

Contribution ID: 24

Type: Talk/Seminar

Riemannian geometry imposed on Friedmann and more general spacetimes

Wednesday 25 September 2019 16:50 (20 minutes)

At first we define Riemannian geometry in general relativity (GR) as geometry determined by Riemannian, Finsler-like metric \begin{equation} h_{ab}(x;v) := 2V_a V_b - g_{ab}(x). \end{equation} Here g_{ab} is the Lorentzian metric of a spacetime and \vec{v} is an unit timelike vector field: $v = \sqrt{g_{ab}v^av^b} = 1$. Then, we compare this Riemannian geometry with original, Lorentzian geometry in the case of Friedmann and more general spacetimes

Author:GARECKI, Janusz (University of Szczecin)Presenter:GARECKI, Janusz (University of Szczecin)Session Classification:Parallel Sessions

Track Classification: Parallel Sessions