Challenges for MCMS (Multi-Channel Multiple Scattering) theory in solid state

Out line of my research

- 1. Learning Atomic physics and Multi Channel method (by R-matrix theory)
- ~Single electron and Single atom~
- 2. Training for Multiple Scattering theory and programing by Fortran
- ~Multi Atoms~
- 3. Training numerical analysis for solving the differential equation
- ~For Realization of MCMS~
- 4. Future tasks

1. single electron - single atom scattering

Schrödinger's equation for an (N+1)-electron system

$$H_{N+1}\Psi(\boldsymbol{X}_{N+1}) = E\Psi(\boldsymbol{X}_{N+1})$$

$$H_{N+1} = \sum_{i=1}^{N+1} \left\{ -\frac{1}{2} \nabla_i^2 - \frac{Z}{r_i} \right\} + \sum_{j>i}^{N+1} \frac{1}{r_{ij}}$$

$$\Psi_i(\boldsymbol{X}_{N+1})$$
 $\stackrel{\sim}{\underset{r\to\infty}{\sim}} \Phi_i(\boldsymbol{X}_N) \chi_{\frac{1}{2}\mu_i}(\boldsymbol{\sigma}) e^{\mathrm{i}\boldsymbol{\kappa}_i \cdot \boldsymbol{r}}$

$$+ \sum_{i \text{ open}} \Phi_j(\boldsymbol{X}_N) \chi_{\frac{1}{2}\mu_j}(\boldsymbol{\sigma}) \frac{\mathrm{e}^{\mathrm{i}\kappa_j r}}{r} f_{ji}^{\mathrm{scat}}(\hat{\boldsymbol{\kappa}}_j, \hat{\boldsymbol{\kappa}}_i)$$

$$\frac{\mathrm{d}\sigma_{ji}}{\mathrm{d}\Omega} = \frac{\kappa_j}{\kappa_i} \mid f_{ji}^{\mathrm{scat}}(\hat{\boldsymbol{\kappa}}_j, \hat{\boldsymbol{\kappa}}_i) \mid^2$$

Introduction to R-matrix theory

Collisional electron $e^{-} \longrightarrow$

Inner region
Atomic / ionic
target

Strong interactions

Between all

electrons

Outer region

One collision electron far from atomic target

No exchange with target electrons

Multichannel Potential scattering

Match solutions from inner region and outer region with R-matrix (inverse log-derivative of solutions) to obtain phase shifts and cross sections

Computational results of R-matrix method for electron - H

electron - C^{2+} scattering

$$e^{-} + C^{2+}(1s^{2}2s^{2}) \rightarrow e^{-} + C^{2+}(1s^{2}2s2p)^{3}P^{o}$$

Schematic image of the channels change

Computational results of R-matrix method for electron - C^{2+}

Cross section σ for electron impact excitation of $C^{2+}(1s^22s^2 {}^1S)$.

—: final state $C^{2+}(1s^22s2p {}^3P^o)$; —— final state $C^{2+}(1s^22s2p {}^1P^o)$.

By computing the cross section for each channel → we can see regularity

Fig 1 Contribution of the ²S partial wave to the cross section σ and eigenphase sum for electron impact excitation $e^- + C^{2+}(1s^22s^2 \, ^1S) \rightarrow e^- + C^{2+}(1s^22s2p \, ^3P^o)$. At each resonance, the phaseshift in the corresponding channel increases by π . The energy grid is not fine enough to represent the very narrow resonances close to the $C^{2+}(1s^22s2p \, ^1P^o)$ threshold.

Fig 2 Contribution of the $^2P^o$ partial wave to the cross section σ and eigenphase sum for electron impact excitation $e^- + C^{2+}(1s^22s^2 \, ^1S) \rightarrow e^- + C^{2+}(1s^22s2p \, ^3P^o)$. At each resonance, the phaseshift in the corresponding channel increases by π .

Electron scattering by C^{2+} (1s² 2s²)

Main	Total symmetry	Total energy	Scaled threshold	
configuration	$^{2S+1}L^{\pi}$	(Hartree)	energy (eV)	
$1s^22s^2$	¹ S	-36.477669	0.0	
$1s^22s2p$	$^3\mathrm{P}^{\mathrm{o}}$	-36.238542	1.626757	
$1s^22s2p$	$^{1}\mathrm{P}^{\mathrm{o}}$	-36.007001	3.201915	
$1s^22s3d$	$^{3}\mathrm{D}$	-35.847916	4.284158	
$1s^22s3d$	$^{1}\mathrm{D}$	-35.810637	4.537762	

Target states of C^{2+} .

initial target	initial ℓ	final target	final ℓ	total symmetry $^{2S+1}L^{\pi}$	
$^{1}\mathrm{S}$	0	³ P°, ¹ P°	1	$^{2}\mathrm{S}$	Fig 1
	1		0,2	$^2\mathrm{P}^{\mathrm{o}}$	Fig 2
	2		2	$^2\mathrm{D}$	
	3		2,4	$^2\mathrm{F}^\mathrm{o}$	

Table ; Examples of coupled channels for electron impact excitation $e^- + C^{2+}(1s^22s^2 {}^1S) \rightarrow e^- + C^{2+}(1s^22s2p {}^3P^o, {}^1P^o)$

Characterization the resonance peaks with partial wave results by help of Quantum Defect Theory.

Fig 2 Contribution of the ${}^2P^o$ partial wave to the cross section σ and eigenphase sum for electron impact excitation $e^- + C^{2+}(1s^22s^2 {}^1S) \rightarrow e^- + C^{2+}(1s^22s2p {}^3P^o)$. At each resonance, the phaseshift in the corresponding channel increases by π .

2. Learning Multiple Scattering & Fortran

using the renormalization method, we developed the code.

"Simple renormalization schemes for scattering series expansion"

- -- Introduce the renormalization method
- -- Results of the calculation compared with Matrix Inversion (direct calculation)

Our motivation

The photoemission cross-section^[1] is given by

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\hat{\boldsymbol{k}}} = 4\pi^2 \alpha \hbar \omega_{\boldsymbol{q}} \sum_{m_c \sigma_c} \left| \sum_{L} M_{L_c L} \left[B_L^o(\boldsymbol{k}) \right]^* \right|^2$$

where the amplitude B is given by

$$B_L^o(k) = \sum_{jL'} \tilde{\tau}_{LL'}^{oj} i^{\ell'} Y_{L'}(\hat{k}) e^{ik \cdot R_{jo}} (k/\pi)^{1/2}$$

$$\tau = T(I - G_o T)^{-1} Path operator$$

Takes time, bottle neck of calculation

How can we quickly calculate $(I - G_o T)^{-1}$?

Matrix Inversion (MI)

CPU time
$$\propto N^3$$
 $N \equiv Z_{at}(l_{max} + 1)^2$

Straight forward

 $(I - G_o T)^{-1}$

high energy (EXAFS region)

spectral radius: $\rho(G_oT) < 1$

Taylor series expansion

$$(I - G_o T)^{-1} = \sum_{n} (G_o T)^n$$
3 or 4 terms enough

low energy, large cluster spectral radius: $\rho(G_0T) > 1$

Taylor series expansion \rightarrow diverge ...

alternative method

We introduce 2 methods with scaling

[1] D. Sébilleau, K. Hatada, H. Ebert,

"Multiple Scattering Theory", Springer Proceedings in Physics 204, Springer (2018).

Introduction to the renormalization method

expansions

$$(I - G_o T)^{-1} \equiv (I - K)^{-1}$$

K: kernel matrix

we introduce the auxiliary matrix $G^{[2]}$ by

Hence

$$(I - K)^{-1} = \omega (I - G)^{-1} \dots (1)$$

We Should find

whole family of the matrices (G_i) by

$$G_o = K$$

$$G_{i+1} = (1 - \omega)I + \omega G_i$$

iterate this equation, we obtain

$$G_j = (1 - \omega^j)I + \omega^j K$$

$$(I - K)^{-1} = \omega^{j} (I - G_{j})^{-1} ... (Method 1)$$

[2] K. B. Janiszowski, *Int. J. Appl.* Math. Comput. Sci. 13, 199 (2003).

The renormalized Multiple Scattering (MS) Using the binomial theorem and writing $g_j \equiv \omega^j$,

$$G_j^n = \sum_{n=0}^{\infty} C_n^m (1 - g_j)^{n-m} g_j^m K^m$$

where $C_n^m = \binom{n}{m}$ is the standard binomial coefficient.

the right hand side of Eq. (1) is

$$(I - K)^{-1} = \omega(I - G)^{-1} \dots (1)$$
parameter ω chosen so that $\rho(K) > \rho(G)$.
$$\omega(I - G)^{-1} = \omega \sum_{n=0}^{\infty} G_j^n \sim \sum_{k=0}^{N_S} R_k(\omega, N_S) K^k$$

 N_s : truncation order of the expansion Summing the G_i matrices, we obtain

$$S_n \equiv \sum_{j=0}^n G_j = (n+1)I - \frac{1-\omega^{n+1}}{1-\omega}(I-K)$$

$$\sum_{n} \equiv \frac{S_n}{n+1}$$
 , $S_n = \frac{1}{n+1} \sum_{j=0}^{n} \omega^j$

$$(I - K)^{-1} = s_n (I - \sum_n)^{-1}$$
 ... (Method 2)

Key for better convergence

"spectral radius"? convergence is faster for smaller spectral radius

The Taylor expansion of the matrix inverse is

$$(I - G_o T)^{-1} = I + (G_o T) + (G_o T)^2 + \dots$$

As G_OT is diagonalizable,

$$G_{o}T = SDS^{-1}$$

D: diagonal matrix

$$(I - G_o T)^{-1} = S(I + D + D^2 + \dots)S^{-1}$$

The expansion converges if the largest element of the diagonal matrix D is smaller than 1,

for any eigenvalue λ_i of D

$$(I - \lambda_i)^{-1} = 1 + \lambda_i + {\lambda_i}^2 + \dots$$
is convergent.

$$\rho(G_0T) \equiv max_i|\lambda_i|$$
spectral radius

. We can consider only

$$\rho(G_oT) < 1$$

when $(I - G_0 T)^{-1}$ is convergent.

 $G_{O}T$: the kernel matrix

Values of the spectral radius of renormalized matrix for different values of the renormalization parameter ω (Cu(111) 50 atom case). [3]

Results for Cu(111) 50 atom cluster, Kinetic energy: 10eV

found min. spectral radius

- Our results suggest the renormalization 2 methods work well when Taylor like series expansion does not converge (low energy region) for Cu.
- We found the best value of ω empirically.
 - \rightarrow We should establish a relationship between the spectral radius and ω .

3. Training numerical analysis for solving the differential equation

Using numerical analysis { Runge Kutta 4th order method Numerov method

Started from Schrödinger equation

- --- without any potential
- --- Coulomb potential

Compared with exact solutions

- --- Implement against the numerical errors
- --- How to decide the grid

Our ultimate goal is solving this equation

$$\left(\frac{d^2}{dr^2} - \frac{\ell_i(\ell_i + 1)}{r^2} - V(r) + k_i^2\right) P_i(r) - \sum_j W_{ij}(r, r') P_j(r') + \sum_q \lambda_{iq} P_q(r) \delta_{\ell_i \ell_q} = 0$$

D. Sébilleau, K. Hatada, H. Ebert.

"Multiple Scattering Theory", Springer Proceedings in Physics 204, Springer (2018).

4. Future tasks for realizing MCMS

- (For the renormalization method, We should establish a relationship between the spectral radius and ω)
 - · Applying the numerical analysis to more complicated cases
 - -- the other potentials, especially multi-channel potential
 - -- the boundary conditions for multichannel wave function
 - Learning the solid state physics, extend the theory for non-single atom cases by multiple-scattering theory

Thank you for your attention