Ultralight dark matter, review and future extensions

Andrew Eberhardt [Kavli IPMU] andrew.eberhardt@ipmu.jp Copernicus Webinar July, 2024

• Ultralight/Fuzzy/Scalar field/Wave/etc dark matter

• Ultralight/Fuzzy/Scalar field/Wave/etc dark matter

• Ultralight/Fuzzy/Scalar field/Wave/etc dark matter

- Ultralight/Fuzzy/Scalar field/Wave/etc dark matter
- Ultralight fields are a generic prediction of string theory

- Ultralight/Fuzzy/Scalar field/Wave/etc dark matter
- Ultralight fields are a generic prediction of string theory
- Model in which we describe the dark matter a single, spin-zero, non-relativistic, classical field

$$\partial_t \psi(x) = \frac{-i}{\hbar} \left(-\frac{\hbar^2 \nabla^2}{2m} + mV(x) \right) \psi(x)$$
$$\nabla^2 V(x) = 4\pi G \, m \, |\psi(x)|^2$$

- Ultralight/Fuzzy/Scalar field/Wave/etc dark matter
- Ultralight fields are a generic prediction of string theory
- Model in which we describe the dark matter a single, spin-zero, non-relativistic, classical field

$$\partial_t \psi(x) = \frac{-i}{\hbar} \left(-\frac{\hbar^2 \nabla^2}{2m} + mV(x) \right) \psi(x)$$
$$\nabla^2 V(x) = 4\pi G \, m \, |\psi(x)|^2$$

- Originally motivated by the core-cusp problem and other small scale structure problems
 - core/cusp

- Originally motivated by the core-cusp problem and other small scale structure problems
 - core/cusp
 - missing satellites

Schive et al (Nature 2014)

- Originally motivated by the core-cusp problem and other small scale structure problems
 - core/cusp
 - missing satellites

$$m \sim 10^{-22} \,\mathrm{eV}$$

Gravitational collapse in 1D

11

• Historically this mass range has received a lot of attention

Recent work focuses more on putting a lower bound on the dark matter mass

• Recent work focuses more on putting a lower bound on the dark matter

Recent work focuses more on putting a lower bound on the dark matter mass

- Recent work focuses more on putting a lower bound on the dark matter mass
- Limit the scope of this review to work on ultralight (fuzzy) dark matter with implications for structure Hui, Annu. Rev. Astron. Astrophys (2021)

- Recent work focuses more on putting a lower bound on the dark matter mass
- Limit the scope of this review to work on ultralight (fuzzy) dark matter with implications for structure Hui, Annu. Rev. Astron. Astrophys (2021)
- Not include but still very interesting and important:
 - Ultraultra light dark matter (below 1e-22 eV) Ferreira, Astro and Astroph Review (2021)
 - Black hole SR (above 1e-19 eV) Arvanitaki and Dubovsky, PRD 2011 Stott and Marsh, PRD (2018)
 - Ultralight dark matter with non gravitational interactions with the standard model

• "Quantum" pressure

$$e^{\gamma t}$$

 $\gamma^2 = 4\pi G\rho - (k^2/2m)^2$
 $r_J = \pi^{3/4} (G\rho)^{-1/4} m^{-1/2}$

Hu et al., PRL (2000)

• "Quantum" pressure

Hu et al., PRL (2000)

• "Quantum" pressure

Hu et al., PRL (2000)

• "Quantum" pressure

• "Quantum" pressure

• "Quantum" pressure

$$x = 1.61 m_{22}^{1/18} k/k_{Jeq}$$

 $k_{Jeq} = 9 m_{22}^{1/2} \,\mathrm{Mpc}^{-1}$
 $T_{\mathrm{F}}(k) \approx rac{\cos x^3}{1+x^8}$
Hu et al., PRL (2000)

- "Quantum" pressure
- Solitons

Mocz et al., MNRAS (2017)

- "Quantum" pressure
- Solitons
 - At the center of fdm halos

Mocz et al., MNRAS (2017)

- "Quantum" pressure •
- Solitons •
 - At the center of fdm halos _
 - Ground state of the halo potential

- "Quantum" pressure
- Solitons
 - At the center of fdm halos
 - Ground state of the halo potential

$$\left(-\frac{\hbar^2}{2m_i} \nabla_r^2 + m_i V(r) + \frac{\hbar^2}{2m} \frac{(l+l)l}{r^2} \right) \phi_0(r) = E_0 \phi_0(r)$$

$$\nabla_r^2 V(r) = 4\pi G \,\rho(r)$$

- "Quantum" pressure
- Solitons
 - At the center of fdm halos
 - Ground state of the halo potential
 - Mass and radius are the focus of a larger body of work

 r_c

$$\begin{split} M_c &\approx \frac{5.5 \times 10^9}{(m_B/10^{-23} \text{ eV})^2 (\mathrm{r_c/kpc})} \, M_\odot. \\ &= 1.6 \, \, m_{22}^{-1} a^{1/2} \left(\frac{\zeta(z)}{\zeta(0)} \right)^{-1/6} \left(\frac{M_h}{10^9 \, M_\odot} \right)^{-1/3} \, \, \mathrm{kpc.} \end{split}$$

Schive et al, Nature (2014) Schive et al, PRL (2014)

- "Quantum" pressure
- Solitons
 - At the center of fdm halos
 - Ground state of the halo potential
 - Mass and radius are the focus of a larger body of work
 - Extended work also focuses on the impact on solitons

Self interactions

Painter et al, MNRAS (2023)

- "Quantum" pressure
- Solitons
 - At the center of fdm halos
 - Ground state of the halo potential
 - Mass and radius are the focus of a larger body of work
 - Extended work also focuses on the impact on solitons

Multi-field

- "Quantum" pressure
- Solitons
- Density granules
 - Halos exhibit ~O(1) fluctuations in the density

Gosenca [, Eberhardt] et al., PRD (2023)

- "Quantum" pressure
- Solitons
- Density granules
 - Halos exhibit ~O(1) fluctuations in the density
 - Interference between different momentum streams in phase space

- "Quantum" pressure
- Solitons
- Density granules
 - Halos exhibit ~O(1) fluctuations in the density
 - Interference between different momentum streams in phase space
 - Higher energy modes produce granules

Gosenca [, Eberhardt] et al., PRD (2023)

$$\left(-\frac{\hbar^2}{2m_i}\nabla_r^2 + m_iV(r) + \frac{\hbar^2}{2m}\frac{(l+l)l}{r^2}\right)\phi_n(r) = E_n\phi_n(r)$$
$$\nabla_r^2 V(r) = 4\pi G\,\rho(r)$$

- "Quantum" pressure
- Solitons
- Density granules
 - Halos exhibit ~O(1) fluctuations in the density
 - Interference between different momentum streams in phase space
 - Higher energy modes produce granules

Gosenca [, Eberhardt] et al., PRD (2023)

$$\psi(t) = \sum_{n} w_n \, e^{-i \, E_n \, t} \phi_n$$

- "Quantum" pressure
- Solitons
- Density grai
 - Halos e: (a) density
 - Interfere moment
 - Higher є granules

 Granules have been another focus of extended work

Gosenca [, Eberhardt] et al., PRD (2023)
Pheno

- "Quantum" pressure •
- Solitons •
- **Density granules** •
- Halos exhibit ~O(1) f
 - bility Interference betweer _ momentum streams
 - Higher energy mode: granules
 - Granules have been _ extended work

Pheno

- "Quantum" pressure
- Solitons
- Density granules
- Relativistic pressure

$$\Psi(\mathbf{x}, t) \simeq \Psi_0(\mathbf{x}) + \Psi_c(\mathbf{x}) \cos\left(\omega t + 2\alpha(\mathbf{x})\right)$$
$$\Psi_c(\mathbf{x}) = \frac{1}{2}\pi GA(\mathbf{x})^2 = \pi \frac{G\rho_{\rm DM}(\mathbf{x})}{m^2}$$

Khmelnitsky and Rubakov, JCAP (2014)

Pheno

- "Quantum" pressure
- Solitons
- Density granules
- Relativistic pressure

$$\Phi = \Phi_0 + \Phi_c$$
$$\Phi_c \sim \frac{v^2}{c^2} \Phi_0$$

$$\Psi(\mathbf{x}, t) \simeq \Psi_0(\mathbf{x}) + \Psi_c(\mathbf{x}) \cos\left(\omega t + 2\alpha(\mathbf{x})\right)$$
$$\Psi_c(\mathbf{x}) = \frac{1}{2}\pi GA(\mathbf{x})^2 = \pi \frac{G\rho_{\rm DM}(\mathbf{x})}{m^2}$$

Khmelnitsky and Rubakov, JCAP (2014)

$$au_{\rm c} \sim \hbar/mc^2$$

 $\lambda_{\rm c} \sim \hbar/mc$

N-body simulations with altered transfer function

axionCamb

$$x = 1.61 \, m_{22}^{1/18} k/k_{Jeq}$$
$$k_{Jeq} = 9 \, m_{22}^{1/2} \, \text{Mpc}^{-1}$$
$$T_{F}(k) \approx \frac{\cos x^{3}}{1+x^{8}}$$

- N-body simulations with altered transfer function
- Eigenvalue decomposition methods

jaxsp

$$\left(-\frac{\hbar^2}{2m_i}\nabla_r^2 + m_iV(r) + \frac{\hbar^2}{2m}\frac{(l+l)l}{r^2}\right)\phi_n(r) = E_n\phi_n(r)$$
$$\nabla_r^2 V(r) = 4\pi G\,\rho(r)$$

Zagorac et al., PRD (2022)

Numerics

- N-body simulations with altered transfer function
- Eigenvalue decomposition methods
 - Solve eigenvalue problem of Hamiltonian

- N-body simulations with altered transfer function
- Eigenvalue decomposition methods
 - Solve eigenvalue problem of Hamiltonian
 - Solve for weights in eigenvalue sum

- N-body simulations with altered transfer function
- Eigenvalue decomposition methods
 - Solve eigenvalue problem of Hamiltonian
 - Solve for weights in eigenvalue sum
 - Sum eigenvectors with random phase

Gosenca [, Eberhardt] et al., PRD (2023)

$$\psi(r,\theta,\varphi) = \sum_{l}^{l_{max}} \sum_{m=-l}^{l} \sum_{n}^{e_{max}} w_j Y_l^m(\theta,\varphi) \phi_n^l(r) e^{-i\omega_{lmj}}$$

- N-body simulations with altered transfer function
- Eigenvalue decomposition methods
 - Solve eigenvalue problem of Hamiltonian
 - Solve for weights in eigenvalue sum
 - Sum eigenvectors with random phase
 - Sum can be used for approximate simulations

- N-body simulations with altered transfer function
- Eigenvalue decomposition methods
 - Solve eigenvalue problem of Hamiltonian
 - Solve for weights in eigenvalue sum
 - Sum eigenvectors with random phase
 - Sum can be used for approximate simulations
 - Can give initial conditions for full simulations

- N-body simulations with altered transfer function
- Eigenvalue decomposition methods
- Full nonlinear simulations

Schive et al (Nature 2014)

• Fixed and dynamic resolution simulations exist

axionyx

pyUltralight

• Complex field on a grid

$$\psi(x) = A(x) e^{i\phi(x)}$$

- Complex field on a grid
- Amplitude and phase have information about spatial density and velocity

$$\psi(x) = A(x) e^{i\phi(x)}$$
$$\rho(x) = |A(x)|^2$$
$$v(x) = \frac{\hbar}{m} \nabla \phi(x)$$

- Complex field on a grid
- Amplitude and phase have information about spatial density and velocity
- Update the field using unitary operators in kick-drift-kick scheme

$$\partial_t \psi(x,t) = \frac{-i}{\hbar} \left(\frac{\hat{p}^2}{2m} + mV\right) \psi(x,t)$$

- Complex field on a grid
- Amplitude and phase have information about spatial density and velocity
- Update the field using unitary operators in kick-drift-kick scheme

$$\partial_t \psi(x,t) = \frac{-i}{\hbar} \left(\frac{\hat{p}^2}{2m} + mV \right) \psi(x,t)$$
$$\psi(x,t) = e^{-i \left(\frac{\hat{p}^2}{2m} + mV \right) t/\hbar} \psi(t=0)$$

- Complex field on a grid
- Amplitude and phase have information about spatial density and velocity
- Update the field using unitary operators in kick-drift-kick scheme

$$\partial_t \psi(x,t) = \frac{-i}{\hbar} \left(\frac{\hat{p}^2}{2m} + mV \right) \psi(x,t)$$

$$\psi(x,t) = e^{-i \left(\frac{\hat{p}^2}{2m} + mV \right) t/\hbar} \psi(t=0)$$

$$\psi(x, t + \Delta t/2) = e^{-imV\Delta t/2\hbar}\psi(x, t)$$

$$\psi(p, t + \Delta t) = e^{-i\frac{\hat{p}^2}{2m}\Delta t/\hbar}\psi(p)$$

$$\psi(x, t + \Delta t) = e^{-imV\Delta t/2\hbar}\psi(x, t + \Delta t/2)$$

- Complex field on a grid
- Amplitude and phase have information about spatial density and velocity
- Update the field using unitary operators in kick-drift-kick scheme

 $\partial_t \psi(x,t) = \frac{-i}{\hbar} \left(\frac{\hat{p}^2}{2m} + mV \right) \psi(x,t)$ $\psi(x,t) = e^{-i \left(\frac{\hat{p}^2}{2m} + mV \right) t/\hbar} \psi(t=0)$

CK SCheme
$$\psi(x,t + \Delta t/2) = e^{-imV\Delta t/2\hbar}\psi(x,t)$$
Momentum half step $\psi(p,t + \Delta t) = e^{-i\frac{\hat{p}^2}{2m}\Delta t/\hbar}\psi(p)$ Position full step $\psi(x,t + \Delta t) = e^{-imV\Delta t/2\hbar}\psi(x,t + \Delta t/2)$

• Ultralight dark matter approaches cold dark matter on large scales

• Ultralight dark matter approaches cold dark matter on large scales

 $\psi(x,t+\Delta t/2) = e^{-imV\Delta t/2\hbar}\psi(x,t) \qquad \qquad \psi(p,t+\Delta t) = e^{-i\frac{\hat{p}^2}{2m}\Delta t/\hbar}\psi(p)$

• Ultralight dark matter approaches cold dark matter on large scales

Ultralight dark matter approaches cold dark matter on large scales

• Ultralight dark matter approaches cold dark matter on large scales

Halo mass functions

 $m > 2.1 \times 10^{-21} \,\text{eV}$ Schutz, PRD (2020) $m > 2.9 \times 10^{-21} \,\text{eV}$ Nadler et al, PRL (2021) $m > 1.2 \times 10^{-21} \,\text{eV}$ Garland et al, MNRAS (2024)

- Halo mass functions
 - Estimate halo mass function from cosmological N-body simulations with FDM transfer function

 $m > 2.1 \times 10^{-21} \,\text{eV}$ Schutz, PRD (2020) $m > 2.9 \times 10^{-21} \,\text{eV}$ Nadler et al, PRL (2021) $m > 1.2 \times 10^{-21} \,\text{eV}$ Garland et al, MNRAS (2024)

- Halo mass functions
 - Estimate halo mass function from cosmological N-body simulations with FDM transfer function

 $m > 2.1 \times 10^{-21} \text{ eV}$ Schutz, PRD (2020) $m > 2.9 \times 10^{-21} \text{ eV}$ Nadler et al, PRL (2021) $m > 1.2 \times 10^{-21} \text{ eV}$ Garland et al, MNRAS (2024)

Garland et al, (2024)

- Halo mass functions
 - Estimate halo mass function from cosmological N-body simulations with FDM transfer function
 - Compare predicted number of satellites with observations

 $m > 2.1 \times 10^{-21} \text{ eV}$ Schutz, PRD (2020) $m > 2.9 \times 10^{-21} \text{ eV}$ Nadler et al, PRL (2021) $m > 1.2 \times 10^{-21} \text{ eV}$ Garland et al, MNRAS (2024)

Garland et al, (2024)

- Halo mass functions
- Cores

 $m > 6 \times 10^{-22} \text{ eV}$ Safarzadeh and Spergetl, ApJ (2020) $m > 2 \times 10^{-20} \text{ eV}$ Bar et al, PRD (2022) $m > 2.2 \times 10^{-21} \text{ eV}$ Zimmermann et al, (2024)

- Halo mass functions
- Cores
 - FDM predicts a soliton core instead of a cusp

 $m > 6 \times 10^{-22} \text{ eV}$ Safarzadeh and Spergetl, ApJ (2020) $m > 2 \times 10^{-20} \text{ eV}$ Bar et al, PRD (2022) $m > 2.2 \times 10^{-21} \text{ eV}$ Zimmermann et al, (2024)

- Halo mass functions
- Cores
 - FDM predicts a soliton core instead of a cusp
 - Semi-analytic (informed by full FDM sims), or eigenvalue constructions of these cores predict rotation curves which can be compared to data

 $m > 6 \times 10^{-22} \text{ eV}$ Safarzadeh and Spergetl, ApJ (2020) $m > 2 \times 10^{-20} \text{ eV}$ Bar et al, PRD (2022) $m > 2.2 \times 10^{-21} \text{ eV}$ Zimmermann et al, (2024)

Zimmermann et al, (2024)

- Halo mass functions
- Cores
- Granules

 $m > 1 \times 10^{-19} \text{ eV}$ Marsh and Niemeyer, PRL (2019) $m > 4.4 \times 10^{-21} \text{ eV}$ Powell et al, MNRAS (2023) $m > 3 \times 10^{-19} \text{ eV}$ Dalal and Krastov, PRD (2022)

 m_{22}

 $m > 1 \times 10^{-19} \text{ eV}$ Marsh and Niemeyer, PRL (2019) $m > 4.4 \times 10^{-21} \text{ eV}$ Powell et al, MNRAS (2023) $m > 3 \times 10^{-19} \text{ eV}$ Dalal and Krastov, PRD (2022)

- Halo mass functions
- Cores
- Granules
 - FDM halos have density granules due to inferring modes

Gosenca [, Eberhardt] et al., PRD (2023)

 $m > 1 \times 10^{-19} \text{ eV}$ Marsh and Niemeyer, PRL (2019) $m > 4.4 \times 10^{-21} \text{ eV}$ Powell et al, MNRAS (2023) $m > 3 \times 10^{-19} \text{ eV}$ Dalal and Krastov, PRD (2022)

- Halo mass functions
- Cores
- Granules
 - FDM halos have density granules due to inferring modes

Effects of granules are sensitive to field spin, number of fields, quantum corrections

Gosenca [, Eberhardt] et al., PRD (2023)
$m > 1 \times 10^{-19} \text{ eV}$ Marsh and Niemeyer, PRL (2019) $m > 4.4 \times 10^{-21} \text{ eV}$ Powell et al, MNRAS (2023) $m > 3 \times 10^{-19} \text{ eV}$ Dalal and Krastov, PRD (2022)

- Halo mass functions
- Cores
- Granules
 - FDM halos have density granules due to inferring modes

Effects of granules are sensitive to field spin, number of fields, quantum corrections

Spin – Amin et al, JCAP (2022) Number – Gosenca [,Eberhardt] et al, PRD (2023) Quantum corrections – Eberhardt et al, PRD (2024)

Gosenca [, Eberhardt] et al., PRD (2023)

- Halo mass functions
- Cores
- Granules
 - Strong lensing

 $m > 1 \times 10^{-19} \text{ eV}$ Marsh and Niemeyer, PRL (2019) $\longrightarrow m > 4.4 \times 10^{-21} \text{ eV}$ Powell et al, MNRAS (2023) $m > 3 \times 10^{-19} \text{ eV}$ Dalal and Krastov, PRD (2022)

Power et al, MNRAS (2023)

- Halo mass functions •
- Cores
- Granules
 - Strong lensing
 - Granular over densities • prevent image from forming observed sharpness

 $m > 1 \times 10^{-19} \,\mathrm{eV}\,\mathrm{Marsh}$ and Niemeyer, PRL (2019) \rightarrow m > 4.4 × 10⁻²¹ eV Powell et al, MNRAS (2023) $m > 3 \times 10^{-19} \,\mathrm{eV}$ Dalal and Krastov, PRD (2022)

> $m_{\chi} = 3.2 \times 10^{-22} \text{ eV}, \ f_{\rm DM} = 0.63$ $\Delta \log P_i = -137$

Power et al, MNRAS (2023)

- Halo mass functions
- Cores
- Granules
 - Strong lensing
 - Heating of stellar dispersions

 $m > 1 \times 10^{-19} \text{ eV}$ Marsh and Niemeyer, PRL (2019) $m > 4.4 \times 10^{-21} \text{ eV}$ Powell et al, MNRAS (2023) $m > 3 \times 10^{-19} \text{ eV}$ Dalal and Krastov, PRD (2022)

- Halo mass functions
- Cores
- Granules
 - Strong lensing
 - Heating of stellar dispersions
 - Density fluctuations act as quasi-particles

quasi-particles

 $m > 1 \times 10^{-19} \text{ eV}$ Marsh and Niemeyer, PRL (2019) $m > 4.4 \times 10^{-21} \text{ eV}$ Powell et al, MNRAS (2023) $m > 3 \times 10^{-19} \text{ eV}$ Dalal and Krastov, PRD (2022)

Dalal and Krastov, PRD (2022)

- Halo mass functions
- Cores
- Granules
 - Strong lensing
 - Heating of stellar dispersions
 - Density fluctuations act as quasi-particles
 - Stars in orbit are kicked by the granules

 $m > 1 \times 10^{-19} \text{ eV}$ Marsh and Niemeyer, PRL (2019) $m > 4.4 \times 10^{-21} \text{ eV}$ Powell et al, MNRAS (2023) $m > 3 \times 10^{-19} \text{ eV}$ Dalal and Krastov, PRD (2022)

- Halo mass functions
- Cores
- Granules
 - Strong lensing
 - Heating of stellar dispersions
 - Density fluctuations act as quasiparticles
 - Stars in orbit are kicked by the granules
 - Overtime this heats the dispersion and results in larger half-light radii than is observed

Dalal and Krastov, PRD (2022)

- Halo mass functions
- Cores
- Granules
 - Strong lensing
 - Heating of stellar dispersions
- Lyman alpha

 $m > 2 \times 10^{-20} \text{ eV}$ Rogers and Peiris, PRL (2020) $m > 2.1 \times 10^{-21} \text{ eV}$ Matteo et al, MNRAS (2019)

- Halo mass functions
- Cores
- Granules
 - Strong lensing
 - Heating of stellar dispersions
- Lyman alpha
 - Prevents formation of structure on the small scales observed in the Lyman alpha forest

 $m > 2 \times 10^{-20} \text{ eV}$ Rogers and Peiris, PRL (2020) $m > 2.1 \times 10^{-21} \text{ eV}$ Matteo et al, MNRAS (2019)

- Halo mass functions
- Cores
- Granules
 - Strong lensing
 - Heating of stellar dispersions
- Lyman alpha
 - Prevents formation of structure on the small scales observed in the Lyman alpha forest
 - Compare with predictions of Cdm simulations with altered transfer function

 $m > 2 \times 10^{-20} \text{ eV Rogers and Peiris, PRL (2020)}$ $m > 2.1 \times 10^{-21} \text{ eV Matteo et al, MNRAS (2019)}$

- Halo mass functions
- Cores
- Granules
 - Strong lensing
 - Heating of stellar dispersions
- Lyman alpha
- Pulsar timing arrays

	Constraint by method
	Porayko et al, PRD (2018)
	Matteo et al, MNRAS (2019) Rogers and Peiris, PRL (2020)
	Bar et al, (2024) Bar et al, PRD (2022) Safarzadeh and Spergel, ApJ (2020)
	Dalal and Krastov, PRD (2022) Church et al, MNRAS (2019) Marsh and Niemever, PRL (2019)
	Powell et al, MNRAS (2023) Halo mass func Garland et al, (2024) strong lensing
10	Nadler et al, PRL (2021) Granular heating Schutz, PRD (2020) Lyman alpha T 100 101 102 103 100
10	m_{10}^{-2} 10° 10 ² 10° 10° 10 m_{22}

- Halo mass functions
- Cores
- Granules
 - Strong lensing
 - Heating of stellar dispersions
- Lyman alpha
- Pulsar timing arrays
 - Relativistic fluctuating pressure

$$\Phi = \Phi_0 + \Phi_c$$
$$\Phi_c \sim \frac{v^2}{c^2} \Phi_0$$

- Halo mass functions
- Cores
- Granules
 - Strong lensing
 - Heating of stellar dispersions
- Lyman alpha
- Pulsar timing arrays
 - Relativistic fluctuating pressure
 - Produces signal that fluctuates on Compton timescale

Constraints

- Halo mass functions
- Cores
- Granules
 - Strong lensing
 - Heating of stellar dispersions
- Lyman alpha
- Pulsar timing arrays
 - Relativistic fluctuating pressure
 - Produces signal that fluctuates on Compton timescale

$$\frac{\Delta\Omega}{\Omega_0} = \frac{\Phi_c(x_{\oplus}) - \Phi_c(x_p)}{c^2}$$

86

- Halo mass functions
- Cores
- Granules
 - Strong lensing
 - Heating of stellar dispersions
- Lyman alpha
- Pulsar timing arrays
 - Relativistic fluctuating pressure
 - Produces signal that fluctuates on Compton timescale

Khmelnitsky and Rubakov, JCAP (2014)

- Halo mass functions
- Cores
- Granules
 - Strong lensing
 - Heating of stellar dispersions
- Lyman alpha
- Pulsar timing arrays
 - Relativistic fluctuating pressure
 - Produces signal that fluctuates on Compton timescale

• Vanilla FDM model is dead

- Vanilla FDM model is dead
 - Multiple observational probes, numerical methods, phenomenology rule it out

- Vanilla FDM model is dead
 - Multiple observational probes, numerical methods, phenomenology rule it out

- Vanilla FDM model is dead
 - Multiple observational probes, numerical methods, phenomenology rule it out

- Vanilla FDM model is dead
 - Multiple observational probes, numerical methods, phenomenology rule it out

Simulations with altered transfer function at correct mass but not direct FDM sims

- Vanilla FDM model is dead
 - Multiple observational probes, numerical methods, phenomenology rule it out

Use derived relations from full FDM sims at low mass

Schive et al (Nature 2014)

- Vanilla FDM model is dead
 - Multiple observational probes, numerical methods, phenomenology rule it out

FDM simulations at correct mass but with some dynamical approximation

- Vanilla FDM model is dead
- Wide range of work looking into extensions of the model

- VanillaFDM model is dead
- Wide range of work looking into extensions of the model

Model in which we describe the dark matter a single, spin-zero, non-relativistic, classical field

- Vanilla FDM model is dead
- Wide range of work looking into extensions of the model
 - Self interactions

Painter et al, (2024)

Soliton effects

Gosenca [, Eberhardt] et al., PRD (2023)

Outlook

- Vanilla FDM model is dead
- Wide range of work looking into extensions of the model

 $\rho (M_{\odot} kpc^{-3})$

- Self interactions
- Multiple fields/mixed

Granule effects

- Vanilla FDM model is dead
- Wide range of work looking into extensions of the model 10°
 - Self interactions
 - Multiple fields/mixed

- Vanilla FDM model is dead
- Wide range of work looking into extensions of the model
 - Self interactions
 - Multiple fields/mixed
 - Higher spins

- Vanilla FDM model is dead
- Wide range of work looking into extensions of the model
 - Self interactions
 - Multiple fields/mixed
 - Higher spins
 - Quantum corrections

Mean number density fluctuation

- Vanilla FDM model is dead
- Wide range of work looking into extensions of the model
 - Self interactions
 - Multiple fields/mixed
 - Higher spins
 - Quantum corrections

Each alleviate some tensions and introduce new pheno

Vanilla FDM model is dead •

bound

- Wide range of work looking into • extensions of the model
- Increasingly powerful constraint on • the lower bound of dark matter models

- Vanilla FDM model is dead
- Wide range of work looking into extensions of the model
- Increasingly powerful constraint on the lower bound of dark matter models
- Future proofing in two ways

- Vanilla FDM model is dead
- Wide range of work looking into extensions of the model
- Increasingly powerful constraint on the lower bound of dark matter models
- Future proofing in two ways
 - No direct detections, ultralight dark matter work is prepared for the worst case minimally coupled scenario

- Vanilla FDM model is dead
- Wide range of work looking into extensions of the model
- Increasingly powerful constraint on the lower bound of dark matter models
- Future proofing in two ways
 - No direct detections, ultralight dark matter work is prepared for the worst case minimally coupled scenario
 - Future surveys will probe smaller scales and earlier times making ultralight dark matter constraints at higher masses

Questions?

109

• We would like to run simulations over a large mass range to produce constraints

- We would like to run simulations over a large mass range to produce constraints
- The update scales as the Fourier transform but spectral and kinetic aliasing make the scaling much worse

$$\sim \mathcal{O}(N^D \log N)$$

$$\psi(p, t + \Delta t) = e^{-i\frac{\hat{p}^2}{2m}\Delta t/\hbar}\psi(p)$$

$$\psi(x, t + \Delta t/2) = e^{-imV\Delta t/2\hbar}\psi(x, t)$$

- We would like to run simulations over a large mass range to produce constraints
- The update scales as the Fourier transform but spectral and kinetic aliasing make the scaling much worse

$$\sim \mathcal{O}(N^D \log N)$$

$$\psi(p, t + \Delta t) = e^{-i\frac{\hat{p}^2}{2m}\Delta t/\hbar}\psi(p)$$

$$\psi(x, t + \Delta t/2) = e^{-imV\Delta t/2\hbar}\psi(x, t)$$

- We would like to run simulations over a large mass range to produce constraints
- The update scales as the Fourier transform but spectral and kinetic aliasing make the scaling much worse

$$\sim \mathcal{O}(N^D \log N)$$

$$\psi(p, t + \Delta t) = e^{-i\frac{\hat{p}^2}{2m}\Delta t/\hbar}\psi(p)$$

$$\psi(x, t + \Delta t/2) = e^{-imV\Delta t/2\hbar}\psi(x, t)$$

$$v_{max} = \hbar/dx/m = \hbar N/L/m$$

- We would like to run simulations over a large mass range to produce constraints
- The update scales as the Fourier transform but spectral and kinetic aliasing make the scaling much worse

115