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and Its discontents




Not counting states

A

> = %Gh

Bekenstein 1973
Hawking 1975

from phenomenological arguments

What microstates?




Not counting states

A

> = 4Gh

Gibbons+Hawking 1976  from Z(,B) o fﬁ Dg e~ 1l9]  Gravitational Path Integral
GPI

Entropy from classical saddle point?




Counting states — but not black holes

A
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Strominger+Vafa 1996  from D-branes in String theory

Non-gravitating states that are not black holes




Counting black hole states - with wormholes

S A Balasubramanian+Lawrence

T 4‘Gh +Magan+Sasieta 2022
Penington+al (PSSY) 2019

and others

Black hole microstates from GPIl-reloaded
dim(¥) = e”

Stochastic overlaps between states: from wormholes




Counting black hole states - with wormholes

A

> = %Gh

Stat-mech interpretation from GPI
Universal construction

Geometric microstates with smooth horizons




Black Hole Microstates

1. Constructing - with the Gravitational Path Integral (GPI)
2. Computing - overlaps from wormholes

3. Counting - the dimension of the black hole Hilbert space




Quantum States from Path Integrals

FROM QUANTUM FIELD THEORY TO EUCLIDEAN QUANTUM GRAVITY




Amplitudes from Path Integral (PI)
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Cutting the PI: “State preparation”
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State overlaps
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Ground state & States from operators
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Thermal states

Imaginary time periodicity

Z[B] = D e~ 1ElP]
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Thermofield Double State — TFD

Cut open the path integral

1
ITFD) = \/_72 e~ PH/2|E), ® |E)k

Maximally entangled state




Partially Entangled Thermal States

PETS Goel+Lam+Turiaci+Verlinde
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Partially Entangled Grand-canonical States

Add charge & rotation: PEGS
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Gravitational Partition Function

Z[B] = f Dg e 'enldl

9(0)=g(B) O p

/‘ % gd—2

Euclidean black hole




Black Magic

Z[B] = Dg e 1EHl9] ~ o~ IEHIGcl semiclassical saddle-point
9.1 = Euclidean black hole
g(0)=g(p)
A | |
S = (ﬁaﬁ — 1)[EH[gcl] =c Gibbons+Hawking

* Igylg:] = Euclidean action of classical field configuration: zero-loop
* Not a trace over states: Trace = sum over all states running in a loop: one-loop contribution

* Not a sum over microstates - but still gives non-zero & correct S = A/4G




Gravitational Partition Function in AdS

ZagslB] = f Dg e~ 'euld]
g(0)=g(p)
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Euclidean AdS black hole 5
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Thermal quantum states from cut GPI
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Thermotield double = Eternal black hole

Lorentzian evolution AdS black hole

ITFD) = x
/ —
B2 X v

Sd—Z

Maldacena 2001




Thermotield double = Eternal black hole

Eternal black hole

1
ITFD) = — E e PEi/2|i), |i)g
Z l

Bell/EPR pair

W) = = (10}, 100+ 1), 11)5) Correlation/connection, but no ER bridge

R communication between sides

L
s P
¢ ¢ Thermal behavior when only one

side is probed

Maldacena+Susskind 2013




Thermotield double

1
] R |TFD>=—r§ e PHIZIE), ® |E;)R
Z [

A specific (micro)state of the dual CFT

Dual geometry has a horizon and a singularity




Constructing

BLACK HOLE MICROSTATES FROM THE GRAVITATIONAL PATH
INTEGRAL




Black Hole Microstates

Microscopic pure states |W) that are almost indistinguishable (for simple observables)

from thermal state py
(PIOOY) - Tr(pm0),  (P|O@)O0(0)[¥) — Tr(py,0(£)0(0))

Geometric microstates look like a black hole when probed with simple operations

1 _ A black hole microstate,
ITFD) = —= > e #2IE), ® E),
i

though not very typical




Geometric PEGS

CFT Gravity

M, Q; M, Q, =|¥,.)

m

£
I
[

Pl2, o, Pl2wu Blz.wm o,  Bl2wm

Operator O,,, inserted at boundary creates particles in the bulk - a ‘shell of dust’ matter m

Make it heavy enough to backreact on geometry




Geometric PEGS

Lorentzian I : : ‘ M, Q;
e
Euclidean \_L/ W) \"

Shell moves inside black hole

Creates space within the black hole: ‘bag of gold’




Geometric PEGS

I : : ‘ M;QI
\_,i/ W) 1

Shell mass m can be arbitrarily large for fixed black hole M, Q,

Huge (infinite!) number of states




Shell PEGS are Black Hole Microstates

Almost indistinguishable (for simple observables) from

grand-canonical state p,

(qjm | 0 (t) |me> = Tr(ptho)

Looks like a black hole when probed with simple operations

[P

Shell microstates have semiclassical description with horizons and singularities




Heavy-shell Microstates M

NN

Shell close to the (would-be) boundary - little sensitivity to bulk black hole




Heavy-shell Microstates

(Pl (P, |¥,,,) factorizes into ~ Z|f, MI]Z

All calculations simplify a lot

Shell does not affect horizon properties

|Pin) Dependence on shell m drops out —

universality




Computing

STATE OVERLAPS FROM WORMHOLES: UNIVERSALITY
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G: Gram matrix of
state overlaps




Too many states? =\ _ |/

Gij = (W;|¥;) = &y

Infinite family of orthogonal states




Products with Wormbholes

(Wil e
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Wormbholes = Statistical states

G_ij=0fori;tj CD:O Not (¥;|¥;) = 0

but (Lpl l‘P)
GijGji:FOfOrl':/:j E\j * 0




Heavy-Shell Wormholes

m
2[5

B Z(ZIB, ”1)2 Unaffected by shell m;

Given by partition function

Z(,B;lli)4 of BH




Moments of ¢ from wormbholes

— :Z(nlguul)z
i Z(:Buui)zn

Heavy-shell universality

Gi.i. G .G

111 Tipl3

Depends only on BH partition function




Counting

THE DIMENSION OF THE BLACK HOLE HILBERT SPACE




Dimension of set of states

Fo={|¥)eH,i=1..,0Q)

dg = dim Fq = min{Q, dim '}
= rank G;; Gij = (LPL‘LPJ>

Gram-Schmidt fails for BH microstates: Gij = (Sij




Statistical counting

From statistical moments Gn

Statistics forced by GPI wormholes

Borrow from random matrix techniques: resolvent

Tr G™
R(A) =+ + z An+1

Penington+al (PSSY) 2019




Moments

From grand-canonical to microcanonical BH window
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How many black hole states? exp A/4G

We had dg = dim Fo = min{(}, dim #'}

Resolvent for G™ gives d = min{Q, e4/4¢}

= |dim K = e4/46G




How many black hole states? exp Sgy

More generally
dim H = e®BH

where Sgy Is the value from Gibbons-Hawking GPI Partition Function

(through black magic)




Universality of dim H = exp Sgy

Heavy shells can be constructed for

* Rotating and charged black holes

* Near-extremal, susy or not

* Quantum-corrected: log A and log T

* Higher-curvature theories

Heavy-shell microstates = dim H = e°BH




Outlook

GPl BLACK MAGIC RELOADED - WITH WORMHOLE STATISTICS




Gravitational Path Integral can do a lot

e (Construct microstate families and count their dimension

e Heavy-shell microstates = dim H = e°BH

 Works for all cases where Gibbons-Hawking gives an entropy




Universality: double-edged sword

* Extremely general, simple construction and result ©

* Hides all microscopic distinctions

®

* Works even when it should not (eg in the swampland)




Geometry and randomness

 Wormholes are how gravity knows about finite dim Hpgy
 But they introduce intrinsic randomness

 Semiclassical BH geometry seems to need chaotic microscopics

Is this all one needs/can do for
(non-susy) BH microscopics?




ANA CLIMENT
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MARTIN SASIETA
ALEJANDRO VILAR LOPEZ

JAVIER MAGAN



Backup material




Near-extremal Microstates

near-extremal AdS, throat (JT Schwarzian)

In-throat microstates (one JT Schwarzian) Out-throat microstates (two Schwarzians)

Sensitive to throat Universal
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