in high-energy physics
data analyses include feed-forward neural networks with a single
hidden layer and boosted decision trees. We use the widely-used
TMVA package21, which provides a standardized implementation
of common multivariate learning techniques and an excellent
performance baseline.

Deep learning. We explored the use of DNs as a practical tool for
applications in high-energy physics. Hyper-parameters were
chosen using a subset of the HIGGS data consisting of 2.6 million
training examples and 100,000 validation examples. Due to
computational costs, this optimization was not thorough, but
included combinations of the pre-training methods, network
architectures, initial learning rates and regularization methods
shown in Supplementary Table 3. We selected a five-layer neural
network with 300 hidden units in each layer, a learning rate of
0.05, and a weight decay coefficient of 1# 10$ 5. Pre-training,
extra hidden units and additional hidden layers significantly
increased training time without noticeably increasing perfor-
mance. To facilitate comparison, shallow neural networks were
trained with the same hyper-parameters and the same number of

units per hidden layer. Additional training details are provided in
the Methods section below.

The hyper-parameter optimization was performed using the
full set of HIGGS features. To investigate whether the neural
networks were able to learn the discriminative information
contained in the high-level features, we trained separate classifiers
for each of the three feature sets described above: low-level, high-
level and combined feature sets. For the SUSY benchmark, the
networks were trained with the same hyper-parameters chosen
for the HIGGS, as the data sets have similar characteristics and
the hyper-parameter search is computationally expensive.

Performance. Classifiers were tested on 500,000 simulated
examples generated from the same Monte Carlo procedures as
the training sets. We produced receiver operating characteristic
curves to illustrate the performance of the classifiers. Our primary
metric for comparison is the area under the receiver operating
characteristic curve (AUC), with larger AUC values indicating
higher classification accuracy across a range of threshold choices.

This metric is insightful, as it is directly connected to
classification accuracy, which is the quantity optimized for in
training. In practice, physicists may be interested in other metrics,
such as signal efficiency at some fixed background rejection or
discovery significance as calculated by P-value in the null
hypothesis. We choose AUC as it is a standard in machine
learning, and is closely correlated with the other metrics.
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Figure 5 | Low-level input features for SUSY benchmark. Distribution of
low-level features in simulated samples for the SUSY signal (black) and
background (red) benchmark processes.
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Figure 4 | Diagrams for SUSY benchmark. Example diagrams describing

the signal process involving hypothetical supersymmetric particles w% and

w0 along with charged leptons c% and neutrinos n (a) and the background
process involving W bosons (b). In both cases, the resulting observed
particles are two charged leptons, as neutrinos and w0 escape undetected.
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characteristic curve (AUC), with larger AUC values indicating
higher classification accuracy across a range of threshold choices.

This metric is insightful, as it is directly connected to
classification accuracy, which is the quantity optimized for in
training. In practice, physicists may be interested in other metrics,
such as signal efficiency at some fixed background rejection or
discovery significance as calculated by P-value in the null
hypothesis. We choose AUC as it is a standard in machine
learning, and is closely correlated with the other metrics.

Lepton 1 pT (GeV)

F
ra

ct
io

n 
of

 e
ve

nt
s

0

0.05

0.1

0.15

0.2

F
ra

ct
io

n 
of

 e
ve

nt
s

0

0.1

0.2

0.3

Sum jet pT

0

F
ra

ct
io

n 
of

 e
ve

nt
s

0

0.05

0.1

0.15

0.2

Missing trans. mom (GeV)

F
ra

ct
io

n 
of

 e
ve

nt
s

0

0.05

0.1

0.15

0.2

N jets

F
ra

ct
io

n 
of

 e
ve

nt
s

0

0.2

0.4

0.6

20015010050

0 200150100500 20015010050

0 20015010050

0 4321

Lepton 2 pT (GeV)

Figure 5 | Low-level input features for SUSY benchmark. Distribution of
low-level features in simulated samples for the SUSY signal (black) and
background (red) benchmark processes.
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Figure 4 | Diagrams for SUSY benchmark. Example diagrams describing

the signal process involving hypothetical supersymmetric particles w% and

w0 along with charged leptons c% and neutrinos n (a) and the background
process involving W bosons (b). In both cases, the resulting observed
particles are two charged leptons, as neutrinos and w0 escape undetected.
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‣ New physics beyond our knowledge of particle physics needed 
to address remaining mysteries (e.g, dark matter) 

‣ Supersymmetry (or SUSY in short) is one of the most plausible 
new physics theories
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Variational circuit learns small problems

Compared algorithms:

• Variational circuit (Quantum circuit learning) 

Mitarai et al. arXiv:1803.00745

• Deep neural network (DNN)

• Boosted decision tree (BDT)


Tested with 3/5/7 feature variables

Observations:

• QCL and fully trained DNN perform comparably 

when similar number of parameters

• QCL performance saturates with small training 

data set size


• Sufficiently large DNN and BDT models perform 
better than this particular QCL model

7

Simulator Results

7

Compared with classical ML methods: 
‣ BDT : Gradient boost, 1-3 max depth, 10-1000 #trees 
‣ DNN : Dense, 2-6 hidden layers, 16-256 nodes, RELU,  

Adam, εlearning=0.001

7-variables, 
Nevents=10000

QML performance is relatively "at in training 
sample size 
➡ Comparable to BDT/DNN at small samples  
      with small # of variables

Event Classification with Quantum Machine Learning in High-Energy Physics 9

Table 4 Number of trainable parameters used in the DNN
model of Table 1.

Ntrain
event Npar

Nvar = 3 Nvar = 5 Nvar = 7

100 353 385 417
500 625 657 689
1,000 4,481 4,609 4,737
5,000 12,801 12,929 13,057
10,000 12,801 12,929 13,057
50,000 50,117 50,433 50,689
100,000 50,117 50,433 50,689
200,000 330,241 330,753 331,265
500,000 330,241 330,753 331,265

U�(x) from FOE to SOE at fixed N
depth
in and N

depth
var .

On the other hand, no improvement is observed when
testing the SOE with a real quantum computer. More-
over, the standard deviation of the AUC values becomes
significantly larger for the SOE with quantum com-
puter. These could be qualitatively understood to be
due to increased errors from hardware noise because
the number of single- and two-qubit gate operations in-
creases by 60% when switching from the FOE to SOE
at Ndepth

in = N
depth
var = 1, therefore the VQC circuit with

SOE su↵ers more from the gate errors.

5.3 Comparison with DNN model with less number of
parameters

A characteristic di↵erence between the QCL and DNN
algorithms is on the number of trainable parameters
(Npar). As in Sect. 2.1, the Npar is fixed to 27 (45, 63)
for the QCL with 3 (5, 7) variable case. For the DNN
model in Table 1, the Npar varies with N

train
event as given

in Table 4. Typically the Npar of the DNN model is
about 6-13 times more than that of the QCL model
at N train

event = 100, and the ratio increases to 75-165 (200-
470) at N train

event = 1, 000 (10,000). Comparing the two al-
gorithms with a similar number of trainable parameters
could give more insight into the QCL performance and
reveal a potential advantage of the variational quantum
approach over the classical method. A new DNN model
is thus constructed to contain only one hidden layer
with 5 (6, 7) nodes for 3 (5, 7) variable case, resulting
in the Npar of 26 (43, 64). The rest of the model param-
eters is identical to that in Table 1. Shown in Fig. 11 is
the comparison of the AUC values for the new DNN and
QCL models at N

train
event  10, 000. It is indicated from

the figure that the QCL can learn more e�ciently than
the simple feed-forward network with the similar num-
ber of parameters when the sample size is below 1,000.
Exploiting this feature in the application to HEP data
analysis would be an interesting future subject.

Fig. 11 Average AUC values (calculated from the test sam-
ples) as a function of the training sample size up to Ntrain

event =
10, 000 for the new DNN and QCL models with Nvar = 3
(circles), 5 (squares) and 7 (triangles). The error bars repre-
sent the standard deviations of the average AUC values. The
DNN points are slightly shifted horizontally from the nominal
Ntrain

event values to avoid overlapping.

5.4 CPU/memory usages for QCL implementation

The QCL algorithm runs on the Qulacs simulator with
cloud Linux servers, as described in Sect. 3.2. Under
this condition, we examine how the computational re-
sources scale with the problem size. For the creation of
input quantum states with Uin(x), both CPU time and
memory usage grow approximately linearly withNvar or
N

train
event. The creation of the variational quantum states

with U(✓) shows an exponential increase in CPU time
and memory usage with Nvar (i.e, number of qubits) up
to Nvar = 12, roughly a factor 8 (4) increase in CPU
time (memory) by incrementing the Nvar by one. The
overall CPU time is by far dominated by the minimiza-
tion process with COBYLA. It increases linearly with
N

train
event but grows exponentially with Nvar, making it

impractical to run the algorithm a su�cient number of
times for Nvar ⇠ 10 or more. The memory usage stays
constant over Nvar during the COBYLA minimization
process.

6 Conclusion

In this paper, we present studies of quantum machine
learning for the event classification, commonly used as
the application of conventional machine learning tech-
niques to high-energy physics. The studies focus on the
application of variational quantum algorithms using the
implementations in QCL and VQC, and evaluate the

2002.09935

https://arxiv.org/abs/2002.09935


Quantum data learning
Quantum data = quantum state as input

• Output of e.g. quantum sensors

• Final state of quantum simulations

• Ground state of a Hamiltonian obtained 

from variational quantum eigensolver[1]


Preliminary studies indicate ability to 
learn & generalize 
Now investigating quantum field theory questions

8

Uin(x) U(θ)|0⟩

{xinput, ylabel}

L(θ)
= |ylabel − ypred |

e−iH{g}t U(θ)|ψinit⟩

{g, ylabel}

L(θ)
= |g − gpred |

Classical data learning example

Quantum data learning example

(output of dynamics simulation)

[1] Peruzzo et al. Nat. Comm. 5, 4213

[2] Bauer et al. PRL 126, 062001

f1
$

f2
$

training sample

testing sample

9

Determination of PS Properties (II)

Can infer g value for |!〉 state that 
is not present in the training! 

Distinguish f1 and f2 by 
leaning the emission 
angle (phase) of ! Predict g value by 

learning the |!〉 state

Learn state of emitted !-boson 
system to extract 

•Initial fermion !avor 

•f -! coupling constant f

$
f1/2

g

$

Predicting the coupling constant in the quantum 
parton shower simulation[2] given the final state

https://www.nature.com/articles/ncomms5213
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.062001


Executing a long circuit on NISQ

Can a circuit be executed beyond the coherence time on NISQ?


Use quantum pseudo-memory: Stop-save-resume

1. Execute U1

2. Approximate the state with V1(θ1) 

(shorter than U1)


3. Execute U2V1(θ1)

4. Approximate the state with V2(θ2)

continue..

9

U1 U2 U3

U1 V1(θ1)≃

V1(θ1) U2 V2(θ2)≃

V2(θ2) U3 V3(θ3)≃

Similar ideas presented in

• Otten et al. 1910.06284 (“Restarted quantum dynamics”)

• Berthusen et al. 2112.12654 (“Variational Trotter compression”)

https://arxiv.org/abs/1910.06284
https://arxiv.org/abs/2112.12654


Approximation = “quantum compilation”

Vn(θn) are parametrized circuits:


→ “Quantum-assisted quantum compiling (fixed input state)” 
     (Khatri et al. Quantum 3, 140)


• In principle applicable to any circuit

• In practice used for quantum dynamics simulation 

Trotter decomposition = iterative simulation 
→ Valid observables from intermediate states 
→ Easy to gauge the performance of the method

10

U1 [V1(θ1)]†|0⟩ P0 = |⟨0 |[V1(θ1)]† U1 |0⟩ |2

Find θ1 that maximizes P0



Simulation of the Schwinger model
11

Forward circuit (U):

Approximator (V†): 

Result:
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X
A (θ0,0,φ0,0) A (θ1,0,φ1,0)

A (θ0,2,φ0,2) A (θ1,2,φ1,2)
X

A (θ0,1,φ0,1) A (θ1,1,φ1,1)

(a) 4サイト格子シュウィンガーモデルの RQDによる時間発展シミュレーションで用いたアンザッツ.

X
A (θ0,0,φ0,0)

(b) 2サイト格子シュウィンガーモデルの RQDによる時間発展シミュレーションで用いたアンザッツ.

図 5.6

手法 深さ ゲート数
√
X X RZ CNOT

トロッター分解 563 306 0 409 102

RQD 15 4 1 6 3

(a) 時刻 0.6π のシミュレーションに用いた量子回路の深さと
ゲート数.

(b) 数密度の時間発展. 青い線はハミルトニアン Hspin の厳密対
角化により求まる理論値を示している. オレンジ色の点はト
ロッター分解を用いた場合, 緑色の点は RQD を用いた場合
に対応している.

図 5.7: ibm lagos を用いた 2 サイト格子シュウィンガーモデルの時間発展. トロッター分解に依る手法と RQD に依る
手法を比較した.

Lattice Schwinger Model 
Schwinger model = QED in 1+1 dimensions 

In temporal gauge ( ), , and  

On a lattice: Kogut-Susskind Hamiltonian 

where  and  ( : lattice spacing)

A0 = 0 L := 1/g2∂0A1 ψ = (ξ, η)T

w = 1/a J = g2/2a a

8

ℒ = − 1
4g2 FμνFμν + ψ̄(iγμDμ − m)ψ μ, ν = 0,1

(Fμν = ∂μAν − ∂νAμ, Dμ = ∂μ − iAμ)

H = − iw
N−2

∑
n=0

[Φ†
neiθnΦn+1 − h . c . ] + J

N−2

∑
n=0

L2
n − m

N−1

∑
n=0

(−1)nΦ†
nΦn

ℋ = g2

2 L2 − iξ†(∂ + A)ξ + iη†(∂ + A)η + m(η†ξ + ξ†η)

Experiment (Martinez et al.): https://www.nature.com/articles/nature18318 
Original (Kogut & Susskind): https://doi.org/10.1103/PhysRevD.11.395

Schwinger model = 1+1 dimensional quantum electrodynamics

→ Qubit representation of the Hamiltonian (spatially discretized) well known[1]

[1] Kogut et al. PRD 11, 395
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∏
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jk ∆TZjZk の各項 e−iαZZ

jk ∆TZjZk の量子ゲートによる実装.

図 5.3: e−iHZ∆T , e−iHXY ∆T , e−iHZZ∆T の量子ゲートによる実装.

ステップの時間発展演算子を
Utrot (∆T ) := e−iHZ∆T e−iHXY ∆T e−iHZZ∆T (5.18)

=




n−1∏

j=0

e−iαZ
j ∆TZj








n−2∏

j=0

e−iαXY
j ∆T (XjXj+1+YjYj+1)








n−3∏

j=0

n−2∏

k=j+1

e−iαZZ
j ∆TZjZk



 (5.19)

とする. ここで, e−iHZ∆T , e−iHXY ∆T , e−iHZZ∆T はぞれぞれ 図 5.3a, 図 5.3b, 図 5.3cで表される量子ゲー
トを用いて実装できる. 一般に, トロッター分解によって, 系の対称性が必ずしも保たれるとは限らないことに
注意しなければならない. しかしながら, 今の場合, [Q,Utrot (∆T )] = 0であるから, Utrot (∆T )に依る時間発
展によって電荷 Qの保存則は保たれる.

5.4.2 アンザッツ: 粒子数保存アンザッツ
RQDが NISQの雑音下でも機能するためには, Utrot (∆T )を系の対称性を保存するアンザッツによって近
似することが必要である [11]. 本論文では, 格子シュウィンガーモデルの電荷 Qの保存則を実現するために,

粒子数保存アンザッツを用いた.

まず, n量子ビット系を記述する複素内積空間Hの部分空間Hn,m (m = 0, 1, . . . , n)を
Hn,m = span

{
n−1⊗

k=0

|ik〉 | ik ∈ {0, 1},
n−1∑

k=0

ik = m

}
(5.20)
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展によって電荷 Qの保存則は保たれる.
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RQDが NISQの雑音下でも機能するためには, Utrot (∆T )を系の対称性を保存するアンザッツによって近
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j=0

n−2∏

k=j+1

e−iαZZ
j ∆TZjZk



 (5.19)

とする. ここで, e−iHZ∆T , e−iHXY ∆T , e−iHZZ∆T はぞれぞれ 図 5.3a, 図 5.3b, 図 5.3cで表される量子ゲー
トを用いて実装できる. 一般に, トロッター分解によって, 系の対称性が必ずしも保たれるとは限らないことに
注意しなければならない. しかしながら, 今の場合, [Q,Utrot (∆T )] = 0であるから, Utrot (∆T )に依る時間発
展によって電荷 Qの保存則は保たれる.

5.4.2 アンザッツ: 粒子数保存アンザッツ
RQDが NISQの雑音下でも機能するためには, Utrot (∆T )を系の対称性を保存するアンザッツによって近
似することが必要である [11]. 本論文では, 格子シュウィンガーモデルの電荷 Qの保存則を実現するために,

粒子数保存アンザッツを用いた.

まず, n量子ビット系を記述する複素内積空間Hの部分空間Hn,m (m = 0, 1, . . . , n)を
Hn,m = span

{
n−1⊗

k=0

|ik〉 | ik ∈ {0, 1},
n−1∑

k=0

ik = m

}
(5.20)
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と定義し, mを粒子数と呼ぶ. すると, H =
⊕n

m=0 Hn,m である. また, Hn,m は, n量子ビットのうち, m量
子ビットが |1〉, n−m量子ビットが |0〉となっている量子状態を正規直交基底として持つ. したがって, Hn,m

の次元 dn,m は nCm となる.

n サイト格子シュウィンガーモデルの電荷 Q の固有値 q の固有空間は, Hn,n2 −q である. これは, 次の
ように確かめられる. まず, q ≥ 0 とする. このとき, 電荷 q の系の状態は電子が k 個, 陽電子が q + k

個 (k = 0, 1, . . . , n
2 − q)の状態の重ね合わせである. 今, 奇数番目の量子ビットの |1〉が電子の存在に, 偶数番

目の量子ビットの |0〉が陽電子の存在に対応させる描像をとっていることを思い出しておく. すると, 陽電子
が q + k 個, 電子が k 個の状態を量子ビット上で表現すると, 粒子数 k + (n/2− (q + k)) = n

2 − q の量子状態
となる. また, 陽電子が q + k 個, 電子が k 個の状態が張る空間の次元は, n

2
Ck · n

2
Cq+k であるから, 電荷 q の

固有空間の次元は,
∑n

2 −q
k=0

n
2
Cq+k · n

2
Ck = nCn

2 −q = dn,n2 −q である*2. 以上より, q ≥ 0のとき, 電荷 Qの固
有値 q の固有空間は, Hn,n2 −q であることが言えた. q < 0の場合も同様に示すことができる. したがって, 格
子シュウィンガーモデルの電荷 Qの保存則は, 量子ビット上の粒子数の保存則と言い換えることができる.

そこで, 量子ビット上の粒子数保存を満たす粒子数保存アンザッツと呼ばれるアンザッツを考える. 粒子数
保存アンザッツの最も単純なものは特に Aゲート [11]と呼ばれる. Aゲート A (θ,φ)は, 2量子ビットに作用
する量子ゲートで, 計算基底 {|00〉 , |01〉 , |10〉 , |11〉}による行列表現

A (θ,φ) =





1 0 0 0

0 sin θ eiφ cos θ 0

0 e−iφ cos θ − sin θ 0

0 0 0 1




(θ ∈ [0, 2π) , φ ∈ [0, 2π)) (5.21)

によって定義される. Aゲートは RY , RZ , CNOTゲートを用いて,

•

• RZ(−φ) RY (−θ) RY (θ) RZ(φ) •

のように構成できる. |00〉 や |11〉 に対して, A ゲートが作用しても状態は変化しない. 一方で, A ゲートは,

H2,1 の量子状態を H2,1 の量子状態に写す. したがって, |ψ〉 ∈ H2,m であれば, A (θ,φ) |ψ〉 ∈ H2,m である.

つまり, Aゲートは粒子数mを保存する量子ゲートと言える.

粒子数保存アンザッツは, Aゲートを複数用いることで実現できる. 形式的に, n量子ビットに作用する L

層の粒子数保存アンザッツ An,L (θ = (θl,i)l,i,φ = (φl,i)l,i)を
An,L (θ,φ) =

L−1∏

l=0

Ãn

(
(θl,i)

n−2
i=0 , (φl,i)

n−2
i=0

)
(5.22)

によって定義する. ここで, Ãn

(
(θl,i)

n−2
i=0 , (φl,i)

n−2
i=0

)は, 粒子数保存アンザッツ An,L (θ,φ)の第 l 層に対応

*2 xに関する恒等式∑n
j=0 nCjxj = (x+ 1)n = (x+ 1)

n
2 (x+ 1)

n
2 =

∑n
2
j1=0

∑n
2
j2=0

n
2
Cj1 · n

2
Cj2x

j1+j2 の x
n
2 −q の係数を

見れば, nCn
2 −q =

∑n
2 −q

k=0
n
2
Cq+k · n

2
Ck を得る.
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X
A (θ0,0,φ0,0) A (θ1,0,φ1,0)

A (θ0,2,φ0,2) A (θ1,2,φ1,2)
X

A (θ0,1,φ0,1) A (θ1,1,φ1,1)

(a) 4サイト格子シュウィンガーモデルの RQDによる時間発展シミュレーションで用いたアンザッツ.

X
A (θ0,0,φ0,0)

(b) 2サイト格子シュウィンガーモデルの RQDによる時間発展シミュレーションで用いたアンザッツ.

図 5.6

手法 深さ ゲート数
√
X X RZ CNOT

トロッター分解 563 306 0 409 102

RQD 15 4 1 6 3

(a) 時刻 0.6π のシミュレーションに用いた量子回路の深さと
ゲート数.

(b) 数密度の時間発展. 青い線はハミルトニアン Hspin の厳密対
角化により求まる理論値を示している. オレンジ色の点はト
ロッター分解を用いた場合, 緑色の点は RQD を用いた場合
に対応している.

図 5.7: ibm lagos を用いた 2 サイト格子シュウィンガーモデルの時間発展. トロッター分解に依る手法と RQD に依る
手法を比較した.

[ ]×3

Straight dynamics simulation

→ Decoheres after a few steps 

Restarted dynamics every 3 steps

Hamiltonian diagonalization

Graduate thesis, R. Okubo (2022)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.11.395
https://www.icepp.s.u-tokyo.ac.jp/download/master/m2021_okubo.pdf


HEP simulation would not be just long

The most straightforward application of QC to HEP: 
Quantum field theory simulation

Full recipe known since a while 
e.g. Jordan et al. Science 336, 1130 (2012):

• Discretize space

• 1 quantum register per lattice point (field value) 

or

• 1 quantum register per momentum mode (Fock occupation number)


Is a fault-tolerant quantum computer all we need? 
→ Not really; qubit requirement prohibitive

For a bosonic field, 
V lattice sites, occupation number cutoff N → VlogN qubits


12

© University of Adelaide

|ψ⟩ = ∑
K

βK |nK1nK2…nKV⟩

0, 1, 2, ... N-1
N=25, V=1003 → VlogN=5M

https://doi.org/10.1126/science.1217069


Qubit-efficient scattering simulation
What if we focus on scattering in the perturbative regime?


Regard the problem as a few-body quantum mechanics:


Max N total particles, V possible momenta → NlogV qubits


S-matrix = infinite-time evolution 
→ HEP event generator from Trotter simulation?

Mode of operation:

• Initialize with incoming particles

• Run a long-time dynamics simulation

• Measure the momenta values → One N-particle final state sampled

13

+⟨p1p2 |S |q1q2⟩ = + + ...

4 particles 6 particles 8 particles

N=25, V=1003 → NlogV~640

|0 … 0 1 0 … 0 1 0…⟩ ↔ 1

2 ( |pi pj⟩ + |pj pi⟩)i j

In a very very early stage



VQA cost function landscape

“Barren plateau”: 
Gradients of sufficiently deep parametric circuits 
suppressed exponentially wrt number of qubits[1]

• Known to hold for most common ansatze

• Drawback for real-world applicability of NISQ


We have identified the relation between gradient 
suppression and

• Ansatz expressibility

• Dimensionality of the ansatz domain

→ Guides the use of VQA in all three thrusts

14

Cost Function Landscape in VQA
High expressibility in quantum Hilbert space causes gradients to be exponentially suppressed 
with the number of qubits   ➔  “Barren Plateau” problem 
‣ Potentially fundamental bottleneck if one tries to achieve quantum advantage with VQA

Barren plateau in VQA cost function landscape

Definition 1 (Barren plateau)

Consider the VQA cost funcion C (θ) = 〈ψ|U (θ)† OU (θ) |ψ〉, where
|ψ〉 ∈ C2n is a n-qubit quantum state, U (θ) is unitary and O is
hermitian. This cost exhibits a barren plateau if

Eθ∼uniform dist.

[
∂C (θ)

∂θi

]
= 0,Vθ∼uniform dist.

[
∂C (θ)

∂θi

]
= O

(
b−n

)

holds for some θi ∈ θ and b > 1.

10 / 33

Barren plateau phenomena depend on 
the type and depth of ansatz circuit

Understanding where/how barren 
plateau appears is crucial for practical 
applications of VQA to
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[1] McLean et al. Nat. Comm. 9, 4812

Manuscript in preparation



Circuit optimization
15

2102.10008

量子回路の最適化プロセス

2021/9/17 Wonho Jang 日本物理学会（第76回年次大会）
43

1つ目のCX 2つ目のCX CCX
直前の量子状態 |000 > |010 > 1

2
|011 > + 1

2
|111 >

制御ビット上のビット列 ‘0’ ‘1’ ’01’, ’11’
最適化 CXの削除 ビット制御の削除 2つ目のビット制御の削除

native gate数：19 native gate数：4

※native gate : 実機で使えるゲート（U1, U2, U3, CXのみ）
→全てのゲートをnative gateに分解する必要がある！

CXの消去 ビット制御の消去 ビット制御の消去

※初期状態によって様々な最適化

Infinitely many ways to write a circuit for a given algorithm 
+ 

NISQ is coherence-time and gate-noise limited

→ Circuit optimization is a crucial technique

AQCEL (Advancing Quantum Circuit by ICEPP and LBNL) 
= Initial-state dependent circuit optimization


Circuits can be simplified by taking the initial state into account:

https://arxiv.org/abs/2102.10008


AQCEL cut gate counts by 70%
Benchmarking problem: quantum parton shower[1]

16
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Quantum Circuit Optimization

‣ Removal of redundant qubit controls by identifying zero- or low-amplitude basis states 
‣ Removal of redundant gates
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Removal of redundant gates

Removal of redundant qubit controls

Continues…

Developed a novel optimization protocol called AQCEL :

[1] Bauer et al. PRL 126, 062001

Compared the optimization performance between AQCEL and t|ket  from Cambridge Quantum Computing⟩

‣ Signi!cant gate reduction achieved for parton shower simulation by AQCEL 
‣ Further gate reduction possible by AQCEL if circuit optimized using hardware measurements

24

70% reduction! #Gates Original t|ket〉 AQCEL 
(Classical)

AQCEL 
(Quantum)

CNOT 527 616 178 (34%) 64 (12%)

U1,2,3 362 331 102 (28%) 24 (7%)

All 889 947 280 (31%) 88 (10%)

Circuit Optimization for Parton Shower Simulation

Number of native gates in quantum parton shower circuit*

* 1 splitting step only

Accuracy??

Figure 14: Fidelity Fmeas versus the number of CNOT gates (left) and fidelities Fmeas versus Fsim (right) for the

one-branching step QPS circuit transpiled considering ibmq_sydney topology before and after optimization under

di�erent schemes. These transpiled circuits are executed on ibmq_sydney to obtain the Fmeas and a statevector

simulator to obtain the Fsim.

4 Discussion
4.1 Applicability of proposed heuristic opti-
mization
The core component of the proposed heuristic
circuit optimization is the identification of com-
putational basis states with nonzero amplitudes
and the subsequent elimination of redundant con-
trolled operations. Therefore, Aqcel is expected
to work more efficiently for quantum algorithms
in which the quantum state has a small number
of high-amplitude computational basis states. In
other words, if all the computational basis states
have non-negligible amplitudes, Aqcel would
not be effective. An example of when Aqcel
is not effective is a quantum algorithm where an
equal superposition state is first created by apply-
ing H¢n to the initial |0Í

¢n state of the n-qubit
system, such as Quantum Phase Estimation [50]
and Grover’s Algorithm.

4.2 Possibility of further simplifications
For certain quantum circuits, there is a case
where there are successive multi-qubit controlled
gates acting with the same control qubits. One
example is in the QPS simulation circuit (Fig. 4).
The circuit determines if an emission happens
and which particle radiates or splits, depending
on the total counts of particles of each type.
These steps (corresponding to the blocks with
controlled unitary operations denoted by U (m)

e

and Uh in Fig. 4) require a lot of successive multi-

ple controlled operations that share the same con-
trol qubits. In this case, if the circuit is expanded
by adding an ancilla qubit and the triggering de-
cision of the control qubits is stored into the an-
cilla qubit, the remaining multi-qubit controlled
gates can be controlled by the ancilla. A poten-
tial caveat is that adding ancilla qubits might in-
troduce additional SWAP gates when implement-
ing the circuit to hardware. However, since this
approach does not depend on the amplitudes of
computational basis states of a given circuit state,
it is complementary to the Aqcel optimization
scheme and will open the possibility of reducing
the overall gate counts further.

Another interesting possibility is that if a cir-
cuit turns out to contain only a small number of
basis states, the circuit state can be represented
using fewer qubits than the original ones. Given
that this might require a completely new compu-
tational basis, this is left for future work.

4.3 Implication to hardware implementations
of quantum circuits

The techniques introduced in the Aqcel pro-
tocol, i.e., identification of most-frequently-
appearing sets of quantum gates as RSGs and the
removal of redundant qubit control operations,
have implications to hardware implementation of
quantum circuits.

First, the RSGs would be a prioritized target
for better mapping to quantum hardware. For
the QPS algorithm, the RSGs contain multi-qubit
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Algorithmic similarity 
to original circuit

Fidelity of final state evaluated on IBMQ

Circuit simplified while 
retaining algorithmic identity



Collaborators welcome

• We would love to work together with anyone interested in QC 
application to scientific / nonscientific problems

• Particle physicist or otherwise

• After all, why else is this workshop taking place?


• Only introduced HEP-oriented applications in this talk

• We have a broader portfolio
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