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Axion inflation
Pseudoscalar, shift symmetric inflaton, radiatively stable 


theoretically very attractive
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EOM for helicity-λ   

modes of photon

“natural“ coupling to U(1) gauge fields:

<latexit sha1_base64="dYToOvU10S0LoBnREekaBpFB5OU="></latexit>

A00
� +

✓
k2 + �

↵�0

f
|k|

◆
A� = 0



Amplification of chiral vectors

for λ=-, the “mass term” is negative 
and large for ~1 Hubble time:

Exponential amplification of left-handed modes only 
(parity violation)
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Phenomenology

Cosmological magnetic fields

(Observed up to ~Mpc scales, ~10-17G, uncertain origin) 

Blue spectrum, B(k)∝k2

too weak at large scales 

…despite inverse cascade 

(MHD effect for chiral gauge fields, 

amplifying large scale spectrum) 

Anber, LS 06



Phenomenology

Baryogenesis

Nonvanishing net helicity
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FIG. 1. Top panel ⌘bar vs ⇠, the bottom panel ⌘bar vs Hinf .
For instance, the observed value of baryon asymmetry ⌘bar =
10�10 can be obtained for ⇠ = 1 and Hinf = 6.3⇥ 1010 GeV.

FIG. 2. Hinf vs ⇠ for ⌘bar = 10�10.

not extrapolate our results for values of ⌘bar & 1 as the
perturbative calculation breaks down.

Discussion.—A simple example of pseudoscalar infla-
tion is natural inflation [3] in which a shift symmetry � !
�+ C is broken down to a discrete subset � ! �+ 2⇡f
resulting in the potential V = ⇤4 [1 + cos(�/f)]. We re-
call that the slow roll conditions are satisfied provided
that m2

� < H
2
inf. Using Friedmann’s equation 3m̄2

p
H

2
inf =

V ⇠= ⇤4, where m̄p = mp/
p
8⇡, and m

2
�
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/f

2, we
obtain f >

p
3m̄p. The scalar fluctuation power spec-

trum is given by P⇣ = P
h
1 + 7.5⇥ 10�5P e

4⇡⇠

⇠6

i
, where

P1/2 ⌘ H
2
inf

2⇡|�̇| [19]. This power spectrum is probed by

the CMB observations with amplitude given by the Cos-
mic Background Explorer (COBE) normalization P⇣

⇠=

25⇥ 10�10. Using the equation of motion of the inflaton
during the slow roll regime 3Hinf�̇ ⇠= @V/@� = ⇤4

/f ,
we find Hinff

⇠= 10�4
m̄

2
p
. Setting f ⇠ m̄p, we obtain

Hinf
⇠= 1014 GeV. Such a large Hubble parameter dur-

ing inflation will result in baryon asymmetry overpro-
duction for values of ⇠ & 1. One way out is that the
coupling between the hypercharge gauge field and the in-
flaton is very weak, ↵ ⌧ 1, such that no hypercharge
field can be produced during inflation. Such fundamen-
tally very small values of ↵ appear to be contrived since
one expects ↵ & 1 as a consequence of the ”gravity as
the weakest force” conjecture [20]. Moreover, a consis-
tent theory of quantum gravity disfavors values of the
axion constant f & m̄p. The latter problem can be solved
within the framework of N-flation [21]. In this scenario,
one assumes that there are N di↵erent axions with con-
stants fi ⌘ fsingle < m̄p and that all these axions couple
equally to the U(1)

Y
hypercharge gauge field such that

e↵ectively we have f =
p
Nfsingle > m̄p [8]. Demanding

that f . m̄p one finds that N ⇠ O(100) removes the con-
flict with quantum gravity. On the other hand, lowering
the inflation scale, Hinf . 6.3⇥1010 GeV, guarantees the
production of the observed baryon asymmetry for ⇠ & 1.
Such low inflationary scales will require invoking curva-
tons in order to respect the COBE normalization [22–24].
One of the key predictions of natural inflation, apart

from the cosmological data, is the maximally helical hy-
permagnetic field generated via the dimension-5 opera-
tor of the form (�/f)Yµ⌫ Ỹ

µ⌫ , which is expected from
e↵ective field theory considerations. In this letter, we
showed that the dramatic consequence of this coupling
is the overproduction of baryon asymmetry that severely
constrains models of natural inflation with large Hubble
parameter, Hinf & 6.3 ⇥ 1010 GeV. Note, however, that
we assumed the primordial plasma to be turbulent be-
tween Trh & T & 10 TeV. If the plasma ceases to be tur-
bulent during the course of baryon number generation,
the contribution from the hypercharge sector might be-
come less e�cient due to the di↵usion of hypermagnetic
field. Meanwhile, weak sphalerons can wash out the ex-
cess baryon number. However, we note that this scenario
is not likely as the magnetic Reynolds number tends to
increase after reheating [12]. To conclude, for parameters
Hinf . 6.3⇥ 1010 GeV and ⇠ ⇠ 1, the observed BAU can
be achieved. Yet another prediction in this case would
be the relic magnetic fields with right handed helicity
(h > 0). It was pointed out in Refs. [15, 25, 26] that the
magnetic helicity is proportional to the baryon number.
In this work, we explicitly showed this to be case. A re-
cent analysis of the di↵use gamma ray data hints towards
a global CP violation, which could be due to primor-
dial magnetic fields with non zero helicity [27]. It would
be a boon to find an observational correlation between
the topology of these primordial magnetic fields and the
baryon number. This will be a smoking gun evidence for
a link between inflation and the BAU.



Phenomenology

Chiral gravitational waves
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Phenomenology

Chiral gravitational waves
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Phenomenology

…but also, very large fNL
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FIG. 1: Values of parameters leading to the observed COBE
normalization of the power spectrum (red line), and reference
values for the nongaussianity parameter fequil

NL = 10, 266, 8000
along this curve. See the main text for details.

strong, then it will affect the inflaton dynamics. The re-
gion of parameter space where this occurs is above the
black solid line (P1/2 > 13ξ3/2 e−πξ) shown in Figure 1.
We have also disregarded the impact of the energy den-
sity of the produced quanta on the expansion rate, H .
This is justified provided e2πξ/ξ3 ! 2 · 104M2

p/H
2. This

constraint is not expressed in terms of ξ and P1/2, so
we have not included it in Figure 1. However, it can be
studied on a case-by-case basis.
The gauge quanta also source gravity waves (GW). It

is customary to normalize the power of GW to that of
the density perturbations. Proceeding analogously to the
computation of the density perturbations, we find

r ≡
PGW

Pζ
= 8.1 ·107

H2

M2
p

[

1 + 4.3 · 10−7 H2

M2
p

e4πξ

ξ6

]

(10)

The tensor-to-scalar ratio, r, is an important quantity to
discriminate between different inflationary models. The
current observational limit is r <∼ 0.2 [14], and activity is
underway to probe r >∼ 0.01 [15].

III. PREDICTIONS FOR SPECIFIC MODELS

We now focus our attention on the power-law potential

V (φ) = µ4−pφp (11)

which subsumes many interesting scenarios. Inflation
proceeds at large field values φ >∼ Mp and ends when
φ ∼ Mp. For this model, the values of H , φ̇ and ns

are uniquely determined by the number of e-foldings of
observable inflation Ne, according to the standard slow
roll inflaton evolution (ε, η ! 1). In the following, we fix
Ne = 60, which is the typical value taken in large field
models. Once we do so, we are left with the two param-
eters f/α, and µ. For any given value of f/α, the mass
scale µ is uniquely determined by fixing the power spec-
trum (8) to the COBE value. We can then plot the other
observational predictions as a function of f/α only. We

do so in Figure 2, where we take p = 1, 2 for illustration.
In both cases, backreaction effects can be neglected.
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FIG. 2: Observational predictions for the large-field power-
law inflation model (11) with p = 1, 2 and assuming Ne

∼= 60.
The spectral index is ns = 0.975, 0.967 for p = 1, 2. At small
f/α the coupling of φ to FF̃ is stronger and nongaussianity is
large. The tensor-to-scalar ratio decreases at strong coupling;
however, the decrease is important only at values of f/α which
are ruled out by the current bound on fequil

NL .

Figure 2 shows that large nongaussianity is rather
generic for large-field axion inflation. The current bound
is saturated for decay constants f/α <∼ 10−2Mp, which is
natural in a model that admits a UV completion. Cur-
rent limits on nongaussianity therefore provide an upper
bound on the strongest couplings of the type φFF̃ be-
tween the inflaton and any gauge field.
We see also that r decreases at strong coupling. This

modifies the usual predictions of large field inflation and
implies, for example, that p = 4 could be made compati-
ble with observation, at the level of the 2-point function.
Natural Inflation: The original natural inflation

model [1] was based on the potential (1). If we require
ns

>∼ 0.95, as suggested by recent data [14], then the
model requires a large decay constant f >∼ 5Mp [17]. In
this regime inflation proceeds near the minimum φ = 0
and is indistinguishable from the model (11) with p = 2.
Large values of f weaken the coupling of φ to FF̃ , hence
inverse decay is negligible unless α >∼ 200, whereas we
expect α = O(1) in the simplest (single-axion) scenario.
On the other hand, f >∼ Mp may be problematic and it
seems that a UV completion of axion inflation requires
f < Mp. We now turn our attention to such scenarios.
Axion Monodromy: In [5] an explicit, controlled

realization of axion inflation was obtained from string
theory. The potential has the form V (φ) = µ3φ +
Λ4 cos(φ/f) where the linear contribution arises because
the shift symmetry is broken by wrapping an NS5-brane
on an appropriate 2-cycle, and the periodic modulation
is due to nonperturbative effects. The former typically
dominates [5, 6] so we have the model (11) with p = 1,
to first approximation. The decay constant is bounded

[5] as 0.06V−1/2g1/4s < f/Mp < 0.9gs with gs < 1 the

When effect of photons 

is large enough, fNL~104

RULED OUT



Phenomenology

But constraints on fNL on CMB scales only!
Inflationary gravitational waves for LIGO (LISA…)?
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ξ increases during inflation

GWs produced towards the end of inflation 

(i.e. at smaller scales) have larger amplitude

might be detected by GW interferometers!

Cook LS 11



Phenomenology

But constraints on fNL on CMB scales only!
Inflationary gravitational waves for LIGO (LISA…)?
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FIG. 5: ⌦GW h2 as function of the frequency f , for N = 60 e-foldings of observable inflation, a linear slow roll inflaton potential,
and ⇠CMB = 0, 2.33, 2.66 (the value of ⇠ when the large scale CMB modes left the horizon). For reference we also show the
expected sensitivity of LISA, Advanced LIGO/VIRGO and Einstein Telescope (at their most sensitive frequency).
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FIG. 6: Region in the {NCMB , ⇠CMB} plane (values assumed by these quantities when the large scale CMB modes left the
horizon) for which the gravity wave signal is detectable at Advanced LIGO/VIRGO and Einstein Telescope. The left and right
panel refer to a linear and quadratic inflaton potential, respectively.

IV. GRAVITATIONAL WAVES AT INTERFEROMETERS

In Section III we discussed the observable cosmological fluctuations on CMB/LSS scales. Such scales left the horizon
roughly 55 to 60 e-foldings before the end of inflation, during the phase where backreaction e↵ects are negligible. In
this section, we instead study scalar and tensor fluctuations on much smaller scales. These modes left the horizon
closer to the end of inflation, when backreaction e↵ects start to play an important role in determining the evolution
of the homogeneous background, �(t) and H(t). Our main results are summarized in figure 6, where we show that
Advanced LIGO/VIRGO could detect a stochastic background of gravitational waves from inflation for ⇠CMB as small
as 2.33 (equivalent to f/(Mp↵)  0.021) in the case of a linear inflaton potential, and as small as 2.23 (equivalent to
f/(Mp↵)  0.031) in the case of a quadratic potential.
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(Those GWs might be correlated with CMB perturbations!)
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Phenomenology

How about an axion in a transient roll?

Field σ (≠φ) coupled to gauge fields rolls only for a finite number of 
efoldings


its effects will be visible only on a finite range of multipoles 

Choose those multipoles to be l = O(1÷100), 
where effects of tensors are important, but 

nongaussianities in the T fluctuations are weakly 
constrained because of cosmic variance

Namba, Peloso, Shiraishi, 
LS, Unal 15

the field � evolves in a given potential. The simplest potential for an axion field,

V� (�) =
⇤4

2


cos

✓
�

f

◆
+ 1

�
, (1.2)

allows for a very small �̇ both at early and late times, when � is, respectively, close to the
maximum (� = 0) and the minimum of the potential (� = f⇡). The speed has a peak
at an intermediate time, when � is between the maximum and the minimum (we assume
that V� is subdominant with respect to the inflaton potential; moreover, we assume that the
inflaton potential is very flat, so that the Hubble rate H can be treated as constant; this is
the most interesting regime for our discussion, since a very flat inflaton potential corresponds

to unobservable vacuum GW). The peak lasts for a number of e-folds roughly of O
⇣
H

2

m2

⌘
,

where m is the curvature of (1.2). So, remarkably, the simplest axion potential is a perfect
candidate for generating a visible GW signal, while keeping the �� production under control.
In this work we show that this is indeed the case through explicit computations.

We present some specific examples (namely, some choice of parameters in the model)
for which the sourced tensor mode strongly dominates over the vacuum one at large scales,
leading to observable B modes of the CMB polarization. The GW signal also leads to a
marginally observable TB correlation (as a consequence of the broken parity invariance of
the mechanism) and to a well observable (high signal-to-noise ratio) BBB correlation. At
the same time, in such examples we find no statistically significant signatures in the TT, and
TTT temperature correlators.

The plan of the work is the following. In Section 2 we present the model, the background
evolution, and the vector field production. In Section 3 we study the cosmological pertur-
bations (scalar and tensor modes) sourced by the vector field. In Section 4 we summarize
our results for the two- and three-point scalar and tensor perturbations, and we discuss their
phenomenology. In Section 5 we present our conclusions. The work is complemented by six
appendices. In Appendix A we compute (in WKB approximation) the gauge field produced
in the case of nonconstant �̇. In Appendix B we review the computation of scalar modes
produced in the case of constant �̇. In Appendices C and D we give details of, respectively,
the scalar and tensor mode computation. In Appendix E we present some properties of the
bispectra produced in the model. In Appendix F we estimate the departure from gaussianity
of the statistics of the sourced modes.

2 Model, background evolution, and vector field production

We will consider a system containing the inflaton � and a second rolling field � which interacts
with the U(1) gauge field Aµ via an axionic coupling, so that the lagrangian reads

L = �
1

2
(@�)2 �

1

2
(@�)2 � V (�, �)�

1

4
F 2

� ↵
�

4f
F F̃ . (2.1)

The rolling of � provides a time dependent background for the gauge field and amplifies
its vacuum fluctuations. Such a phenomenon, on a de Sitter Universe with expansion rate
H, is controlled by the dimensionless quantity

⇠ ⌘
↵ �̇

2 f H
, (2.2)

which must be larger than unity or so to give a significant e↵ect [32].

– 4 –



Phenomenology

How about an axion in a transient roll?
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Figure 5. Temperature-temperature CMB power spectrum. The final WMAP data [51, 52] are
compared against the theoretical curves, evaluated for ✏� = 10�5 and for � = 0.2 (left panel) and
� = 0.5 (right panel). In each panel we show the theoretical curves for three di↵erent values of k⇤
(corresponding to three di↵erent locations of the peak of the sourced signal) and for the limiting value
⇠⇤ = ⇠⇤,limit, obtained as explained in the text.

scales than the WMAP ones, and for this reason we do not vary such parameters. As we
show below, in most cases the values of ⇠⇤,limit obtained with this procedure already provide
a visible GW signal, which is the goal of this present analysis (in summary, we are not
interested in providing precise Bayesian limits on ⇠⇤ within this model - for which we should
provide priors, marginalize over all the other parameters and include smaller scales data -
but only in the goal specified at the beginning of this subsection).

In Figure 4 we present the value of ⇠⇤,limit obtained with this procedure as a function
of the slow roll parameter ✏�. In the left (right) panel of the figure we set � = 0.2 (0.5),
corresponding to a significant �̇ for about 5 (2) e-folds. In each panel we fix k⇤ = 7 ⇥

10�5Mpc�1 , k⇤ = 5⇥10�4Mpc�1 , and k⇤ = 5⇥10�3Mpc�1, producing a bump, respectively
at the very largest angular scales (` <

⇠ 5), on the rise of the first peak, and in the region
around the first two peaks. 17 In the same figure we also show with black dashed lines the

ratio P
(1)
⇣

/P(0)
⇣

at the peak of the GW bump. We see that the allowed amount of scalar
signal strongly depends on the scale. In the examples with the bump at the largest scales,
the sourced signal can be as large as the vacuum one at the peak, due to the large cosmic
variance present at those scales. A significantly smaller fraction, O (1%� 10%), is allowed in
the examples in which the signal a↵ects the acoustic peaks.

By comparing the left and right panel of Figure 4 we again see that, for any fixed value
of ⇠⇤, the sourced signal is stronger at small values of �.

In Figure 5 we show the TT power spectrum obtained for the same choices of � and k⇤
as in Figure 4, for ✏� = 10�5, and for the corresponding value of ⇠⇤ = ⇠⇤,limit. The theoretical
curves present a bump due to the sourced scalar modes. As we already mentioned, the bump
ranges from the lowest ` multipoles (for the smallest k⇤ chosen) to ' the first two acoustic
peaks (for the largest k⇤ chosen).

In Figure 6 we show the self-correlations between the B modes of the CMB polarizations
(BB) sourced by the tensor modes when ⇠⇤ = ⇠⇤,limit. The parameters ✏�, �, and k⇤ are chosen
as in the two previous figures. For comparison we also show with black dashed lines the BB
correlation obtained for a scale invariant r of 0.1, 10�2, and 10�3 (from top to bottom,

17We verified that, apart from the
�
� = 0.5, k⇤ = 7⇥ 10�5 Mpc�1

 
case, the sourced GW give a negligible

contribution to the TT signal, and in all the other cases the limits shown in the figure are due to ⇣sourced.
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Figure 6. First row: Forecasted signal-to-noise ratio for the detection of the B-mode auto power
spectrum in a realistic CMB experiment with Planck-like sensitivity (Colored solid lines), and in a
cosmic variance limited (namely ideal noise-free) CMB experiment (Black dotted line), as a function
of the maximum multipole ` included in the analysis. Second row: CBB

l coe�cients. The model
parameters are chosen as in the previous figure.

respectively). As we already mentioned in the Introduction, the proposed stage 4 CMB
experiments claim an expected statistical uncertainty � (r) = 10�3 or below [2] in the scale
invariant case. If this is achieved, the theoretical curves chosen in Figure 6 appear to be within
observational reach. We recall that ✏� = 10�5 corresponds to a vacuum tensor-to-scalar ratio
rvac ' 1.6 · 10�4. Therefore, the enhancement of the BB signal visible in the figure is entirely
due to the sourced tensor modes. The enhancement is present at progressively larger ` for
increasing values of k⇤ shown (namely for bumps of gauge field production at progressively
smaller scales). By comparing the left and the right panel of Figure 6 we observe that BB can
reach greater values at increasing �. This is consistent with what we have already mentioned:
at fixed ⇠⇤, both the sourced scalar and tensor modes decrease with increasing �. However,
the scalar mode decreases more. Therefore, at larger values of �, larger values of ⇠⇤ can be
compatible with the WMAP TT bounds (cf. Figure 4). Such values lead to a larger amount
of sourced tensor modes.

The signal-to-noise (S/N) ratio shown in the figure is evaluated through

✓
S

N

◆2

BB

=
`maxX

`=2

2`+ 1

2

 
CBB

`

CBB

`,dat

!2

. (4.10)

Here, (CBB

`
)2 corresponds to the signal given by our theory, while the other terms in this

relation account for the uncertainty of the BB power spectrum in a given experiment. For
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Figure 7. First row: Forecasted signal-to-noise ratio for the detection of the TB correlation in a
realistic CMB experiment with Planck-like sensitivity (Colored solid lines), and in a cosmic variance
limited, CMB experiment (Colored dotted lines), as a function of the maximum multipole ` included
in the analysis. Second row: TB spectra. The parameters are chosen as in the previous figures.

simplicity, we here (and also in the other S/N estimations) assume a full-sky isotropic CMB
measurement, thus, the summations in terms of m disappear in the S/N formula. The data
spectrum in a given experiment is regarded as the sum of the signal and instrumental noise,
reading CBB

`,dat = CBB

`
+NBB

`
. In the paper, we analyze two di↵erent types of measurements: a

realistic measurement including a Planck-level noise spectrum [55] (as described in Appendix
A of [56]) and an ideal noise-free cosmic variance dominated measurement (i.e., NBB

`
= 0).

The results are shown in the upper panels of Figure 6. In the cosmic variance limited
case, because of CBB

`
/CBB

`,dat = 1, S/N becomes a simple increasing function: (S/N)BB =p
(`max + 3)(`max � 1)/2 (black dotted lines), independently of the shape of CBB

`
and the

values of input model parameters. The S/N is lower in the Planck-like realistic experiment;
however it can exceed one in the examples with the smallest values of k⇤ shown. A greater
BB signal can be obtained at larger values of �.

The sourced GW signal breaks parity, generating a nonvanishing correlation between
the CMB temperature anisotropy and B-mode polarization (TB) [35–38, 57]. In Figure 7 we
compute the forecasted signal-to-noise ratio for the detection of such signal:

✓
S

N

◆2

TB

=
`maxX

`=2

(2`+ 1)

�
CTB

`

�2

CTT

`
CBB

`,dat

, (4.11)

in the Planck-like realistic experiment and the ideal cosmic variance-limited experiment. In
the Planck-like measurement, we can neglect the noise spectrum of temperature mode NTT

`
,

– 18 –

TT BB

BT

Should vanish 

in parity-even 


Universe



Phenomenology

Many vectors at small scales ⟹

very large scalar perturbations

Primordial black holes
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Figure 5. Scalar and tensor signals for a linear inflation potential. The solid lines show the signal
if N = 6 gauge fields are amplified. For comparison, the dashed lines show the signal when 1 gauge
field is amplified.

potential at all values of �, and the corresponding scalar and GW spectra at small scales.
We see that the relatively mild change of the potential results in very di↵erent signal for the
modes that exit the horizon at those scales, due to the exponential sensitivity of the gauge
field amplification to the parameter ⇠.

We see that the potential (3.7) can indeed result in a visible signal at LISA scales,
without violating bounds from PBH. Many other examples can be constructed. For instance,
in the next section we discuss how a localized event of gauge field amplification can be
obtained in a two field model.

3.2.2 Dependence on the number of gauge fields

Let us assume that N > 1 vector fields are amplified by the L = �
�

4f FiF̃i interaction
(i = 1, . . . , N ). For simplicity, we assume that all the fields have the same coupling to the
inflaton, as for instance will happen if the vectors are the di↵erent components of a non-
abelian group. This has several consequences: (i) an increased backcreaction, that will slow
the motion of the inflaton more than in the N = 1 case; (ii) an increased GW source: as the
di↵erent gauge fields are statistically uncorrelated with each other, the GW power spectrum
- for any given value of ⇠ - increases by N with respect to the case of a single vector field; 16

(iii) an analogous increase / N taking place for the power spectrum scalar perturbations,
schematically, for ⇣ /

PN
i=1

~Ei ·
~Bi, we have

h⇣⇣i /

X

i,j

D⇣
~Ei ·

~Bi

⌘⇣
~Ej ·

~Bj

⌘E
=

X

i

⌧⇣
~Ei ·

~Bi

⌘2
�

= N

⌧⇣
~E1 ·

~B1

⌘2
�

, (3.8)

(namely, the di↵erent sources are statistically uncorrelated, resulting in an N enhancement
with respect to the case of a single gauge field); this is contrasted by the fact that also the
second term in (3.5) increases by N . Therefore, as we can observe from (3.6), the scalar
power spectrum has a N enhancement in the ⇠ >

⇠ 1 regime, when � ' 1, while a 1/N
suppression [70] in the ⇠ � 1 regime, when the second term dominates in �. Therefore, in
the ⇠ � 1 regime, the ratio between the GW and the scalar power spectra scales as N 2. It is
reasonable to expect that even mild values of N can lead to an observable GW signal, while
respecting the PBH bound.

This is confirmed by Fig. 5, where the solid (dashed) lines show the scalar and tensor
power spectra generated if N = 6 (1) gauge fields are amplified. When comparing the solid

16For any given model and coupling, this does not imply a growth of the GW power spectrum by N , due
to the increase backreaction on the background.
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A realization of trapped inflation

Anber LS 09Accounting for backreaction of vectors

with

Strong backreaction regime:

V 0(�) = �N ↵
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A realization of trapped inflation

Slow roll does not rely on potential flatness:
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with f<MP can support inflation!

Interesting!

f>MP conjectured to be forbidden in UV-complete theories of gravity



A realization of trapped inflation

How many efoldings?
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& O(10)

For this to work, need α>102

(Can be realized with two gauge groups, similar to KNP) Fraser Reece 19

[Other consistency conditions checked and satisfied]



Strong backreaction

NOTE: strong backreaction happens quite generally 

towards the end  of inflation 


in phenomenologically interesting models

IMPORTANT 

that we understand it well!



Strong backreaction

Looking more carefully into the backreacted equations…

with
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FIG. 1: Evolution of the inflaton as a function of the number of e-foldings to the end of inflation, starting from |�CMB | =
�9.9Mp, with (red solid line) and without (green dashed line) the coupling to gauge fields. For the first line, the strength of
the inflaton-gauge field coupling is chosen so to lead to observable non-Gaussianity from inverse decay. For the second line, we
have shifted the number of e-foldings to make manifest that the two evolutions coincide at early times.

We obtained |�CMB | ' 9.9Mp ; this is smaller than the value (|�CMB | ' 10.9Mp) leading to 60 e-foldings of
inflation without gauge production, confirming that the backreaction of the produced quanta increases the amount of
inflation.

In figure 1 we show the evolution of the inflaton field as a function of the number of e-foldings to the end of inflation
for ⇠CMB = 2.5 (red solid curve) and for ⇠ = 0 (green dashed line), i.e the standard slow-roll case. The backreaction of
the produced quanta on the background evolution becomes noticible during the last ⇠ 25 e-foldings of inflation, while
it is negligible at earlier times. The two trajectories reach � = 0 at di↵erent times, showing that the backreaction
increases the duration of inflation by about 10 e-foldings.
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FIG. 2: Left panel: Friction terms in the equation of motion for �. Right panel: relative strength of the energy density of the
produced quanta; this term is neglected in the numerical evolution of the background equations.

This change in behavior during the last ⇠ 25 e-foldings of inflation is also visible in the left panel of figure 2, where
we show the evolution of the two friction terms in the inflaton equation as a function of the number of e-foldings
to the end of inflation. The standard Hubble friction controls the earliest stages, but the system gradually evolves
towards a regime in which the backreaction of the produced gauge quanta dominates the evolution. Namely, the
system approaches the strong backreaction regime studied in [32]. Let us stress that in the our case the observable

…an equation for φ only? 

Backreaction 

in action

Increases 

during inflation

Barnaby Pajer Peloso 11
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Strong backreaction

Cannot use single equation local in time, need numerics!
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(neglecting inflation gradients and non-amplified helicity of gauge field)

But remember
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Strong backreaction

Numerical result with uniform inflaton  
and one helicity of photon only
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Figure 6: Top: 1/f = 20. Bottom: 1/f = 25. The left panels show the numerical results of ⇢EB and h ~E ~Bi (solid lines)

compared to their analytical estimate (13), (14) (dashed lines). The vertical lines refer to the end of inflation in absence

of backreaction (black line) and for the full numerical analysis (red line). The right panels show the oscillatory behaviour

of the ⇠ parameter (solid black line) compared to its analytical result coming from the solution of the inflaton equation

of motion when the gauge field backreaction is given by (13) (dashed red line). For better visibility, we display only the

last ⇠ 20 e-folds of inflation.

The results of our analysis for 1/f = {20, 25} are shown in Fig. 6 where we compare the final

solution for h ~E ~Bi and ⇢EB = h
E

2+B
2

2 i with the analytical estimate of Eqs. (13) and (14). We also

plot the ⇠ parameter which shows that the oscillatory behaviour of the inflaton speed becomes more

apparent in case of strong backreaction.6 We see that the numerical solution including the backreaction

oscillates around the analytical estimate, with an oscillation period of �N⇠ ⇠ 3, in accordance with

our estimate in Sec. 3. For f = 1/25 the value of �
0 temporarily changes sign (at N ' 62). The reason

for this is the delay in gauge friction term discussed in Sec. 3. As |�
0
| drops, the gauge friction drops

and the opposite sign of �
0 (encoded by �) entails the opposite sign for the gauge friction term as one

would expect of a friction term. However, since the gauge friction term is dominated by modes which

are controlled by the value of �
0 some �N⇠ e-folds earlier, the sign change in the gauge friction term

is delayed, allowing �
0 to temporarily change sign.

Our results are in accordance with those previously found in Refs. [25–27], which reported oscilla-

tory features in the inflaton velocity with a period of 3� 5 e-folds. All these studies are based on fully

6At the maxima of these oscillations, the value of ⇠ exceeds the threshold ⇠ ' 4.7 bounding the perturbative regime

for approximately constant ⇠ [36, 37]. This threshold cannot be immediately applied to a strongly oscillating ⇠ and we

will comment on perturbativity constraints in more detail in Sec. 5.
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Strong backreaction

Where is this coming from?
Notari, Tywoniuk 16 
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Strong backreaction

So…. why oscillations?

Baby example: try to solve 

Di↵erential equations with nonlocal terms
(Dated: January 22, 2024)

Contents

Start from a very simple one:

f
0
(t) = f(t+ q) . (1)

It is convenient to transform the shift in variable t+ q into a multiplicative factor. So let me define a new variable

y = e
t
=) t = log y , (2)

Then my equation becomes, with
d
dt =

dy
dt

d
dy = y

d
dy ,

y
d f(log y)

dy
= f(log(y) + q) = f(log(e

q
y)) , (3)

so that if I define g(y) ⌘ f(log y), I get

y g
0
(y) = g(e

q
y) . (4)

Now I look for a solution g(y) = Ay
↵
, and my equation becomes

A↵ y
↵
= A (e

q
y)

↵
(5)

that is indeed solved by any A provided ↵ = e
q ↵

.

In fact, going back to my original equation, I see that f(t) = Ae
↵t
, with ↵ = e

q ↵
, is the most general solution:

f
0
(t) = A↵ e

↵t
= f(t+ 1) = Ae

↵(t+q)
! (6)

What are the roots of ↵ = e
q ↵

? There is a couple of real ones for q small enough.

In fact if I compute the derivative of the function H(↵) = e
q ↵ � ↵, I get that it has an extremum at q e

q ↵
= 1, so

↵ = � 1
q log q, where H(� 1

q log q) =
1
q +

1
q log q =

1
q (1 + log q) which is below 0 for log q < �1, i.e., 0 < q < e

�1
. In

this case, since H(0) = 1 and H(↵ ! +1) ! +1, there are at least two real roots, let us call them ↵1 and ↵2

Since the equation is linear, any function

f(t) = A1 e
↵1t +A2 e

↵2t (7)

with arbitrary A1, 2 is a solution. So this is not a Cauchy problem! (Of course, in the limit q ! 0, I recover the

Cauchy solution, since in that limit ↵1 ! 0 and ↵2 ! 1.

Are there complex ↵s?

Let me write ↵ = ↵R + i↵I . Then my equation becomes

e
q ↵R+i q ↵I = e

q ↵R (cos(q ↵I) + i sin(q ↵I)) = ↵R + i↵I (8)

So I can separate the equation into

e
q ↵R cos(q ↵I) = ↵R ,

e
q ↵R sin(q ↵I) = ↵I , (9)

so that the second is solved by e
q ↵R =

↵I
sin(q ↵I)

and I get the first equation as

↵I

sin(q ↵I)
cos(q ↵I) = ↵R =

1

q
log

✓
↵I

sin(q ↵I)

◆
(10)

which I can try to solve numerically! But let me just consider the function

I(x) =
x

sin(q x)
cos(q x)� 1

q
log

✓
x

sin(q x)

◆
(11)

as x ! 0 this goes to I(x ! 0) =
1
q (1 + log(q)) while at q x !

�
⇡
2

��
it diverges to �1, so for 1 + log(q) > 0 I am

guaranteed at least one complex root.

 ,  with q real
solution f(t)=ea t, where a must satisfy a=ea q

The function ea q-a has a negative minimum for q<e-1

Two real roots a1, a2 for q<e-1

Looking for complex a=aR+i aI…
Infinite solutions!  

(with q aI≃π/2+n π at large n)
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Strong backreaction

Incidentally…

Creminelli, Kumar, 

Salehian, Santoni 23 

If the gauge field were to react instantaneously to a change in φ(t)


effective equation local in time and no oscillations

Is it possible to find a model where this happens?

Yes, if backreacting field has fully subhorizon dynamics



An analytical study

Analytical study for small perturbations around φ(t)=Φ(t)…

where…

with the RHS computed assuming H, Φ(t)=const. 
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Figure 6: Top: 1/f = 20. Bottom: 1/f = 25. The left panels show the numerical results of ⇢EB and h ~E ~Bi (solid lines)

compared to their analytical estimate (13), (14) (dashed lines). The vertical lines refer to the end of inflation in absence

of backreaction (black line) and for the full numerical analysis (red line). The right panels show the oscillatory behaviour

of the ⇠ parameter (solid black line) compared to its analytical result coming from the solution of the inflaton equation

of motion when the gauge field backreaction is given by (13) (dashed red line). For better visibility, we display only the

last ⇠ 20 e-folds of inflation.

The results of our analysis for 1/f = {20, 25} are shown in Fig. 6 where we compare the final

solution for h ~E ~Bi and ⇢EB = h
E

2+B
2

2 i with the analytical estimate of Eqs. (13) and (14). We also

plot the ⇠ parameter which shows that the oscillatory behaviour of the inflaton speed becomes more

apparent in case of strong backreaction.6 We see that the numerical solution including the backreaction

oscillates around the analytical estimate, with an oscillation period of �N⇠ ⇠ 3, in accordance with

our estimate in Sec. 3. For f = 1/25 the value of �
0 temporarily changes sign (at N ' 62). The reason

for this is the delay in gauge friction term discussed in Sec. 3. As |�
0
| drops, the gauge friction drops

and the opposite sign of �
0 (encoded by �) entails the opposite sign for the gauge friction term as one

would expect of a friction term. However, since the gauge friction term is dominated by modes which

are controlled by the value of �
0 some �N⇠ e-folds earlier, the sign change in the gauge friction term

is delayed, allowing �
0 to temporarily change sign.

Our results are in accordance with those previously found in Refs. [25–27], which reported oscilla-

tory features in the inflaton velocity with a period of 3� 5 e-folds. All these studies are based on fully

6At the maxima of these oscillations, the value of ⇠ exceeds the threshold ⇠ ' 4.7 bounding the perturbative regime

for approximately constant ⇠ [36, 37]. This threshold cannot be immediately applied to a strongly oscillating ⇠ and we

will comment on perturbativity constraints in more detail in Sec. 5.

13

…and around A+(t)=A+(t), 

also computed 


under the same assumption  
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¨̄�+ 3H ˙̄�+ V
0(�̄) = �↵

f
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Peloso, LS, 2209.08131



An analytical study

The unperturbed photon mode function… 

😳
…approximated by… 
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A linearized analysis

3 Linearized system of perturbations

We now study analytically small departures from the AS solutions of the system (2.4). To
this goal, we decompose the inflaton and the gauge modes into the AS ones (those obtained
in the previous section) plus small perturbations,

� = �̄+ �� , A = Ā+ �A , (3.1)

and we solve the system (2.4) to first order in �� and �A. This procedure is not a complete
perturbative study on the stability of the AS solution, since we disregard metric perturbations
and spatial inhomogeneities of the inflaton. Nonetheless it captures the cases studied in the
works [12–16], where the stability was studied numerically also assuming a homogeneous
inflaton and no metric perturbations. It is hard to imagine that the inclusion of these two
ingredients can make the AS solution stable, if an instability will emerge from the present
analysis. In fact, the instability observed in [12–16] persists also in the lattice analysis of [17]
which does include spatial fluctuations in the inflaton.

At first order in the perturbations (3.1), the system (2.4) reads
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2
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⇤
�A

⇤
,

�A
00 +

✓
k
2 � k �̄0

f

◆
�A =

↵ Ā
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, (3.2)

where we note that we are also disregarding perturbations of H. As done in the previous
section, we first formally solve the second equation for the gauge field modes as a functional
of the inflaton derivative. This can be done via the Green function method, resulting in
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where the Green function Gk (⌧, ⌧ 0) is introduced and computed in Subsection 3.1. We then
insert this formal solution into the first of eqs. (3.2), that in this way becomes an integro-
di↵erential equation for the inflaton and its time derivatives
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Ā (⌧) Ā⇤ �
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In Subsection 3.2 we then work out the source term, and we obtain approximate ana-
lytical solutions for this equation.

3.1 Green function

Eq. (3.3) follows from eq. (3.2), with the Green function satisfying
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where � denotes the Dirac ��function. If Ā1,2 are two solutions of the associated homogeneous
equation, it is immediate to see that the combination
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In Subsection 3.2 we then work out the source term, and we obtain approximate ana-
lytical solutions for this equation.
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the second one solved with retarded propagator
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works [12–16], where the stability was studied numerically also assuming a homogeneous
inflaton and no metric perturbations. It is hard to imagine that the inclusion of these two
ingredients can make the AS solution stable, if an instability will emerge from the present
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where the Green function Gk (⌧, ⌧ 0) is introduced and computed in Subsection 3.1. We then
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In Subsection 3.2 we then work out the source term, and we obtain approximate ana-
lytical solutions for this equation.
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Ā
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and then inserted into the first one



A linearized analysis

after some manipulation…

where ✓ is the Heaviside ✓�function, satisfies eq. (3.5). This combination is the retarded
Green function and it guarantees causality, since the Heaviside ✓-function ensures that only
sources at times ⌧ 0 < ⌧ can a↵ect the solution at the time ⌧ .

In the explicit construction of the Green function we use the two solutions of the homo-
geneous equation that reduce to (2.6) in the x ⌧ 2⇠ limit. As we already commented after
those expressions, Ā1 Ā

0
2 �A2 Ā

0
1 = i for these solutions (this is valid at all x). We thus find
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where we recall that x ⌘ �k⌧ and x
0 ⌘ �k⌧

0. We note that, to obtain this expression, also
the subleading terms in (2.6) need to be retained (which is why we evaluated them, since
only the dominant term is required for the AS background solution).

We recall that the amplification of the gauge modes takes place deep inside the horizon.
Therefore, as this region was regulated away from the integral in (2.4) in the AS background
solution, the same needs to be done in the present computation. We therefore multiply the
expression (3.7) by two functions that vanish in the x � 2⇠ and x

0 � 2⇠ limits. We choose
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where � is an order one constant that we keep unspecified, as a measure of the uncertainty
associated with our regularization. We will see that our quantitative results are only weakly
sensitive to �, while our qualitative conclusions are insensitive to it. We note that the last
✓�function in this expression is superfluous, and therefore we write
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3.2 Linearized solutions

We insert the expressions (3.9) and the dominant term of eq. (2.6) into the integro-di↵erential
equation (3.4). Changing integration variables k ! y ⌘ �2⇠k⌧ 0, we obtain
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where we have defined ⇠� ⌘ ⇠�. We look for “power law” solutions of the type

�� = C (�⌧)�
1+⇣
2 , (3.11)

where C and ⇣ are constant. We expect that a solution of this type is possible since all terms
in (3.10), in our working assumption of disregarding slow roll variations, evolve in time as
��/⌧2.

As the system is linear, the constant C 6= 0 drops from the following analysis and it is
irrelevant; we choose to denote the exponent with the combination �1+⇣

2 , rather than with a
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A linearized analysis

after some manipulation…

where ✓ is the Heaviside ✓�function, satisfies eq. (3.5). This combination is the retarded
Green function and it guarantees causality, since the Heaviside ✓-function ensures that only
sources at times ⌧ 0 < ⌧ can a↵ect the solution at the time ⌧ .

In the explicit construction of the Green function we use the two solutions of the homo-
geneous equation that reduce to (2.6) in the x ⌧ 2⇠ limit. As we already commented after
those expressions, Ā1 Ā

0
2 �A2 Ā

0
1 = i for these solutions (this is valid at all x). We thus find
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, x, x

0 ⌧ 2⇠ , (3.7)

where we recall that x ⌘ �k⌧ and x
0 ⌘ �k⌧

0. We note that, to obtain this expression, also
the subleading terms in (2.6) need to be retained (which is why we evaluated them, since
only the dominant term is required for the AS background solution).

We recall that the amplification of the gauge modes takes place deep inside the horizon.
Therefore, as this region was regulated away from the integral in (2.4) in the AS background
solution, the same needs to be done in the present computation. We therefore multiply the
expression (3.7) by two functions that vanish in the x � 2⇠ and x

0 � 2⇠ limits. We choose

Gk
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(3.8)

where � is an order one constant that we keep unspecified, as a measure of the uncertainty
associated with our regularization. We will see that our quantitative results are only weakly
sensitive to �, while our qualitative conclusions are insensitive to it. We note that the last
✓�function in this expression is superfluous, and therefore we write
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3.2 Linearized solutions

We insert the expressions (3.9) and the dominant term of eq. (2.6) into the integro-di↵erential
equation (3.4). Changing integration variables k ! y ⌘ �2⇠k⌧ 0, we obtain
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(3.10)

where we have defined ⇠� ⌘ ⇠�. We look for “power law” solutions of the type

�� = C (�⌧)�
1+⇣
2 , (3.11)

where C and ⇣ are constant. We expect that a solution of this type is possible since all terms
in (3.10), in our working assumption of disregarding slow roll variations, evolve in time as
��/⌧2.

As the system is linear, the constant C 6= 0 drops from the following analysis and it is
irrelevant; we choose to denote the exponent with the combination �1+⇣

2 , rather than with a
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A linearized analysis

look for solution

where ζ must satisfy

single symbol, as it simplifies some of the following algebra. We note that the result of this
analysis will indicate that

AS solution is stable , Re ⇣ < �1 . (3.12)

Moreover, we need to impose Re ⇣ > �8, or the integral in eq. (3.10) would diverge at
⌧
0 = �1. Finally, we note that ⇣ might have an imaginary part. In fact, since eq. (3.10)

has real coe�cients, a complex solution is always accompanied by its conjugate. Linear
combinations of these solutions are therefore of the form (indicating explicitly the dependence
on the Hubble rate to have a manifest dimensional consistency)

�� / (�H⌧)�
1+Re ⇣

2 cos

✓
Im ⇣

2
ln (�H⌧) + �

◆
, (3.13)

where � is an arbitrary phase. Therefore a complex ⇣ corresponds to a solution that oscillates
about the AS one, while converging to (for Re ⇣ < �1) or departing from (for Re ⇣ > �1) it.

As we show in Appendix B, inserting eq. (3.11) into eq. (3.10), performing the two
integrals, and eliminating the common time dependence, results in

(1 + ⇣) (7 + ⇣)

4
+

V
00

H2
' ↵ (�V
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⇣ (8 + ⇣)

"
1

(8 ⇠�)
⇣

� (9 + ⇣)

� (9)
� 1

#
. (3.14)

The first term in this relation originates from ��00 + 2aH��0. For standard slow roll
inflation, |V 00| ⌧ H

2 and the right hand side vanishes. This results in ⇣ ' �1, �7, namely
�� / ⌧

0
, ⌧

2, indicating the stability of the inflationary background. On the other hand, in
the AS regime, |V 00| � H

2, so that the inflaton field is too massive to sustain inflation in
absence of gauge field amplification. As we shall see, |⇣| = O(1) also in this case. Therefore,
for our study of stability, the first term in (3.14) can be neglected, precisely as for the AS
background (2.7), leading to

⇠ f V
00

↵ (�V 0)
' (1 + ⇣) (7 + ⇣)

⇣ (8 + ⇣)

"
1

(8 ⇠�)
⇣
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� (9)
� 1

#
⌘ F [⇣, ⇠� ] . (3.15)

The left hand side is a real quantity, whose sign depends on the sign of V 00. Its magnitude
is expected to be

����
⇠ f V

00

↵ (�V 0)

���� =
����
V V

00

V
02

⇥ ⇠ f (�V
0)

↵V

���� ⌧ 1 , (3.16)

thanks to the fact that the first factor is generically of order one, while the second factor is
much smaller than one due to the condition (2.9).

Therefore we are looking for values of ⇣ for which the function F [⇣, ⇠� ] is real, with a
small absolute value. Let us start by studying the case of a real ⇣. We find the behavior
shown in Figure 1, where F is plotted as a function of ⇣ for some representative values of ⇠� .

We see that all real values of ⇣ lead to a negative F , and therefore they can be solutions
only for V 00

< 0. The physically relevant region |F| ⌧ 1 is obtained only for ⇣ slightly greater
than �1, but very close to it. Expanding eq. (3.15) in this regime results in

⇣ ' �1� 7

6

1

� � 1/⇠

f V
00

↵ (�V )
' �1+ , for V 00

< 0 . (3.17)
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A linearized analysis

LINEARIZED SOLUTION 
GROWS AND OSCILLATES
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Figure 6: Top: 1/f = 20. Bottom: 1/f = 25. The left panels show the numerical results of ⇢EB and h ~E ~Bi (solid lines)

compared to their analytical estimate (13), (14) (dashed lines). The vertical lines refer to the end of inflation in absence

of backreaction (black line) and for the full numerical analysis (red line). The right panels show the oscillatory behaviour

of the ⇠ parameter (solid black line) compared to its analytical result coming from the solution of the inflaton equation

of motion when the gauge field backreaction is given by (13) (dashed red line). For better visibility, we display only the

last ⇠ 20 e-folds of inflation.

The results of our analysis for 1/f = {20, 25} are shown in Fig. 6 where we compare the final

solution for h ~E ~Bi and ⇢EB = h
E

2+B
2

2 i with the analytical estimate of Eqs. (13) and (14). We also

plot the ⇠ parameter which shows that the oscillatory behaviour of the inflaton speed becomes more

apparent in case of strong backreaction.6 We see that the numerical solution including the backreaction

oscillates around the analytical estimate, with an oscillation period of �N⇠ ⇠ 3, in accordance with

our estimate in Sec. 3. For f = 1/25 the value of �
0 temporarily changes sign (at N ' 62). The reason

for this is the delay in gauge friction term discussed in Sec. 3. As |�
0
| drops, the gauge friction drops

and the opposite sign of �
0 (encoded by �) entails the opposite sign for the gauge friction term as one

would expect of a friction term. However, since the gauge friction term is dominated by modes which

are controlled by the value of �
0 some �N⇠ e-folds earlier, the sign change in the gauge friction term

is delayed, allowing �
0 to temporarily change sign.

Our results are in accordance with those previously found in Refs. [25–27], which reported oscilla-

tory features in the inflaton velocity with a period of 3� 5 e-folds. All these studies are based on fully

6At the maxima of these oscillations, the value of ⇠ exceeds the threshold ⇠ ' 4.7 bounding the perturbative regime

for approximately constant ⇠ [36, 37]. This threshold cannot be immediately applied to a strongly oscillating ⇠ and we

will comment on perturbativity constraints in more detail in Sec. 5.
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A linearized analysis

Properties 

- weak dependence of ζ on ξ
- instability stronger with larger ξ

- instability always present

- period of oscillations, about 5 efoldings

Figure 3. Values of F , shown as a function of Re (⇣), along the trajectories shown in the previous
figure.

that obtained for real ⇣. A generic initial condition for �� will result in a linear combination
of the solutions

�� =
X

ci (�⌧)�
1+⇣i

2 , (3.18)

where, in the general case, all the weights ci of the linear combination are nonvanishing. The
instability will be then led by the ⇣i solution with the greatest real part.3

In the physical range |F| ⌧ 1, the obtained values of ⇣ vary by a small amount. There-

fore, the solution ⇣ depends mostly on the product ⇠� , and only mildly on the ⇠ f V
00

↵(�V 0) combi-

nation. As a consequence, we can obtain accurate solutions for ⇣ simply setting F [⇣, ⇠� ] = 0.
In Figure 4 we then vary ⇠� and we show the solution for ⇣ (leading to F = 0) with the largest
real part, corresponding to the leading instability.
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Figure 4. Values of Re (⇣) (left panel) and of Im (⇣) (right panel) of the most unstable mode.

We recall that ⇠� = � ⇠, where ⇠ ⌘ ↵
˙̄�

2fH is the physically relevant parameter controlling
the gauge field amplification, while � is a positive quantity of order one that measures the
uncertainty of our computation (due to the regularization of the vacuum modes in the sub-
horizon regime). We see that, not surprisingly, the instability becomes stronger at increasing
⇠ (as it leads to a greater value of Re (⇣), see eq. (3.11) recalling that ⌧ ! 0� during infla-
tion). We also see that our quantitative results are only mildly a↵ected by the uncertainty
encoded in �. Most importantly, our conclusion about the instability of the AS background
solution is una↵ected by it. We have shown that the instability manifests itself as an oscilla-

3
We also note that all the solutions we have found satisfy Re ⇣ > �8, and therefore the integral in eq.

(3.10) is convergent.
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Gravitational waves for interferometers

Inflationary gravitational waves for LIGO (LISA…)?
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Gravitational waves for interferometers

Flashes of gravitational waves from axion inflation
Garcia-Bellido, Papageorgiou, Peloso, LS, 2303.13425

Numerical study of axion/gauge field system, then…

…integrate numerically with Green’s function
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Gravitational waves for interferometers

Garcia-Bellido, Papageorgiou, Peloso, LS, 2303.13425

Need numerical solution of background
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Figure 1. Plot of the five branch potential defined in (4.1). The red vertical lines denote the field
value sixty e-folds before the end of inflation, and at the end of inflation respectively. The black
dashed lines denote the transition points between the various branches. The parameters in this
example are �̃0 = 57, �̃1 = 112, �̃2 = 186, �̃3 = 221, �̃4 = 317, c1 = 9.48 · 10�4, c2 = 2.39 · 10�6, c3 =
9.05 · 10�9, c4 = 3.97 · 10�11 and the two straight line slopes are c5 = 4.95 · 10�3 and c6 = 3.68 · 10�4,
respectively.

backreaction regime.

The first panel shows an early moment in time while the backreaction is negligible. The
evolution of the backreaction spectrum is relatively straightforward during the stage of negli-
gible backreaction, with the term dominated by the modes that have become unstable in the
moments immediately before the one shown, and that are therefore close to the cut-o↵. The
outmost left vertical solid (green) line corresponds to the horizon scale, k̃ = eNH̃ (N), while
the other vertical solid (red) line, k̃ = k̃thr (N), separates the unstable from the stable modes.
These lines monotonically move to the right in this stage, analogously to the dashed vertical
line k̃ = k̃reg (N), that indicates the upper limit of the modes included in the backreaction.
This dashed line is defined as the greatest value ever assumed by the second solid (red) line,
and therefore the two lines coincide as long as the second solid (red) line is moving mono-
tonically to the right. We recall that modes between the dashed and the dotted vertical line,
k̃ = k̃vac (N), are evolved by the code, but are not included in the backreaction, as these are
still vacuum modes that need to be renormalized away. Finally, the gray, horizontal, dashed
line is a visual reference point that denotes the value one in the vertical axis, to indicate
when backreaction becomes important.

The second and third panel are both taken at N ' 30. The backreaction term is now
dominant, as shown by the fact that the backreaction spectra have reached the horizontal
dashed line. We see from Figure 2 that at this moment the inflaton is experiencing a maximum
of its speed for the third time. These three times have created three peaks in the gauge field
spectrum, that in turn create the three peaks in the backreaction term that are visible in the
two panels. We notice from the second panel that the backreaction has started to decrease
the inflaton speed from this third maximum. This is testified by the fact that the vertical
red line (corresponding to the value of ⇠ / �̇ at the moment shown) has moved to the left of
the vertical dashed line (corresponding to the maximum value tht ⇠ / �̇ has ever attained
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Figure 2. The two upper panels display, respectively, the evolution of the Hubble rate H and the
Hubble slow-roll parameter ✏H for the model example described in the main text. The bottom panel
displays the evolution of the parameter ⇠ / �̇/H controlling the gauge field amplification. In all
panels, the black solid lines take properly into account the backreaction of the produced gauge fields,
while the black dashed lines show the evolution that would take place in the same potential if the
backreaction were incorrectly disregarded. The evolution is shown as a function of the number of
e-folds N ⌘ ln a, where the scale factor a is normalized to 1 at the start.

up to that moment).

The third panel corresponds to a moment �N = 0.1 subsequent to the second one.
The backreaction spectrum is nearly unchanged, but the red line has disappeared from the
figure. This is due to the fact that the backreaction actually causes the inflaton speed to
momentarily become negative for a very narrow interval of times around the one shown.
The backreaction term can indeed dominate and overwhelm the equation of motion of the
inflaton, practically eliminating its kinetic energy and in certain cases reversing its motion
for brief instances (this has previously been noticed by the numerical analyses [17, 20, 21]).

Lastly, the fourth panel corresponds to a late time in which the backreaction has again
become negligible. The backreaction spectrum exhibits a series of peaks corresponding to
number of times in which �̇ reached a maximum during its evolution. This is again a stage

of standard slow roll inflation, with ⇠ / �̇

H
monotonically increasing, as witnessed by the

superposition of the two red and dashed vertical lines.

We note that the di↵erent panels show a di↵erent range of momenta. We also note that,
at any fixed comoving momentum, the backreaction term decreases at late times (once the
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Gravitational waves for interferometers

Flashes of gravitational waves from axion inflation
Garcia-Bellido, Papageorgiou, Peloso, LS, 2303.13425

Example for steep-ish potential @ intermediate times 
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Figure 4. The sourced gravitational wave power spectrum of the Left (blue line) and Right (red line)
polarization as well as the vacuum (back dashed line) superimposed with the power-law-integrated
sensitivity curves corresponding to various current and future experiments taken from [39] and [8] in
the case of THEIA. The parameters chosen correspond to the coupling strength 1/f = 57/Mp. The
squares, stars and triangles are points for which we plot the integrand of the power spectrum defined
in (A.16) in Appendix E.

Just to make an example, for the three points marked with, respectively, squares, stars and
triangles in Figure 4, the chirality parameter

�� ⌘
Ph,+ � Ph,�
Ph,+ + Ph,�

, (4.3)

is computed to be, respectively, �� = 0.25, 0.992, 0.99998.
These features can be understood with a series of considerations. The most immediate

one is the direct relation between the instantaneous value assumed by ⇠ at any given time
during inflation and the modes that were produced at that time. Consider two well separated
times t1 and t2 and assume that ⇠ takes the two di↵erent values ⇠1 and ⇠2 at those two times.
For the moment, also assume for simplicity that ⇠ is constant for some time around both
t1 and t2. In this case, GWs of frequency f1 (resp., f2) that leave the horizons at times
near t1 (resp., t2) are mostly sourced by gauge modes that also leave the horizon at that
time, which have an amplitude controlled by ⇠1 (resp., ⇠2). Therefore, if ⇠2 > ⇠1, then
⌦GW (f2) > ⌦GW (f1).

This e↵ect is clearly seen in our results. There is however a further e↵ect, related to
the variation of ⇠ within the few e-folds in which a given GW mode is mostly sourced. A
GW mode of momentum ~k is sourced by two gauge modes, of momenta ~p and ~q that satisfy
~p+~q = ~k. If ⇠ is rapidly growing while the scales k leave the horizon, gauge modes of momenta
greater than k have a significantly greater amplitude than those of momenta of order k, and
dominate the production of the GW modes of momentum k (with the two vectors ~p and ~q
being nearly anti-aligned). On the other hand, if ⇠ is nearly constant or decreasing, the GW
production is dominated by gauge modes of momenta close to or smaller than k. This can
be seen in the shape of the integrand controlling the GW production, which we show and
discuss in Appendix E.
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Gradient expansion

A more detailed study of the development of the instability
von Eckardstein, Peloso, Schmitz, Sobol, LS, 2309.04254

Gradient expansion method

Next, we use Eq. (2.14) to compute the vacuum expectation value of E · B on the

right-hand side of Eq. (2.10). Then, in conformal time, the Klein–Gordon equation reads

d
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i
. (2.20)

Finally, we express the gauge-field energy density in terms of the mode functions. Then,

the Friedmann equation for the Hubble rate H = (da/d⌧)/a2 takes the form
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Here, the momentum scale kh in Eqs. (2.20) and (2.21) denotes a finite upper integration

limit. This cuto↵ is necessary to separate the physically relevant gauge-field modes, which

undergo enhancement due to the axial coupling, from pure vacuum fluctuations. We choose

kh such that the bracket in the mode equation (2.18) vanishes for one polarization state,
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In this way, the integrals in Eqs. (2.20) and (2.21) include all modes for which one polar-

ization has experienced the tachyonic instability. In summary, Eqs. (2.18)–(2.21) represent

the full set of equations describing the dynamics of axion inflation in momentum space.

2.2 Gradient expansion formalism

An alternative way to treat axion inflation in position space is the gradient expansion

formalism (GEF) [2]. Let us introduce the following set of bilinear gauge-field functions:
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Here, the source terms on the right-hand side of the equations denote boundary terms that

account for the fact that the number of physically relevant modes changes in time during
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and rewrite Maxwell’s equations as the tower

boundary terms, 

can be accounted for



Gradient expansion

A more detailed study of the development of the instability
von Eckardstein, Peloso, Schmitz, Sobol, LS, 2309.04254

Figure 5. Time evolution of (a) the parameter ⇠ and (b) the energy densities for the axion–vector
coupling � = 102.5 in the realistic inflationary model featuring a steep inflaton potential with
initial values of the Hubble parameter H0 = 2.7 ⇥ 1011 GeV and slow-roll parameter ✏V,0 = 6.1
(corresponding to ⇠0 = 7.1). The blue solid lines show the true solution of the system found using
the GEF, while the red dashed lines correspond to the enforced AS solution. The vertical dashed
lines show the moment of time N = NAS when the linear perturbation theory breaks down (relative
deviation of ⇠ from its initial value exceeds 10�1/2). The vertical dotted lines show the end of
inflation for the real system (blue) and for the enforced AS solution (red).

Figure 6. Same as Fig. 5 but for initial slow-roll parameter ✏V,0 = 1.9 (corresponding to ⇠0 = 7).

Figure 7. Same as Fig. 5 but for initial slow-roll parameter ✏V,0 = 0.4 (corresponding to ⇠0 = 6.85).
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Instability excited by slow-roll evolution of background 



Gradient expansion

A more detailed study of the development of the instability
von Eckardstein, Peloso, Schmitz, Sobol, LS, 2309.04254

Linearizing the tower of gradient equations…

Figure 1. Eigenvalues of the LGEF system with ncut = 70 (red dots) and solutions of Eq. (3.18),
which agrees with Eq. (3.14) in Ref. [1] (green circles), in the complex ⇣ plane for ⇠0 = 7 and
� = 102.5. The contour plot in the background shows the absolute deviation from equality in
Eq. (3.18). In the white region, |R� 1| > 102, exceeding the scale of the color code. For each
solution ⇣, also the complex conjugate ⇣

⇤ is a solution. In this figure, only the solutions with
positive imaginary parts are shown.

In this subsection, we apply all three approaches discussed above in order to study the

stability of the AS solution with respect to small perturbations. The linear perturbation

theory and the LGEF allow us to determine the spectrum of Lyapunov exponents ⇣ and,

thus, to capture all possible scenarios for the evolution of the system at once, however, only

in the regime of small perturbations. On the other hand, the full GEF allows us to get an

exact numerical solution of the system for some specified initial conditions that is valid also

for large deviations from the AS solution. Therefore, these methods are complementary to

each other and allow us to study the same system from di↵erent angles.

3.3.1 Lyapunov exponents

It is instructive to first work out the spectrum of Lyapunov exponents ⇣ for our physical

system. For � = 102.5 and ⇠0 = 7 this spectrum is shown in Fig. 1 in the form of a

sequence of red dots in the complex plane for ⇣. These points have been found by using

the LGEF truncated at ncut = 70. We want to compare the results of this numerical

integration with the solutions of Eq. (3.16) for ⇣. This equation, which follows from the

linear perturbation theory, contains integrals of highly oscillatory special functions, and

it turns out that finding its solutions is computationally very costly. We have checked

that, for the root with the greatest real part, ⇣1, the numerical solution of Eq. (3.16) is
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Lyapunov exponents

good agreement


with Peloso LS 22


analytical study



How about the inflaton gradients?

Only two (lattice) studies so far deal with inflaton gradients
Caravano, Komatsu, Lozanov, Weller 22

Figueroa, Lizarraga, Urio, Urrestilla 23 3
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FIG. 1. Top Row: Evolution of the electromagnetic (purple) and inflaton potential (black), kinetic (red) and gradient (blue)
energy densities, all normalized to the total energy density of the system, for ↵⇤ = 15, 18, 20. Solid (dashed) lines correspond
to lattice simulations with inhomogeneous (homogeneous) backreaction. Bottom Row: Evolution of ⇠ for the same coupling
constants, corresponding to simulations with inhomogeneous (black solid) and homogeneous (black dashed) backreaction, and
to gradient expansion [58, 59] (green solid) and iterative method [19] (magenta dashed). Solid and dashed vertical lines signal
the end of inflation in each case. Evolution in the linear regime (black dash-dotted) is also shown for completeness.

ing limits, confirming the validity of the code.
We define the power spectrum of the gauge field as

�(�)
A

(k, t) ⌘ k
3

2⇡2 P(�)
A

(k, t), where h ~A
(�)(~k, t) ~A

(�0)⇤(~k0
, t)i

⌘ (2⇡)3P(�)
A

(k, t)���0�D(~k � ~k
0) represents an ensemble

average. In Fig. 2 we plot various power spectra for a
fiducial value ↵⇤ = 18, and compare the outcome of our
inhomogeneous treatment against the solutions of the ho-
mogeneous backreaction and linear regimes. In Fig. 3 we
also show the helicity imbalance measured through a nor-

malized spectral helicity observable defined as

H(k, t) ⌘ �(+)
A

� �(�)
A

�(+)
A

+ �(�)
A

. (7)

The inclusion of the inhomogeneous terms brings con-
siderable novelties into the dynamics:

1.- The gauge energy ⇢EM grows exponentially fast
during the linear regime, until it reaches a few % of ⇢K.
The latter, that had been previously slowly growing on a
slow-roll trajectory, starts then decreasing, signaling the
onset of backreaction. In the homogeneous case, ⇢EM and
⇢K may perform some large oscillations [19, 56], almost in
opposite phase. Such oscillations are however damped in

the inhomogeneous dynamics, where the gradient energy
⇢G is also significantly excited, with its contribution po-
tentially comparable or even higher than ⇢K. This could
never be captured in the homogeneous regime, where by
construction ⇢G = 0. In the homogeneous case, for some
couplings (e.g. ↵⇤ = 15) the first and largest oscillation
leads h�̇i to even flip its sign, with ⇠ crossing zero back
and forth (depicted in the figure by dotted lines), signal-
ing that the inflaton climbs its own potential. This, how-
ever, never happens in the inhomogeneous case, where
the growth of ⇢G damps the oscillation amplitude, and
prevents ⇠ from becoming negative.

2.- For all couplings considered, either in the homo-
geneous or inhomogeneous regimes, inflation ends when
⇢EM becomes comparable to ⇢V, resulting in a Universe
already reheated at that moment, which is actually con-
sistent with previous preheating studies for ↵⇤ . 15 [49–
53]. In the homogeneous case, the number of extra efold-
ings is �Nbr ⇡ 3 for all couplings considered. In con-
trast, in the inhomogeneous dynamics, the number of ex-
tra efoldings grows strongly and monotonically with ↵⇤,
from �Nbr ⇡ 2 for ↵⇤ = 15 to �Nbr ⇡ 8 for ↵⇤ = 20.
For ↵⇤ = 15 inflation actually ends earlier in the inho-

Inflaton gradients 

appear to 


be large and to affect 

the dynamics


a lot!

Maybe a small gradient expansion 

can be treated analytically? 



To sum up…

Axion inflaton/gauge dynamics even richer than thought


• Need mostly numerical work to analyze

• But some analytical results are possible!

• IMPORTANT role of ∇φ here not fully clear yet!

• …or maybe more semi-analytical methods?


