

**Physics Frontiers with
Quantum Science and Technology**

Short Summary

19 excellent talks covering a wide range of topics including

- ‣ quantum computing/sensor technologies and recent developments
-
- ‣ future prospects in quantum technologies

‣ applications to particle physics, astrophysics, material science, photon science, ..

Thank you all for joining the workshop and discussion!

Quantum sensor/computer developments and physics applications: 1¶ Quantum sensor/computer developments and physics applications: 2¶ Ø Europe-Friendly time (16:00-19:00 JST) **Quantum computer/sensor developments and physics applications: 1¶ Quantum computer/sensor developments and physics applications: 2¶ Quantum computer/sensor applications for physics: 1¶ Quantum computer/sensor applications for physics: 2¶** Ø Europe-Friendly time (16:00-19:10 JST) **Quantum computer applications for physics: 3¶ Quantum-computer applications for physics: 4¶**

Robert McDermott (U. of Wisconsin Madison)

Controlled study of phonon-mediated QP poisoning

Christopher Eichler (ETH Zurich)

Time (μs) 12.5 15.0 Number of QEC cycles n

 $n = 2 (l = 0, 1)$

ex. Hydrogen

Hiroki Takahashi (OIST) $\frac{4}{\text{Distance}(\text{Å})}$ $\frac{8}{10}$ **Extension to a linear trap** - Optical fibre ions **RF** Fibre cavity fiber electrodes **If gnd** $500 \mu m$ • Cavity coupled to an ion in string. Can only trap a single Fibers shielded by the electrodes. \bullet

Short summary Hata et al., Nature Comm. 12, 3233 (2021).

- First detection of 3-body correlations in quantum liquids
- Solved 20-years mystery of Kondo splitting
- Step toward more complex quantum many-body systems in non-eq. regime

Kensuke Kobayashi (U. of Tokyo)

Diamond quantum sensor

NV (nitrogen-vacancy) center = Atomic size sensitive sensor for magnetic field* & temperature

New tool for meso. physics

- Non-eq.: heat & spin current
- Nano-magnetism
- Topological edge states
- Phase transitions
- Superconducting vortex ...

At the atomic level in real time

*Proposal: Maze et al., Nature 455, 644 (2008); Degen, Appl. Phys. Lett. 92, 243111 (2008); Taylor et al., Nature Phys. 4, 810 (2008); Balasubramanian et al., Nature 455, 648 (2008).

 \mathscr{F}_{s}

 $21/26$

Use artificial atoms made of superconducting
"transmon" qubits to nondestructively sense photons"

A.S. Chou, Dave Schuster, Akash Dixit, Ankur Agrawal, ...

The electric field of individual photons exercises the nonlinear inductance of the Josephson junction. **Photon number is transduced into frequency shifts of the** $|g\rangle \rightarrow |e\rangle$ **transition.** Same as Lamb shift, but for fini

Aaron S. Chou, U.Tokyo workshop, March 9, 2022

$H \approx \hbar \omega_r a^{\dagger} a + \frac{\hbar}{2} (\omega_a^{\prime} + 2\chi a^{\dagger} a) \sigma_z$

17

Aaron Chou (Fermilab)

Single photon resolution:

Measure qubit $|g\rangle \rightarrow |e\rangle$ transition frequencies after weakly driving the primary cavity mode into a Glauber coherent state with <n>=1

The measured qubit spectrum exhibits a distribution of resonances which are in 1-1 correspondence with the Poisson distribution of the cavity's coherent state.

Non-destructively count photons by measuring the qubit's quantized frequency shift.

Aaron S. Chou, U.Tokyo workshop, March 9, 2022

Atom interferometry

Jason Hogan (Stanford U.)

MAGIS-100: Detector prototype at Fermilab

5

A. Romanenko et al, Phys. Rev. Applied 13, 034032, 2020

Anna Grassellino (Fermilab)

SQMS new facilities and instrumentation being developed

Developing and delivering tangible, unique platforms/instrumentation for QIS fabrication, computing and sensing:

- **Foundries:** New high-flexibility nanofabrication facility at FNAL
- **Materials/Devices testbeds: Qubits and quantum** \bullet materials measurements in the most precise and sensitive environments
	- Upgrades to existing characterization facilities to cryogenic environments
	- Novel cavity geometries and configurations
- **Physics Testbeds:** Platforms enabling new particle \bullet searches/sensing experiments
	- New cavity shapes and materials for record coherence in high B fields
- **Computing Testbeds: 2D and 3D-based quantum** \bullet computer prototypes, including a record sized DR
- **Workforce Development Testbeds: training platforms** \bullet

Quantum Computing
alpha-prototypes **Quantum Sensors
Testbed** Purchasing, developing, fabricating, commissioning:

8 new dilution fridges, dozens of new cavities, dozens of chips, control electronics and wiring, hundreds of custom device ancillary parts, a world record size DR and a new clean room nanofabrication facility with cluster tools

<mark>UPERCONDUCTING QUANTUM</mark>
I**ATERIALS & SYSTEMS** CENTER

<u>TESTBEDS</u>

Stanek - Introduction to SQMS 1/13/2022

43

Effective Field Theory treatment to allow quantum simulation of non-perturbative physics

Formulation of Field Theories suited for simulation on quantum devices

HEP Quantum Computing at LBNL

quantum parton showers

Improving techniques to use NISQ devices for near term simulations

Christian Bauer QC Applications to HEP Applications

Christian Bauer (LBNL)

ICH 4. 心

Development of

Soft function is the expectation value of a "Wilson line" operator between initial and final state

CWB, Freytsis, Nachman, PRL 127 (2021), 212001

Currently working on implementing of these ideas for U(1) gauge theories

Christian Bauer QC Applications to HEP Applications

Implementation

- Dataset: simplified TrackML dataset, focus on barrel, 1+ GeV, at least 5 hits
	- Toy dataset, but representative of expected conditions at the HL-LHC
- QUBO solvers: qbsolv (D-Wave + simulation), neal (classical)
- D-Wave 2X (1152 qubits), D-Wave 2000Q (2048 qubits)

17 arXiv:1902.08324

Implementation & Preliminary Results

Local Maxima Detection using Grover-Long Algorithm

vote counts

Preliminary implementation within QISKit

Testing within a quantum simulator

Chen et al, arXiv:1908.07943
Slide Credit: A. Yadav

Heather Gray (UC Berkeley/LBNL)

Kerstin Borras (DESY/RWTH Aachen University)

Quantum Technologies at DESY

Overview

Overarching Goal: employ novel Quantum Technologies to enhance and enable cutting-edge science in all divisions \rightarrow DESY wide organization connecting inside and to Campus Partners

DESY. QUANTUM Quantum Technology Applications

Zeuthen

Quantum Simulations Algorithms & Methods Benchmarking

Knowledge & Technology Transfer

Access to Quantum Computers

Training and Education

Quantum Sensing

Outreach

Photon Science for Quantum Materials and for Quantum Devices

Hamburg

Quantum Machine Learning Quantum Simulations

Quantum Sensing

DESY. Kerstin Borras

Quantum Technologies at DESY

Physics Frontiers with Quantum Science and Technology

9th March 2022

Michael Doser (CERN)

Main research thrusts

4 Yutaro Iiyama (ICEPP, U. of Tokyo)

Exploring NISQ applications

Extreme Universe of spacetime and matter from quantum information Tadashi Takayanagi (Kyoto U.)

Quantum simulation and theory for high-energy physics at CERN Dorota Maria Grabowska (CERN)

Quantum machine learning and algorithm development Kousuke Mitarai (Osaka University)

Quantum computing applications to high-energy physics at CERN Sofia Vallecorsa (CERN)

Quantum computing developments and future prospects at IBM Tamiya Onodera (IBM Research, Tokyo)

Next Steps...

Propose to continue this workshop in a regular basis (e.g, annually) *Focused* workshops/meetings on selected topics (e.g, hardware, applications, algorithms) can be foreseen

-
- Appreciated if you have any suggestion for future planning
- * Stay in touch for continuing discussion and future collaboration!!

1 Algorithmic qubits defined as the effective number of qubits for typical algorithms, limited by the 2Q fidelity

2 Employs 16:1 error-correction encoding 3 Employs 32:1 error-correction encoding

