Detecting ultraweak forces (e.g. from dark matter) with quantum sensing technologies

Aaron S. Chou (Fermilab)

Physics Frontiers with Quantum Science and Technology workshop University of Tokyo, March 9, 2022

Low mass dark matter generically takes the form of classical bosonic sine waves

For **mass < 70 eV**, Fermion degeneracy pressure would cause dark matter clumps to swell up to be larger than the size of the smallest dwarf galaxies. (Randall, Scholtz, Unwin 2017)

> → If lower mass, dark matter must be coherent bosonic sine waves with macroscopic mode occupation number >>1

For example, axion dark matter = waves of oscillating θ_{CP}

Locally coherent oscillation of the QCD θ angle about its CP-conserving minimum:

$$\theta(x,t) = \theta_{\max} e^{i(kx - m_a t)}$$

wh

ere
$$\theta_{\rm max} = \sqrt{rac{2
ho_a}{\Lambda_{
m QCD}^4}} \approx 3.7 \times 10^{-19} {
m radians}$$

DM oscillations partially undo the Peccei-Quinn mechanism by enabling the coherent field condensate to climb out of the potential minimum.

Topological magneto-electric effect: Classically oscillating angle θ :

- **Rotates B-fields into E-fields** •
- **Creates AC nucleon EDMs** •
- Creates AC torques on fermion spins •

Football stadium-sized regions of coherently oscillating classical sine waves slowly drifting through detectors. Mean DM occupation number N>10²² per mode.

signals in various kinds of laboratory oscillators which are weakly coupled to the DM wave

The Dark Matter Haloscope: Classical axion wave drives RF cavity mode

Pierre Sikivie, Phys.Rev.Lett. 51, 1415 (1983)

 In a constant background B₀ field, the oscillating axion field acts as an exotic, space-filling current source

$$\vec{J_a}(t) = -g\theta \vec{B_0} m_a e^{im_a t}$$

which drives E&M via Faraday's law:

$$\vec{\nabla} \times \vec{H_r} - \frac{d\vec{D_r}}{dt} = \vec{J_a}$$

 Periodic cavity boundary conditions extend the coherent interaction time (cavity size ≈ 1/m_a) → the exotic current excites standing-wave RF fields.

A spatially-uniform cavity mode can **optimally** extract power from the dark matter wave

$$P_a(t) = \int \vec{J}_a(t) \cdot \vec{E}_r(t) \ dV$$

Axions vs WIMPs:

Resonant scattering if size of scattering target = 1/(momentum transfer)

4 μeV mass axions scatter on 50cm size microwave cavities

Energy transfer between axion and photon

Weak coupling -- takes many swings to fully transfer the wave amplitude. In real life, **Q** = number of useful swings is limited by coherence time.

Only a small amplitude displacement of the photon field can be accumulated over the cavity or axion coherence time

The signal will be tiny!

A classical sine wave is described by a rotating phasor:

The energy oscillates between potential energy and kinetic energy, as parameterized by the **position X** and **momentum P**.

$$egin{aligned} H &= rac{p^2}{2m} + rac{1}{2}m\omega^2 x^2, \ &= \hbar\omega(a^\dagger a + 1/2) \end{aligned}$$

For photons, "X" and "P" are the cosine and sine quadratures of the electric field oscillation.

2nd quantization: [X,P]=i even for internal field quadratures (since these can drive mechanical oscillators.)

Due to limited coherence time << mixing period, the axion wave displaces the cavity vacuum state by an amount much smaller than the zero-point vacuum noise

Standard quantum limit: As T→0, even the best phase-preserving amplifiers have an irreducible zero-point noise floor of +/-1 photon/mode (Carlton Caves, 1982)

Simultaneous measurement of non-commuting observables N and φ incurs the Heisenberg uncertainty principle $\Delta N \times \Delta \varphi \ge \frac{1}{2}$. The blob is effectively the probe resolution.

Need millions of power spectrum measurements to average away the zero-point noise.

Amplifiers = scattering process via nonlinear 4-wave mixing

Ex. Josephson Traveling Wave Parametric Amplifier uses Josephson waveguide with >2000 aluminum Josephson junctions as the nonlinear inductive elements

Macklin, et.al Science (2015)

Aaron S. Chou, U.Tokyo workshop, March 9, 2022

2017: 30-year axion R&D program culminates in first sensitivity to DFSZ axions

PRL 120, 151301 (2018)

ADMX at U.Washington, FNAL = DOE lead lab

Look for "spontaneous" emission from local axion dark matter into the empty cavity mode.

Operate an ultrasensitive radio in a cold, RF-shielded box to tune in to the axion broadcast.

Signal power level = 10⁻²³ W Need 15 minutes integration per radio tuning to beat thermal noise power at 500 mK.

The predicted axion DM signal/noise ratio plummets as the axion mass increases \rightarrow SQL readout is not scalable.

Aaron S. Chou, U.Tokyo workshop, March 9, 2022

To further reduce readout noise, use photon counting to measure displacement using the Fock basis, i.e. number eigenstates

Previously we measured *both amplitude and phase*, but this is dumb since the axion phase is randomized every coherence time. Useless information obtained at high cost!

Quantum non-demolition "off-shell" sensors transduce photon occupation numbers into atomic frequency shifts

Index of refraction diagrams:

Atomic clocks slow down when interacting with a bath of background photons

The photon occupation number of the cavity mode is encoded as a frequency shift of the probe atom. (Similar to neutrino "matter effects.")

Being far off-resonance of ψ^* results in **no net absorption** of photons.

Quantum non-demolition: indirectly measure the same photon many times (via atom's frequency shift) to achieve higher measurement fidelity.

Serge Haroche 2012 Nobel prize

Cavity QED: Use 2-level atom to measure cavity photon population

The 1st order non-linearity in (number operator)² in the undiagonalized Hamiltonian is:

$$H \approx \hbar \omega_{\rm r} \left(a^{\dagger} a + 1/2 \right) + \frac{\hbar}{2} \left(\omega_{\rm a} + \frac{2g^2}{\Delta} a^{\dagger} a + \frac{g^2}{\Delta} \right) \sigma_{\rm z} \qquad \begin{array}{c} g \approx \vec{d} \cdot \vec{E_0} \approx d\sqrt{\omega/V} \\ \Delta = \omega_{\rm r} \cdot \omega_{\rm a} \end{array}$$

The atom frequency depends on the cavity resonator's occupation number! Quantized frequency shift of $2\chi = 2g^2/\Delta$ per photon in the cavity mode. This product of number operators commutes with H and allows QND measurement.

Use artificial atoms made of superconducting "transmon" qubits to nondestructively sense photons

A.S. Chou, Dave Schuster, Akash Dixit, Ankur Agrawal, ... $H \approx \hbar \omega_r a^{\dagger} a + \frac{\hbar}{2} (\omega'_a + 2\chi a^{\dagger} a) \sigma_z$

The electric field of individual photons exercises the nonlinear inductance of the Josephson junction. Photon number is transduced into frequency shifts of the $|g\rangle \rightarrow |e\rangle$ transition. Same as Lamb shift, but for finite photon number.

Aaron S. Chou, U.Tokyo workshop, March 9, 2022

Single photon resolution:

Measure qubit $|g\rangle \rightarrow |e\rangle$ transition frequencies after weakly driving the primary cavity mode into a Glauber coherent state with <n>=1

The measured qubit spectrum exhibits a distribution of resonances which are in 1-1 correspondence with the Poisson distribution of the cavity's coherent state.

Non-destructively count photons by measuring the qubit's quantized frequency shift.

If signal ϵ [0,1], perform Ramsey interferometry with the oscillating qubit "clock" to measure cavity photon number even/odd parity

Just like asking in an oscillation experiment, do the neutrinos see "matter effects" or not? If there is a photon, the clock runs slower. If no photon, the clock runs faster.

The qubit's "spin" flips only if a cavity photon is present.

Measure final qubit state $|g\rangle$ or $|e\rangle$ via freq. shift of an auxiliary cavity mode.

Aaron S. Chou, U.Tokyo workshop, March 9, 2022

Signature of a single signal photon is many sequential successful qubit "spin-flips" from $|g\rangle \leftrightarrow |e\rangle$

Trigger on photons by placing threshold λ on MCMC probability ratio Prob(γ)/Prob(no γ) for observed spin-flip sequence

Akash V. Dixit, et.al, Phys.Rev.Lett. 126, 141302 (2021)

Background = **10⁻³ photons** per measurement (from leakage?)

Compare to amplifier readout which gives +/- **1 photon** of zero-point variance per measurement.

Noise equivalent of 15.7 dB of squeezing!

Single frequency dark photon sensitivity:

15,141 measurements over **12.81 s** run time with superconducting Al cavity.

Quantum Zeno effect: continuously watched system does not evolve. Cadence: 546 μ s signal accumulation + 300 μ s measurement = 65% duty cycle