
 

Stability of Friedmann-Lemaître-Robertson-Walker solutions
in doubled geometries

Arkadiusz Bochniak and Andrzej Sitarz
Institute of Theoretical Physics, Jagiellonian University,

Profesora Stanisława Łojasiewicza 11, 30-348 Kraków, Poland

(Received 16 December 2020; accepted 27 January 2021; published 23 February 2021)

Motivated by the models of geometry with discrete spaces as additional dimensions we investigate the
stability of cosmological solutions in models with two metrics of the Friedmann-Lemaître-Robertson-
Walker type. We propose an effective gravity action that couples the two metrics in a similar manner as in
bimetric theory of gravity and analyze whether standard solutions with identical metrics are stable under
small perturbations.
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I. INTRODUCTION

The spectacular success of geometry in the description of
large-scale structure of the Universe (general relativity) as
well as fundamental interactions (gauge theories) is one of
the biggest achievements of modern physics. Yet the link
between these two is still a major challenge to our under-
standing of the world. Apart from that there are multiple
efforts to solve the puzzle of dark matter with interesting
attempt to modify gravity. The bimetric theory [1], being
one of consistently formulated models, appears to be a
good candidate to solve the puzzle in accordance with
the cosmological data [2–5]. However, the necessity to
add a second metriclike field appears to be rather inelegant
and is not well founded from the point of view of
Riemannian geometry with the interaction potential
between the two metrics introduced ad hoc, despite being
motivated by nonlinear generalizations of Fierz-Pauli
massive gravity [6] that do not suffer from a Boulware-
Deser ghost problem [1,7].
Surprisingly, the hint of a geometric explanation might

come from models used in particle physics. In a quest to
explain the structure of the Standard Model, a purely
geometric interpretation of its content was proposed by
Alain Connes using the tools of noncommutative geometry
[8–10]. Taken seriously, it explains the existence of differ-
ent fermions and gauge interactions as related to geometry
of a finite type, related to a finite-dimensional algebra
C ⊕ H ⊕ M3ðCÞ, with the derivation of the action linked
to a general principle of Euclidean spectral action, which
provides all terms, including the Yang-Mills-Higgs one
leading to the spontaneous symmetry breaking as well the
pure gravity Einstein-Hilbert action.
A simplified model of this type, which was the first

considered [11] in the early days of the development of
the theory, describes a product of the smooth geometry

(a four-dimensional manifold) with a two-point space. Such
two-sheeted geometry, with a product structure is tractable
in noncommutative geometry leading to a simple Yang-
Mills-Higgs toy model. However, from the point of view of
gravity an interesting question is whether it is admissible to
have different metrics on the two separate sheets of this
geometry. This question is a challenge not only from the
conceptual but also from the technical point of view, as it
requires the computation of the spectral action in a much
more general case than the product geometry. In particular,
the first question posed is whether the two metrics interact
with each other. A first step in this direction was done in
[12], where a simple model of two Friedmann-Lemaître-
Robertson-Walker-type, flat geometries with identical lapse
function was considered, resulting in the effective potential
term linking the two geometries.
The present paper goes well beyond the restricted

situation of the previous analysis, providing a full deriva-
tion of the potential linking the metric and the equations of
motion as well as the analysis of their stability. Though our
model differs significantly from the typical bimetric theory
(none of the metrics can be thought of a background metric)
the obtained potential is much similar to the bimetric case
(though it is expressed as a rational function and not a
polynomial in the eigenvalues of the metrics ratio).
Moreover, the symmetric coupling to the matter and
radiation makes it closer to the symmetric bimetric theory,
where both metrics couple (in the same way) to matter and
radiation.
The paper is organized as follows: we present the

assumptions of our model (the structure of the two-sheeted
geometry) and the methods of deriving the leading two
terms of the spectral action using the pseudodifferential
calculus and the Wodzicki residue. After computing the
Euclidean action functional for flat as well as for curved
geometries, we perform the Wick rotation and obtain a
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set of nonlinear differential equations for the four functions
that describe the model. In the rest we focus on the stability
of the symmetric solutions, which are the standard
Friedmann-Lemaître-Robertson-Walker geometries for
both sheets and analyze small perturbations for the typical
cosmological solutions of dark-energy, matter- and radia-
tion-dominated universes. In the last section we briefly
discuss the possible physical consequences and argue why
the model is physically viable.

II. ALMOST COMMUTATIVE FRIEDMANN-
LEMAÎTRE-ROBERTSON-WALKER MODELS

A. Almost-commutative geometries

The Gelfand-Naimark equivalence between topological
spaces and commutative C�-algebras was further enriched
by A. Connes in order to include noncommutative algebras
and also to describe more than only the topology. In his
formulation of noncommutative geometry [13] the crucial
role is played by a spectral triple which is a system
ðA; H;DÞ consisting of an unital �-algebra A, Hilbert
space H and a Dirac type self-adjoint operator acting on H.
Usually, more additional structure is assumed (e.g., the
existence of a grading-type operator γ and an antiunitary
operator J, called real structure) and further compatibility
conditions between all these elements. The canonical
commutative example is ðC∞ðMÞ; L2ðM; SÞ; DMÞ, where
M is a manifold equipped with a spin structure, L2ðM; SÞ
is the Hilbert space of square-integrable spinors, andDM ¼
iγμð∂μ þ ωμÞ is the canonical Dirac operator expressed in
the terms of the connection ωμ on the spinor bundle.
From the applications in particle physics point of view, it

turns out that triples with algebras that are tensor products
of the above one with some finite-dimensional matrix
algebras AF, are crucial. The Hilbert space is the tensor
product of L2ðM; SÞ with some finite-dimensional Hilbert
space HF on which AF is represented, and its dimension
determines the number of fermionic degrees of freedom
in the theory. Grading operators and real structures are
also composed in an appropriate way in order to define
analogous objects on the resulting triple. The Dirac
operator, however, is not just the simple tensor product
of DM and DF, but has the following form:

D ¼ DM ⊗ 1þ γM ⊗ DF: ð2:1Þ

The resulting triple forms the so-called almost-
commutative geometry and has been the backbone of
multiple models applied to the physics of elementary
particles (see [14,15]). The starting point to consider
physical models based on spectral triples is the spectral
action. Its bosonic part is given by

SðDÞ ¼ Trf

�
D
Λ

�
; ð2:2Þ

where Λ is some cutoff parameter and f is some smooth
approximation of the characteristic function of the interval
[0, 1]. In the case of particle physics models it reproduces
the bosonic part of the Lagrangian of such theories
minimally coupled to gravity, together with the standard
Hilbert-Einstein action for the metric.

B. The classical geometry

We consider geometries described by the generalized
Friedmann-Lemaître-Robertson-Walker metric,

ds2¼ bðtÞ2dt2þaðtÞ2ðdχ2þS2kðχÞðdθ2þ sin2ðθÞdϕ2ÞÞ;
ð2:3Þ

where

SkðχÞ ¼
8<
:

sinðχÞ; k ¼ 1;

χ; k ¼ 0;

sinhðχÞ; k ¼ −1;
ð2:4Þ

and aðtÞ, bðtÞ are positive (sufficiently smooth) functions.
The orthogonal coframe fθag for ds2 is defined so that

ds2 ¼ θaθa. It allows us to immediately compute the spin
connection ω, which is determined by dθa ¼ ωab ∧ θb.
Then, the Dirac operator is, in a local coordinates, given by

D ¼ γadxμðθaÞ
∂
∂xμ þ

1

4
γcωcabγ

aγb; ð2:5Þ

where γas are gamma matrices chosen to be anti-Hermitian
and so that γaγb þ γbγa ¼ −2δabI.
Instead of the original Dirac operator we can equiv-

alently analyze the operator, which is conformally rescaled,
Dh ¼ h−1Dh, with the scale factor hðtÞ ¼ aðtÞ−3=2bðtÞ−1=2.
This assures us that we can work with the Hilbert space
of spinors, where the scalar product does not depend on
aðtÞ and bðtÞ.

C. The two-sheet almost-commutative model

We consider a generalized almost-commutative geom-
etry, which is described by a productlike spectral triple of
the spectral triple over the manifold with the Friedmann-
Lemaître-Robertson-Walker metric and the triple over two
points. However, instead of the usual product Dirac
operator, we take a more general one,

D ¼
�

D1 γΦ
γΦ� D2

�
; ð2:6Þ

where D1, D2 are both of the form (2.5), yet with possibly
different scaling functions a and b, and Φ being a priori a
field (which can be later restricted to be constant).
The choice of the full Dirac operator with the γ in the off

diagonal part is motivated by the fact that in the case of
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D1 ¼ D2 it yields a usual almost-commutative product
geometry. Note that, in principle, one can study generalized
objects with arbitrary order-zero operators on the off
diagonal of D, so the only thing we require of γ is that
it anticommutes with γa matrices and is not necessarily the
chirality grading operator of the Euclidean spin geometry
of the manifold M. In order to have the full Dirac operator
Hermitian we must require that γ is Hermitian and,
consequently, we have to normalize γ2 ¼ 1. However,
we shall relax this assumption and consider also models
with γ2 ¼ −1. This allows for much more flexibility, in
particular, for the models that are derived from higher-
dimensional Kaluza-Klein type geometries and would lead
to some more realistic effective physical situations. One of
the interesting possibilities is that when passing to the
Lorentzian signature for the manifold M we can as well
choose the Lorentzian signature for the discrete degrees
of freedom. This possibility has been discussed for finite
geometries, albeit in a different context of the Standard
Model in [16], in the natural language of Krein spaces.
What is important for our consideration is that the only
difference will be that the operator D will be only Krein
self-adjoint, meaning that γ will be anti-self-adjoint and
γ2 ¼ −1. To accommodate for both possibilities in the
discrete degrees of freedom we do not fix γ2, and we allow
that (after normalization) γ2 ¼ κ ¼ �1.
To simplify the presentation in the paper we introduce

the following matrices:

BðtÞ ¼
� 1

b1ðtÞ
1

b2ðtÞ

�
; AðtÞ ¼

� 1
a1ðtÞ

1
a2ðtÞ

�
;

Fðt; xÞ ¼
� Φðt; xÞ
Φðt; xÞ�

�
: ð2:7Þ

D. The spectral action

For the geometry described by a given Dirac operator D
the main object of interest is the Laplace-type operator D2,
which is a second-order differential operator acting on the
sections of the doubled spinor bundle. Its symbol σD2ðx; ξÞ
consists of three parts a0 þ a1 þ a2, each of akðx; ξÞ being
homogeneous of degree k in ξs. Then we compute the
symbol of its inverse,

σD−2ðξÞ ¼ b0 þ b1 þ b2 þ � � � ; ð2:8Þ

where bkðx; ξÞ is homogeneous of order −2 − k in ξ (we
briefly review the mathematical details of how the compu-
tations of the symbols are performed in the Appendix) and
use it to compute the first two terms of the spectral action
for the considered model.
It can be expressed in terms of Wodzicki residua

[17,18] as

SðDÞ ¼ Λ4WresðD−4Þ þ cΛ2WresðD−2Þ

¼
Z
M

Z
kξk¼1

ðΛ4TrTrClb20 þ cΛ2TrTrClb2Þ; ð2:9Þ

where TrCl denotes the trace performed over the Clifford
algebra and Tr is the trace over the matrices M2ðCÞ that
are used in the mild noncommutativity introduced in
the model.

E. Flat geometries

Although the topology of the flat case in physics is not
exactly toroidal, from the point of view of local behavior it
is identical to such, which was already analyzed for b ¼ 1
in [12]. In this section we generalize those results to the
case with arbitrary function bðtÞ, so we consider here
toroidal Friedmann-Lemaître-Robertson-Walker geom-
etries described by the following metric in the coordinate
system ðt; xÞ ¼ ðt; x1; x2; x3Þ:

ds2¼ bðtÞ2dt2þaðtÞ2ððdx1Þ2þðdx2Þ2þðdx3Þ2Þ: ð2:10Þ

Hence an orthogonal frame for ds2 is of the form,

θ0 ¼ bðtÞdt; θ1 ¼ aðtÞdx1;
θ2 ¼ aðtÞdx2; θ3 ¼ aðtÞdx3; ð2:11Þ

while the matrix of connection one forms is

ω ¼ 1

aðtÞbðtÞ

×

0
BBB@

0 −ð∂taÞθ1 −ð∂taÞθ2 −ð∂taÞθ3
ð∂taÞθ1 0 0 0

ð∂taÞθ2 0 0 0

ð∂taÞθ3 0 0 0

1
CCCA:

ð2:12Þ

As a result, the (single) Dirac operator takes the following
form:

D ¼ 1

bðtÞ γ
0

�
∂t þ

3∂ta
2aðtÞ

�
þ 1

aðtÞ γ
j∂j; ð2:13Þ

and after the conformal rescaling hðtÞ ¼ aðtÞ−3=2bðtÞ−1=2
we get

Dh ¼
1

bðtÞγ
0

�
∂t−

∂tb
2bðtÞ

�
þ 1

aðtÞðγ
1∂1þ γ2∂2þ γ3∂3Þ;

ð2:14Þ
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so that the full Dirac operator acting on the doubled Hilbert
space of spinors is

D ¼ γ0ðBðtÞ∂t − ∂tBÞ þ AðtÞγj∂j þ γFðt; xÞ: ð2:15Þ

The resulting Laplace-type operator in this model is of the
following form:

D2 ¼−B2∂2
t −A2∂2þBð∂tAÞγ0γk∂kþ½F;A�γγk∂k

þ½F;B�γγ0∂tþ κF2þ γ0γBð∂tFÞþ γjγAð∂jFÞ
þ γ0γ½F;∂tB�þBð∂2

t BÞþBð∂tBÞ∂t− ð∂tBÞ2: ð2:16Þ

The symbol σðD2Þ ¼ a0 þ a1 þ a2 is given by

a2 ¼ B2ξ20 þ A2ξ2;

a1 ¼ i½Bð∂tAÞγ0γkξk þ Bð∂tBÞξ0
þ ½F; A�γγkξk þ ½F;B�γγ0ξ0�;

a0 ¼ κF2 − γγ0ðBð∂tFÞ þ ½F; ∂tB�Þ − γγjAð∂jFÞ
þ Bð∂2

t BÞ − ð∂tBÞ2; ð2:17Þ
where we denoted by ξ2 ¼ ξ21 þ ξ22 þ ξ23. Now, computing
the symbol of D−2 using the prescription presented in the
Appendix, we obtain b0ðDÞ and b2ðDÞ. Then, taking the
trace over the Clifford algebra and the matricesM2ðCÞ, and
integrating over the cosphere bundle jξj2 ¼ 1, we compute
the Wodzicki residue that gives us the Euclidean spectral
action of the considered model. The final result is

SðDÞ ∼
Z

dt

�
Λ4ða31b1 þ a32b2Þ −

cΛ2

12
ða31b1Rða1; b1Þ þ a32b2Rða2; b2ÞÞ

þ cκΛ2jΦj2b1b2
ða1 − a2Þ2

ða1b2 þ a2b1Þ2
½a21ð2a2b1 þ a1b2Þ þ a22ð2a1b2 þ a2b1Þ�

þ cκΛ2jΦj2 ðb1 − b2Þ2
ða2b1 þ a1b2Þ2

a21a
2
2ða1b1 þ a2b2Þ − cκΛ2jΦj2ða31b1 þ a32b2Þ; ð2:18Þ

where the scalar curvature for the flat spatial geometry is

Rða; bÞ ¼ 6

�∂ta∂tb
ab3

−
ð∂taÞ2
a2b2

−
∂2
t a

ab2

�
: ð2:19Þ

F. The nonflat case

In this subsection we concentrate on the case with
positive (k ¼ 1) curvatures, with the negative (k ¼ −1)
case that can be treated in a similar manner. Although
the effective Lagrangian and the equations of motion
are local, and hence the dynamical terms are expected
to be unchanged, we derive them explicitly using appro-
priate coordinates. For the case of k ¼ 1 we use the
spherical coordinates ðt; χ; θ;ϕÞ, so that the metric is then
described by

ds2¼ bðtÞ2dt2þaðtÞ2ðdχ2þ sin2ðχÞðdθ2þ sin2ðθÞdϕ2ÞÞ:
ð2:20Þ

The orthogonal frame is given by

θ0 ¼ bðtÞdt; θ1 ¼ aðtÞdχ;
θ2 ¼ aðtÞ sin χdθ; θ3 ¼ aðtÞ sin χ sin θdϕ; ð2:21Þ

hence

dθ0 ¼ 0; dθ1¼ ∂ta
ab

θ0 ∧ θ1;

dθ2 ¼ ∂ta
ab

θ0 ∧ θ2þ cotχ
a

θ1 ∧ θ2

dθ3 ¼ ∂ta
ab

θ0 ∧ θ3þ cotχ
a

θ1 ∧ θ3þ cotθ
asinχ

θ2 ∧ θ3: ð2:22Þ

Therefore the only nonvanishing components for the
spin connection ω are [19,20]

ω101 ¼ ω202 ¼ ω303 ¼
∂ta
ab

; ω212 ¼ ω313 ¼
cot χ
a

;

ω323 ¼
cot θ
a sin χ

: ð2:23Þ

Now, for the Dirac operator we get explicitly

D ¼ γ0
1

b

� ∂
∂tþ

3

2

∂ta
a

�
þ 1

a
D3; ð2:24Þ

where in this case

D3 ¼ γ1
∂
∂χ þ γ2 csc χ

∂
∂θ þ γ3 csc χ csc θ

∂
∂ϕ

þ γ1 cot χ þ 1

2
γ2 cot θ csc χ: ð2:25Þ

After the conformal rescaling by usinghðtÞ¼aðtÞ−3=2bðtÞ−1=2
we end up with the following Dirac operator
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Dh ¼
1

b
γ0
� ∂
∂t −

∂tb
b

�
þ 1

a
D3; ð2:26Þ

Therefore, for the doubled model that we are considering, the
Dirac operator is

D ¼ γ0ðBðtÞ∂t − ∂tBÞ þ AðtÞD3 þ γFðt; xÞ: ð2:27Þ

As a result we have

D2 ¼ −B2∂2
t þ A2D2

3 þ Bð∂tAÞγ0D3 þ ½F; A�γD3

þ ½F;B�γγ0∂t þ κF2 þ γ0γBð∂tFÞ − γAðD3FÞ
þ γ0γ½F; ∂tB� þ Bð∂2

t BÞ þ Bð∂tBÞ∂t − ð∂tBÞ2:
ð2:28Þ

In order to compute its symbol σD2 ¼ a2 þ a1 þ a0 we first
notice that the symbol of D2

3 is given by

a2ðD2
3Þ ¼ ξ2χ þ csc2χξ2θþ csc2χcsc2θξ2ϕ;

a1ðD2
3Þ ¼−ið2cotχξχ þ cotθcsc2χξθþ γ1γ2 cotχ cscχξθ

þ γ1γ3 cscθcotχ cscχξϕþ γ2γ3 cotθcscθcsc2χξϕÞ;

a0ðD2
3Þ ¼−

1

2
γ1γ2 cotθcotχ cscχþ csc2χ− cot2χ

þ1

2
csc2θcsc2χ−

1

4
cot2θcsc2χ: ð2:29Þ

As a result, for the operator D2, we have

a2 ¼ B2ξ20 þ A2ξ2χ þ csc2χA2ξ2θ þ csc2χcsc2θA2ξ2ϕ;

a1 ¼ −if2 cot χA2ξχ þ cot θcsc2χA2ξθ − Bð∂tBÞξ0 þ γ1γ2A2 cot χ csc χξθ þ γ1γ3A2 csc θ cot χ csc χξϕ

þ γ2γ3A2 cot θ csc θcsc2χξϕ − Bð∂tAÞγ0γ1ξχ − Bð∂tAÞγ0γ2 csc χξθ − Bð∂tAÞγ0γ3 csc χ csc θξϕ
− ½F; A�γγ1ξχ − ½F; A�γγ2 csc χξθ − ½F; A�γγ3 csc χ csc θξϕ−½F;B�γγ0ξ0g;

a0¼A2

�
csc2χ−cot2χþ1

2
csc2θcsc2χ−

1

4
cot2θcsc2χ

�
þ κF2þBð∂2

t BÞ− ð∂tBÞ2−
1

2
γ1γ2 cotθcotχ cscχ

þBð∂tAÞγ0γ1 cotχþ
1

2
Bð∂tAÞγ0γ2 cotθcscχþ½F;A�γγ1 cotχþ1

2
½F;A�γγ2 cotθcscχþ γ0γ½F;∂tF�

− γγ0Bð∂tFÞ− γγ1Að∂χFþFcotχÞ− γγ2Acscχþ
�
∂θFþF

2
cotθ

�
− γγ3Acscχ cscθ∂ϕF:

Using the prescription presented in the Appendix, we first compute the symbols σD−2 ¼ b0 þ b1 þ b2 þ…, then we
proceed, in an exactly similar manner as in the case of the toroidal geometry, to compute the spectral action. The result is

SðDÞ ∼
Z

dt

�
ðΛ4 − cκΛ2jΦj2Þða31b1 þ a32b2Þ −

cΛ2

12
ða31b1Rða1; b1Þ þ a32b2Rða2; b2ÞÞ

þ cκΛ2jΦj2b1b2
ða1 − a2Þ2

ða1b2 þ a2b1Þ2
½a21ð2a2b1 þ a1b2Þ þ a22ð2a1b2 þ a2b1Þ�

þ cκΛ2jΦj2 ðb1 − b2Þ2
ða2b1 þ a1b2Þ2

a21a
2
2ða1b1 þ a2b2Þ

�
; ð2:30Þ

where now Rða; bÞ denotes the scalar of curvature for
spherical spatial geometries,

Rða; bÞ ¼ 6

�∂ta∂tb
ab3

−
ð∂taÞ2
a2b2

−
∂2
t a

ab2
þ 1

a2

�
: ð2:31Þ

Note that the action functional differs (2.30) from (2.18)
only through the last term that arises from the scalar
curvature of the spherical spatial geometry, where a
relevant term depending on k ¼ 1 is added. The above
result can be generalized to the negative curvature case

(we omit straightforward but tedious parametrization and
computation of symbols). In fact, taking Rða; bÞ as
Rða; b; kÞ, depending on the space curvature k, we have
a general action functional for all geometries in the doubled
spacetime Friedmann-Lemaître-Robertson-Walker models.

G. The interactions of the metrics

Before we pass to the equations of motions an their
stability, let us briefly compare the effective potential
describing the interaction between the two metrics to the
bimetric gravity models [1,4,21]. Certainly, apart from the
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fact that we have an action for two metrics, there is a much
deeper symmetry between the two, since neither plays a
role of a “background” metric. In fact, the usual solution
in the case of vanishing α makes both metrics totally
independent of each other. Introducing the variables,

x ¼ b1
b2

; y ¼ a1
a2

;

which depend only on the entries of the matrix Xa
c¼

gab2 g1bc, we can express the interactions between the
metrics as proportional to

V
� ffiffiffiffiffiffiffiffiffiffiffi

g−12 g1

q � ffiffiffiffiffi
g2

p ¼ V
� ffiffiffiffiffiffiffiffiffiffiffi

g−11 g2

q � ffiffiffiffiffi
g1

p
; ð2:32Þ

where the function Vð
ffiffiffiffiffiffiffiffiffiffiffi
g−12 g1

p
Þ is of the form

x2 þ 2xy − 2x2yþ y2 − 6xy2 þ 4x2y2 þ 4xy3 − 6x2y3 þ x3y3 − 2xy4 þ 2x2y4 þ xy5

ðxþ yÞ2 ;

which can be efficiently expressed as a rational function of
the symmetric polynomials in

ffiffiffiffi
X

p
.

We stress that the resulting model possesses features that
are characteristic to bimetric gravity models: the potential V
depends on the metrics only through

ffiffiffiffi
X

p
and satisfies

(2.32). On the other hand, in the usual bimetric models such
potential is a polynomial in eigenvalues of

ffiffiffiffi
X

p
rather than a

rational function. It was proposed in [22] that the con-
struction presented here might result in the derivation of
bimetric theories out of the geometric data. The above
result suggests that indeed this class of models resembles
some characteristics of bimetric gravity models, but it is a
different one. We postpone for the future research the
detailed analysis of these differences and their cosmologi-
cal implications.

H. The equations of motion

The action functional (2.30) depends on the field B only
via b1 and b2 but not their derivatives. As a result, b1 and b2

are not dynamical and its Euler-Lagrange equations give
rise to the constraints of the model. Moreover, due to the
reparametrization invariance, we can fix one of these
functions or relate them with each other.
Furthermore, the action functional was derived for the

Euclidean model and to pass to physical situation we need
to perform Wick rotation, as described in the [12]. In our
case, this will affect only the square of the time derivative of
the scaling factors aiðtÞ, which will change signs.
Consequently, the action and the equation of motion for
the rest of this paper are in the Lorentzian signature of the
metric ð−;þ;þ;þÞ. Let us remember that the discrete
degrees of freedom of the geometry might be Riemannian
or pseudo-Riemannian, which results in the appropriate
choice of the sign κ.
After integration by parts and omitting the boundary

terms that are full derivatives in t, we obtain the following
action for the pure gravity Friedmann-Lemaître-Robertson-
Walker doubled geometries for the Lorentzian signature
and arbitrary spatial curvature k,

SkðDÞ¼
�
cΛ2

12

��Z
dt

�
Λeða31b1þa32b2Þ−6kða1b1þa2b2Þþ6

�
a1
b1

ð∂ta1Þ2þ
a2
b2

ð∂ta2Þ2
�

þαb1b2
ða1−a2Þ2

ða1b2þa2b1Þ2
½a21ð2a2b1þa1b2Þþa22ð2a1b2þa2b1Þ�þα

ðb1−b2Þ2
ða2b1þa1b2Þ2

a21a
2
2ða1b1þa2b2Þ

��
; ð2:33Þ

where we have factored out the overall constant so that the
dynamical term appears only with a numerical factor,
denoted the effective cosmological constant by Λe and
introduced the effective coupling between the two metrics
by α:

Λe ¼
12

c
ðΛ2 − cκjΦj2Þ; α ¼ 12jΦj2κ:

Unlike the bare cutoff parameter Λ, here the effective
cosmological constant can vanish or be negative for a
particular model. We shall use the above convention with
Λe and α throughout the rest of the paper.

The four Euler-Lagrange equations take the following
form,

Λe ¼ 6H2
b;i þ 6

k
a2i

−
α

ai
Vðai; ai0 ; bi; bi0 Þ; ð2:34Þ

with

Vða1; a2; b1; b2Þ ¼ a1 þ
8a1a2ða21 − a22Þb32
ða2b1 þ a1b2Þ3

þ 2a2ða22 þ 2a1a2 − 5a21Þb22
ða2b1 þ a1b2Þ2

;
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and

12
∂2
t ai

aib2i
þ 6H2

b;i − 3Λe þ 6
k
a2i

− 12
ð∂taiÞð∂tbiÞ

aib3i
− αWðai; ai0 ; bi; bi0 Þ ¼ 0; ð2:35Þ

with

Wða1; a2; b1; b2Þ ¼ 3 − 2
a2b2ða22 − 4a1a2 þ 9a21Þ

a21ða2b1 þ a1b2Þ

þ 2
a2b22ð11a21 − 2a1a2 − 3a22Þ

a1ða2b1 þ a1b2Þ2

− 8
a2b32ða21 − a22Þ
ða2b1 þ a1b2Þ3

:

In the above equations we use the convention that

ði; i0Þ ¼ fð1; 2Þ; ð2; 1Þg, and Hb;j ¼ ∂taj
ajbj

are the generalized

Hubble parameters. Before we analyze the inclusion of
matter fields and possible solutions, let us observe that in
the flat k ¼ 0 case, inserting Λe from first two equations in
last two, one obtains

6

b1
∂tHb;1þαa2b2

a2b1−a1b2
a21

Lða1;a2;b1;b2Þ¼0;

6

b2
∂tHb;2þαa1b1

a1b2−a2b1
a22

Lða1;a2;b1;b2Þ¼0; ð2:36Þ

with some rational function Lða1; a2; b1; b2Þ, so in par-
ticular, whenever a1b2 ¼ a2b1 both Hb;1 and Hb;2 must be
constant.

III. INTERACTION WITH MATTER FIELDS
AND RADIATION

The equation of motion derived in the previous section
describe the empty universe in the doubled model. Here, we
can ask how they are modified by the presence of the matter
fields. The crucial point is to see how the effective matter
and radiation action depend on the components of the
metrics described in terms of fields a1, a2, b1, b2. The main
difficulty is the passage from the microscopic action for
spinor and gauge fields to the effective averaged energy-
momentum tensor in the Einstein equations.
The microscopic action for the spinor fields in the

doubled universe will be the usual fermionic action
Ψ̄DΨ. Since both components of the spinor couple to
the respective Dirac operators D1 and D2 on each of the
single sheets separately, and the Ψ field is, by assumption,
independent of the metric fields, we conclude that the
resulting action will be split into separate actions that do not
mix the metric components on each of the single universes.
A similar argument can be used for the radiation energy-

momentum tensor that originates from the gauge fields over

the considered model. As the model has two Uð1Þ
symmetries there are two gauge fields that couple to the
Higgs field. A linear combination of them will become a
massive one, due to spontaneous symmetry breaking of the
Higgs field, whereas another linear combination will
correspond to the massless photons. Again, the effective
Yang-Mills action for the photon field will not mix the
metric components over the two sheets and therefore we
shall have independent tensor-energy components for each
equation.
These heuristic arguments suggest that the effective

equations of motion are modified by the respective com-
ponents of the overall energy-momentum tensor T0

0 and T
1
1,

which depend separately on a1, b1 and a2, b2,

6H2
b;i þ

6k
a2i

− Λe −
α

ai
Vðai; ai0 ; bi; bi0 Þ ¼ −2T0

0ðai; biÞ;

12
∂2
t ai

aib2i
þ 6H2

b;i − 3Λe þ
6k
a2i

− 12
∂tai∂tbi
aib3i

− αWðai; ai0 ; bi; bi0 Þ ¼ −6T1
1ðai; biÞ; ð3:1Þ

for ði; i0Þ ¼ fð1; 2Þ; ð2; 1Þg.
As in the conventional cosmology we consider the model

of the perfect fluid, i.e., the stress-energy tensor is taken to
be of the form

Tg
μν ¼ ðρþ PÞuμuν þ Pgμν; ð3:2Þ

where P is referred to as pressure, while ρ is called energy
density. For the generalized Friedmann-Lemaître-Robertson-
Walker metric, the vector uμ is ð 1

bðtÞ ; 0; 0; 0Þ, so that

uμuμ ¼ −1. As a result, T0
0 ¼ −ρ and T1

1 ¼ P.
Furthermore, the continuity equation∇μTμν ¼ 0 reduces

to the standard one:

∂ρ
∂t þ 3ðρþ PÞ ∂ta

a
¼ 0: ð3:3Þ

We assume that the thermodynamics of the matter content
is characterized by the following equation of state:

PðtÞ ¼ wρðtÞ: ð3:4Þ

From the continuity equation we immediately infer that
then

ρðtÞ ¼ ηaðtÞ−3ð1þwÞ; ð3:5Þ

where η is the proportionality constant, exactly as in the
standard cosmology.
The resulting Einstein equations for the double-sheeted

universe are of the following form:
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6H2
b;i þ

6k
a2i

− Λe −
α

ai
Vðai; ai0 ; bi; bi0 Þ ¼

2η

a3ð1þwÞ
i

12
∂2
t ai

aib2i
þ 6H2

b;i − 3Λe þ
6k
a2i

− 12
∂tai∂tbi
aib3i

− αWðai; ai0 ; bi; bi0 Þ ¼ −
6wη

a3ð1þwÞ
i

; ð3:6Þ

for ði; i0Þ ¼ fð1; 2Þ; ð2; 1Þg.
We stress that the above model is a straightforward

generalization of the classical one for the doubled
theory, with the only difference being that we allow two
different scaling factors, and the interaction between
them is derived from the spectral action. Indeed, for
a1 ¼ a2 ≡ a, b1 ¼ b2 ¼ 1, or α ¼ 0, equations of motion
reduces to the usual Friedmann equations yielding the
well-known solutions.
In what follows we shall aim to analyze the possibility of

small perturbations of the classical solutions of Friedmann-
Lemaître-Robertson-Walker models, trying to answer the
question whether the double-sheeted universe is stable.
However, before we start the computations to see when the
small perturbations of the classical solution are possible, let
us observe that, thanks to the reparametrization invariance
of the time variable in the Eqs. (2.34), (2.35), we can decide
to fix either b1 or b2 or relate them with each other. There
are, in principle, many choices of the possible parametri-
zations and we choose a particular one, which is motivated
by the existing symmetry with respect to the exchange
between left and right modes in the geometric setup we
consider. We shall set b1ðtÞ þ b2ðtÞ ¼ 2, therefore, effec-
tively, one can introduce a new function,

b1ðtÞ ¼ 1þ bðtÞ; b2ðtÞ ¼ 1 − bðtÞ;

and derive the equations of motion for a1ðtÞ, a2ðtÞ and bðtÞ.
Taken an appropriate linear combination of the derivatives
of Eqs. (2.34) and (2.35) we shall obtain three nonlinear
first order differential equations for these functions.
Despite the fact that a full analysis of these equations is

complicated and can be done possibly only numerically, we
can obtain some significant results.
We shall finish this section by a remark that one cannot

a priori assume that both lapse functions are identically 1.
Indeed, we shall see that such solutions (in the linearized
regime) are not possible. Moreover, a far more general
argument holds also for the full equations in the case of the
empty universe. Then, there are no solutions with bðtÞ ¼ 0
apart from a1ðtÞ ¼ a2ðtÞ. The argument is quite simple and
relies on algebraic manipulation of Eq. (2.34). Indeed,
assuming b1ðtÞ ¼ 1 ¼ b2ðtÞ and subtracting the equations
we obtain the following relation between a1 and a2:

2α
a1 − a2

ða1 þ a2Þ2
ða21 þ 4a1a2 þ a22Þða22∂ta1 þ a21∂ta2Þ ¼ 0;

which is true only if a1 ¼ a2 (since both a1, a2 are positive
functions) or 1

a1
þ 1

a2
¼ const. The latter condition can be

solved, and when used in either of the first two equa-
tions (2.34) it leads to the constant solutions for a1 and a2.
Therefore, the functional based on the action (2.33) has
extremal points only if the time scaling factor differs for the
two metrics, so bðtÞ ≠ 0. We leave aside the interpretation
of this observation and its potential physical consequences
to see whether the solutions that differ from the standard
ones allow physically feasible models.

IV. PERTURBATIVE SOLUTIONS

In what follows we study infinitesimal perturbations of
the classical solutions of the Einstein equations in different
scenarios like an empty universe with a cosmological
constant, with and without curvature, the matter-dominated
(i.e., for w ¼ 0) flat universe with a vanishing cosmological
constant Λe ¼ 0 and the radiation-dominated (i.e., for
w ¼ 1

3
) flat universe.

Our working assumption is that we look for small
perturbations around the symmetric, product, geometry
of the form

a1ðtÞ ¼ aðtÞ þ ϵr1ðtÞ; a2ðtÞ ¼ aðtÞ þ ϵr2ðtÞ;
bðtÞ ¼ ϵsðtÞ: ð4:1Þ

and linearize the equations of motion, taking the first terms
in ϵ.
In the zeroth order, we obtain (from all equations, as

expected):

6
ð _aðtÞÞ2
aðtÞ2 − Λe þ 6

k
aðtÞ2 ¼ 2

η

aðtÞ3þ3w ; ð4:2Þ

whereas the first order yields the following set of linear
equations for r1, r2, and s, for the function aðtÞ, which
already satisfies Eq. (4.2):

_r1ðtÞ ¼
3λ2aðtÞ2ð1þ wÞ − ð _aðtÞ2 þ kÞð1þ 3wÞ

2aðtÞ _aðtÞ r1ðtÞ

þ
�
_aðtÞ þ α

aðtÞ2
6_aðtÞ

�
sðtÞ;

_r2ðtÞ ¼
3λ2aðtÞ2ð1þ wÞ − ð _aðtÞ2 þ kÞð1þ 3wÞ

2aðtÞ _aðtÞ r2ðtÞ

−
�
_aðtÞ þ α

aðtÞ2
6_aðtÞ

�
sðtÞ;

_sðtÞ ¼ 3

2

_aðtÞ
aðtÞ

�
r1ðtÞ − r2ðtÞ

aðtÞ − 2sðtÞ
�
; ð4:3Þ

where we have introduced Λe ¼ 6λ2 for simplicity, and
denote the time derivative by a dot.

ARKADIUSZ BOCHNIAK and ANDRZEJ SITARZ PHYS. REV. D 103, 044041 (2021)

044041-8



Note that for a given background solution aðtÞ we have a
homogeneous equation for the sum r1ðtÞ þ r2ðtÞ, which
has a simple solution that, however, satisfies reasonable
initial conditions r1ðt0Þ ¼ r2ðt0Þ ¼ 0 if and only if it is
constantly 0. Therefore, we may freely restrict ourselves to
the case r1ðtÞ ¼ rðtÞ ¼ −r2ðtÞ and final set of perturbative
equations,

_rðtÞ ¼ 3λ2aðtÞ2ð1þ wÞ − ð _aðtÞ2 þ kÞð1þ 3wÞ
2aðtÞ _aðtÞ rðtÞ

þ
�
_aðtÞ þ α

aðtÞ2
6_aðtÞ

�
sðtÞ;

_sðtÞ ¼ 3
_aðtÞ
aðtÞ

�
rðtÞ
aðtÞ − sðtÞ

�
: ð4:4Þ

A. The empty universe

In the case of an empty, or dark-energy-dominated
universe, we have the simple case of η ¼ 0 and cosmo-
logical solutions depending only on the curvature k and the
cosmological constant Λe.

1. The de Sitter universe (k = 0)

The solution of (4.2) is

aðtÞ ¼ a0 exp

� ffiffiffiffiffiffi
Λe

6

r
t

�
; ð4:5Þ

and the equations of motion for r, s are

_rðtÞ ¼ λrðtÞ þ aðtÞsðtÞ
�
λþ α

6λ

�
;

_sðtÞ ¼ 3λ
rðtÞ
aðtÞ − 3λsðtÞ: ð4:6Þ

Solving this system of linear equations we obtain,

sðtÞ ¼ C1e−
3
2
λtþ1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
21λ2þ2α

p
t þ C2e−

3
2
λt−1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
21λ2þ2α

p
t;

rðtÞ ¼ C3e−
1
2
λtþ1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
21λ2þ2α

p
t þ C4e−

1
2
λt−1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
21λ2þ2α

p
t; ð4:7Þ

where

C3 ¼ C1

a0
6λ

�
3λþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21λ2 þ 2α

p �
;

C4 ¼ C2

a0
6λ

�
3λ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21λ2 þ 2α

p �
: ð4:8Þ

Depending on the relative values of the parameters
Λe ¼ 6λ2 and α the character of the solutions changes.
For the parameters λ, α, as shown on the graph on Fig. 1, in
the yellow region between the green and red line we have
only damping exponentially decreasing solutions for rðtÞ,

while in the gray region below the red line the exponen-
tially vanishing solution is modified by oscillations. On the
red line, however, the above form of solutions degenerates,
and the correct ones are

rðtÞ ¼ Ce−
1
2
λt; rðtÞ ¼ Cte−

1
2
λt: ð4:9Þ

On the other hand, we see that the perturbative solutions
cannot be extended to −∞ as, independently of the value of
the parameters, they then become much bigger than the
de Sitter solution. This puts the limits of applicability of
the perturbative expansion which is entirely consistent with
the dark-energy-dominated universe solutions. As a last
remark we note that even independently of the value of α
perturbations, which are decaying exponentially, are pos-
sible for certain values of initial parameters. For example, if
at t ¼ 0 we set

rð0Þ ¼ a0

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21λ2 þ 2α

p

3λ

�
sð0Þ;

then C1 ¼ C3 ¼ 0 and the perturbations will be exponen-
tially damped for all range of parameters.

2. Geometries with positive and negative
curvatures k =�1

We start with the easier case of negative curvature, for
which the solution of (4.2) is

aðtÞ ¼ 1

λ
sinh ðλðt − t0ÞÞ; ð4:10Þ

and inwhat followswechoose t0 ¼ 0 to simplify the notation.
It is convenient to change the variables and write

Eq. (4.4) in τ ¼ sinhðλtÞ. Then we obtain

FIG. 1. Plot representing sectors in parameters ðλ2; αÞ with
different behavior of solutions.
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λ_rðτÞ ¼
�
1þ ατ2

6λ2ð1þ τ2Þ
�
sðτÞ þ λτ

1þ τ2
rðτÞ;

λ_sðτÞ ¼ 3
λ2

τ2
rðτÞ − 3λ

τ
sðτÞ: ð4:11Þ

The above set of equations can be solved explicitly, and
the solution for sðτÞ is given by

sðtÞ ¼ c1 2F1

�
3

4
− ζ;

3

4
þ ζ; 3;−τ2

�

þ c2G
2;0
2;2

�
−τ2

				
1
4
− ζ; 1

4
þ ζ

−2; 0

�
; ð4:12Þ

where 2F1 is the hypergeometric function, G2;0
2;2 is the

generalized Meijer’s function [23] and

ζ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21λ2 þ 2α

p

4λ
:

Since the solution is of the big bang cosmology type, we
shall look for the small t (small τ) behavior of solutions.
Both functions are defined in the region τ2 < 1 and can be
extended analytically to the other values of τ2, yet τ2 ¼ 1 is
the point at which they are discontinuous or singular.
Additionally the Meijer’s function has a pole at 0 of order
at least 2 unless the parameter ζ is quantized,

ζ ¼ 9

4
þ n; n ∈ N; ð4:13Þ

when it becomes regular (though nonzero). For above
values of the parameter ζ, the first part of the solution can
be rewritten as

c1ð1þ τ2Þ322F1

�
9

2
þ n;−n; 3;−τ2

�
;

and the last component is, in fact, a polynomial of degree n.
The possibility of having both solutions regular at τ ¼ 0

means that there exists a nonzero perturbation of the
standard solution, which has both perturbations vanishing
at the initial time sð0Þ ¼ rð0Þ ¼ 0. However, the fact that
τ ¼ 1 is a singular point of the Meijer’s function restricts
the possibility of extending the assumed linearized pertur-
bation beyond certain time frame. The long-time behavior
of the solutions that are arbitrary (not necessarily vanish-
ing) at t ¼ 0 is similar to the flat case and governed by
value of ζ, with asymptotically vanishing solutions for the
same range of parameters α, λ as in the k ¼ 0 situation.
Finally, for the positive curvature, k ¼ 1, the pure dark

energy solution is

aðtÞ ¼ 1

λ
cosh ðλðt − t0ÞÞ; ð4:14Þ

and the small perturbations at t0 ¼ 0 are again changing the
variable to τ ¼ sinhðλtÞ,

λ_rðτÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

p
�
τ þ αð1þ τ2Þ

6λ2τ

�
sðτÞ þ λ

τ
rðτÞ;

λ_sðτÞ ¼ 3ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

p λ2τ

1þ τ2
rðτÞ − 3λτ

1þ τ2
sðτÞ: ð4:15Þ

which, similarly as in the previous situation, has the
solutions that are expressed in terms of the hypergeometric
function 2F1:

sðtÞ ¼ c1 2F1

�
3

4
− ζ;

3

4
þ ζ;−

1

2
;−τ2

�

þ c2t32F1

�
9

4
− ζ;

9

4
þ ζ;

5

2
;−τ2

�
: ð4:16Þ

From the fact that in this case

rðτÞ ∼ −
αc1
6λ3

þ c2τ
λ

þOðτ2Þ;

we deduce that if we require rð0Þ ¼ 0 then c1 ¼ 0. One
can easily check that then also sð0Þ ¼ 0; however, both
solutions will grow with t. On the other hand, the
exponentially decreasing solution requires c2 ¼ 0.

B. Matter-dominated universe

In a completely similar manner we consider the limit in a
matter-dominated universe, in which we put Λe ¼ 0 and
w ¼ 0, while η ≠ 0. We start with the Einstein–de Sitter
universe, k ¼ 0. In this case the standard solution,

aðtÞ ¼
�
3

4
η

�1
3

t
2
3;

gives the following equations for rðtÞ and sðtÞ:

_rðtÞ ¼ −
1

2

_aðtÞ
aðtÞ rðtÞ þ

�
α

6

aðtÞ2
_aðtÞ þ _aðtÞ

�
sðtÞ;

_sðtÞ ¼ 3
_aðtÞ
aðtÞ2 rðtÞ − 3

_aðtÞ
aðtÞ sðtÞ: ð4:17Þ

The general solution for sðtÞ can be expressed in terms of
Bessel functions,

sðtÞ¼ c1t−
3
2J ffiffiffi

19
12

p
� ffiffiffiffiffiffiffi

−
α

2

r
t

�
þc2t−

3
2Y ffiffiffi

19
12

p
� ffiffiffiffiffiffiffi

−
α

2

r
t

�
; ð4:18Þ

and the solution for rðtÞ can be consequently derived from
the second of (4.17). In case of negative α the long-time
solutions have oscillatory character with the following
asymptotic behavior of their amplitudes:
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sðtÞ ∼ t−2; rðtÞ ∼ t−
1
3;

so for α < 0 the perturbations decay in t independently of
the initial values of the perturbation at any fixed time.
Although the matter-dominated universe describes rather
later periods in the evolution of the Universe, still there
exists a solution, which is regular at t ¼ 0.
For positive values of α only the second solution, which

is exponentially decaying, is an acceptable one as a
perturbation, which signifies that for this range of the
parameter only specific perturbations are stable.

C. Radiation-dominated universe

For this situation (again Λe ¼ 0, k ¼ 0) the standard
solution of the Einstein equations is

aðtÞ ¼
�
4

3
η

�1
4

t
1
2;

which gives us the following equations for the
perturbations:

_rðtÞ ¼ −
_aðtÞ
aðtÞ rðtÞ þ

�
α

6

aðtÞ2
_aðtÞ þ _aðtÞ

�
sðtÞ;

_sðtÞ ¼ 3
_aðtÞ
aðtÞ2 rðtÞ − 3

_aðtÞ
aðtÞ sðtÞ: ð4:19Þ

The solutions for sðtÞ is

sðtÞ¼ c1t−
5
4J ffiffiffi

13
16

p
� ffiffiffiffiffiffiffi

−
α

2

r
t

�
þc2t−

5
4Y ffiffiffi

13
16

p
� ffiffiffiffiffiffiffi

−
α

2

r
t

�
; ð4:20Þ

with the exact expression for rðtÞ that can be obtained
directly from the second equation.
Again, in the case of α < 0 the long-time behavior of the

amplitude of oscillations is

sðtÞ ∼ t−
7
4; rðtÞ ∼ t−

1
4:

However, a very interesting situation occurs near the big
bang, t ¼ 0, as in the best case the solution for sðtÞ diverges
and behaves like t

ffiffiffi
13

p
−5

4 , whereas the scale factor rðtÞ
behaves like t

ffiffiffi
13

p
−3

4 and is regular. The same result will be
valid for k ¼ �1, as the near big bang asymptotics of the
radiation-dominated universe has the same structure.
The explicit solutions for the k ¼ −1 geometry are in

terms of the confluent Heun functions and the long-time
dependence of the perturbations will be again similar for
α < 0 as is suggested by a brief numerical analysis of
example solutions.
As the solutions for k ¼ 1 are cyclic, the long-term

asymptotic of the perturbations does not make sense in
this case.

V. SUMMARY AND OUTLOOK

The simplest almost-commutative geometry of the two-
sheeted universe, motivated by the Connes-Lott idea [11],
is an interesting model to study its potential relevance not
only for the particle physics but also for its implication to
the large-scale structure of the Universe. We have shown
that an abstract model, with a more general type of metric
structure that is not necessarily a product structure, allows a
two-metric theory, which is very similar to the bimetric
theory of gravity. Although we are aware that both the
interaction structure as well as the interpretation of the
model’s origin are quite different, there are striking
similarities in the potential term of the action. It shall be
noted that models originating from quantum deformations
of spacetime have a similar feature of two metrics although
their origins are different [24].
Leaving the full model that was developed for the

particle interactions [8,9] aside and concentrating first
on a simplified one, we have focused on a primary question
of stability of classical Friedmann-Lemaître-Robertson-
Walker solutions. To be more precise, our idea was to
check whether for some range of parameters a small
perturbation in the Dirac operators making the full one,
and hence the metrics different from each other on the two
sheets of the Universe will diverge or collapse.
Our conclusion is that for the considered range of

models, including flat and curved spatial geometries with
dark energy, radiation or matter dominance there exist a
range of parameters so that the symmetric solution (product
geometry) is dynamically stable. Our analysis confirms
but hugely extends the earlier indications [12] by allowing
both the scale factors as well as lapse functions to vary. The
stability of the cosmological solutions suggests that the
models with two metrics are admissible from the physical
point of view and are an interesting modification of
geometry that may be used in future models.
This has an important bearing on the physical conse-

quences of the model. First of all, cosmological observables
like redshift and observable Hubble constant will be
related to the background standard Friedmann-Lemaître-
Robertson-Walker solution. This follows from the fact that
both light and matter will couple (as argued in Sec. III)
to both metrics and, taking into account that in most
models the difference between metrics is decreasing as
the Universe evolves, only the average (background) scale
factor aðtÞwill determine the observable redshift. However,
one can speculate that a possible sign of the fluctuating two
metrics might be seen in physical effects that couple only to
one metric (as might be the case of massless Majorana
particles) or couple to metrics in a nonlinear way.
The constructed (simplified) model is predominantly

based on the idea that allowed to explain the appearance of
Higgs field and Higgs quartic symmetric-breaking potential
from purely geometric considerations as a form of gener-
alized gauge theory. Transferring this concept to the theory
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of metric and generalized general relativity appears to be a
natural an well-motivated physical step. Unlike in the
bimetric theory, here the interaction terms between the
two metrics are completely determined by the structure of
the theory yet are not computable in full generality. This
prevents us from an analysis of the possibility of ghost-free
sectors in the way it was done for bimetric theories [7,25].
Nevertheless, since the model has strong features similar to
bimetric gravity (as we have stressed in Sec. II G), in
particular, even though the effective interaction potential
between the two metrics is not a symmetric polynomial offfiffiffiffiffiffiffiffiffiffiffi
g−11 g2

p
but rather a rational function, where the nominator

and denominator are of this form, we expect that a similar
result will hold.
Apart from the fundamental questions of physical con-

sistency and interpretation of the degrees of freedom of the
theory there are still several questions that remain open.
First of all, in case of small deviations from the product
geometry it is interesting whether they might have some
observable physical consequences both in the pure gravity
sector as well as in the sector of the matter and radiation.
Though this might be considered as pure speculation, such
fluctuations of the metrics, if existing in the radiation era,
might be linked to some parity anisotropies [26] in the
cosmic microwave background radiation. Another possible
sector of the theory to explore are solutions with singu-
larities like black holes. All such ideas need to be explored
carefully in future studies.
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APPENDIX: SYMBOLS OF THE OPERATOR D− 2

Suppose P and Q are two pseudodifferential operators
with symbols

σPðx;ξÞ¼
X
α

σP;αðxÞξα; σQðx;ξÞ¼
X
β

σQ;βðxÞξβ; ðA1Þ

respectively, where α, β are multi-indices. The composition
rule takes the following form [27]:

σPQðx; ξÞ ¼
X
γ

ð−iÞjγj
γ!

∂ξ
γσPðx; ξÞ∂γσQðx; ξÞ; ðA2Þ

where ∂ξ
a denotes a partial derivative with respect to the

coordinate of the cotangent bundle.
Let us consider the case when P ¼ D−2 and Q ¼ D2.

Since D2 has a symbol

σD2ðx; ξÞ ¼ a2 þ a1 þ a0; ðA3Þ

then D−2 has to have a symbol of the form

σD−2ðx; ξÞ ¼ b0 þ b1 þ b2 þ � � � ; ðA4Þ

where bk is homogeneous of order −2 − k.
Inserting these expressions into (A2) and taking homo-

geneous parts of order 0, −1, and −2 we get the following
set of equations:

b0a2 ¼ 1;

b0a1 þ b1a2 − i∂ξ
aðb0Þ∂aða2Þ ¼ 0;

b2a2 þ b1a1 þ b0a0 − i∂ξ
aðb0Þ∂aða1Þ − i∂ξ

aðb1Þ∂aða2Þ −
1

2
∂ξ
a∂ξ

bðb0Þ∂a∂bða2Þ ¼ 0; ðA5Þ

From these relations we get

b0 ¼ a−12 ;

b1 ¼ −ðb0a1 − i∂ξ
aðb0Þ∂aða2ÞÞb0;

b2 ¼ −
�
b1a1 þ b0a0 − i∂ξ

aðb0Þ∂aða1Þ − i∂ξ
aðb1Þ∂aða2Þ −

1

2
∂ξ
a∂ξ

bðb0Þ∂a∂bða2Þ
�
b0: ðA6Þ
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Connes-Lott, J. Geom. Phys. 24, 1 (1997).

[11] A. Connes and J. Lott, Particle models and noncommutative
geometry, Nucl. Phys. B, Proc. Suppl. 18, 29 (1991).

[12] A. Sitarz, On almost commutative Friedmann-Lemaître-
Robertson-Walker geometries, Classical Quantum Gravity
36, 195007 (2019).

[13] A. Connes, Non-commutative differential geometry, IHES
Publ. Math. 62, 41 (1985).

[14] W. van Suijlekom, Noncommutative Geometry and Particle
Physics (Springer, New York, 2015).

[15] A. Devastato, M. Kurkov, and F. Lizzi, Spectral Non-
commutative Geometry Standard Model and all that, Int.
J. Mod. Phys. A 34, 1930010 (2019).

[16] A. Bochniak and A.Sitarz, Finite Pseudo-Riemannian spec-
tral triples and the standard model, Phys. Rev. D 97, 115029
(2018).

[17] D. Kastler, The dirac operator and gravitation, Commun.
Math. Phys. 166, 633 (1995).

[18] W.Kalau andM.Walze,Gravity, non-commutativegeometry
and the Wodzicki residue, J. Geom. Phys. 16, 327 (1995).

[19] A. H. Chamseddine and A. Connes, Spectral action for
Robertson-Walker metrics, J. High Energy Phys. 10 (2012)
101.

[20] F. Fathizadeh, A. Ghorbanpour, and M. Khalkhali, Ration-
ality of spectral action for Robertson-Walker metrics,
J. High Energy Phys. 12 (2014) 064.

[21] Y. Akrami, T. S. Koivisto, D. F. Mota, and M. Sandstad,
Bimetric gravity doubly coupled to matter: theory and
cosmological implications, J. Cosmol. Astropart. Phys. 10
(2013) 046.

[22] A. Bochniak, Bimetric gravity from the spectral point of
view, AIP Conf. Proc. 2163, 090005 (2019).

[23] R. Beals and J. Szmigielski, Meijer G-functions: A gentle
introduction, Not. Am. Math. Soc. 60, 866 (2013), https://
www.ams.org/notices/201307/rnoti-p866.pdf.

[24] M. de Cesare, M. Sakellariadou, and P. Vitale, Noncom-
mutative gravity with self-dual variables, Classical Quantum
Gravity 35, 215009 (2018).

[25] J. Klusoň, Is bimetric gravity really ghost free? Int. J. Mod.
Phys. 28, 1350143 (2013).

[26] A. Ben-David, E. D. Kovetz, and N. Itzhaki, Parity in the
cosmic microwave background: Space oddity, Astrophys. J.
748, 39 (2012).

[27] P. Gilkey, Invariance Theory, the Heat Equation, and the
Atiyah-Singer Index Theorem, Mathematics Lecture Series
Vol. 11 (Publish or Perish, USA, 1984).

STABILITY OF FRIEDMANN-LEMAÎTRE-ROBERTSON-WALKER … PHYS. REV. D 103, 044041 (2021)

044041-13

https://doi.org/10.1007/JHEP02(2012)126
https://doi.org/10.1016/j.physletb.2015.06.062
https://doi.org/10.1088/1751-8113/49/18/183001
https://doi.org/10.1088/1475-7516/2012/03/042
https://doi.org/10.1088/1475-7516/2012/03/042
https://doi.org/10.1088/1475-7516/2012/12/021
https://doi.org/10.1098/rspa.1939.0140
https://doi.org/10.1103/PhysRevLett.108.041101
https://doi.org/10.1103/PhysRevLett.108.041101
https://doi.org/10.1063/1.531241
https://doi.org/10.1063/1.531241
https://doi.org/10.1007/BF02506388
https://doi.org/10.1007/BF02506388
https://doi.org/10.1016/S0393-0440(96)00031-9
https://doi.org/10.1016/0920-5632(91)90120-4
https://doi.org/10.1088/1361-6382/ab3d53
https://doi.org/10.1088/1361-6382/ab3d53
https://doi.org/10.1007/BF02698807
https://doi.org/10.1007/BF02698807
https://doi.org/10.1142/S0217751X19300102
https://doi.org/10.1142/S0217751X19300102
https://doi.org/10.1103/PhysRevD.97.115029
https://doi.org/10.1103/PhysRevD.97.115029
https://doi.org/10.1007/BF02099890
https://doi.org/10.1007/BF02099890
https://doi.org/10.1016/0393-0440(94)00032-Y
https://doi.org/10.1007/JHEP10(2012)101
https://doi.org/10.1007/JHEP10(2012)101
https://doi.org/10.1007/JHEP12(2014)064
https://doi.org/10.1088/1475-7516/2013/10/046
https://doi.org/10.1088/1475-7516/2013/10/046
https://doi.org/10.1063/1.5130127
https://www.ams.org/notices/201307/rnoti-p866.pdf
https://www.ams.org/notices/201307/rnoti-p866.pdf
https://www.ams.org/notices/201307/rnoti-p866.pdf
https://www.ams.org/notices/201307/rnoti-p866.pdf
https://www.ams.org/notices/201307/rnoti-p866.pdf
https://doi.org/10.1088/1361-6382/aae3f5
https://doi.org/10.1088/1361-6382/aae3f5
https://doi.org/10.1142/S0217751X13501431
https://doi.org/10.1142/S0217751X13501431
https://doi.org/10.1088/0004-637X/748/1/39
https://doi.org/10.1088/0004-637X/748/1/39

