UV Physics and Hawking Radiation

Pei-Ming Ho
National Taiwan University
Feb. 21, 2023

[PMH-Kawai-Yokokura 21] [PMH-Kawai 22]

Hawking radiation is not a robust prediction after the scrambling time.
 collapsing matter + time-dependent wave packets →
 Different UV physics can either enhance or suppress Hawking Rad.
 [PMH-Kawai-Yokokura 21] [PMH-Kawai 22]

- 2. Related topics: Unruh effect, inflation, ...
- 3. Trans-Planckian Censorship Conjecture (Gibbons-Hawking radiation)

[Blamart-Laliberte-Brandenbergere 23]

How robust is Hawking radiation? Is effect theory valid for Hawking radiation?

Hawking radiation involves trans-Planckian modes ['t Hooft 85], but...

- 1. Not Lorentz invariant
- 2. Nice-slice argument \Rightarrow effective theory is valid (?)
- 3. Robust even for modified (non-inv.) dispersion relations

How robust is Hawking radiation? Is effect theory valid for Hawking radiation?

Hawking radiation involves trans-Planckian modes ['t Hooft 85], but...

- 1. Not Lorentz invariant
- 2. Nice-slice argument \Rightarrow effective theory is valid (?)
- 3. Robust even for modified (non-inv.) dispersion relations
- \exists Lorentz-invariant UV energy scale \Rightarrow UV physics is needed.
- A. UV cutoff ⇒ Hawking radiation turned off. [PMH-Kawai 22]
- B. non-renormalizable interactions dominate. [PMH-Kawai-Yokokura 21]
- C. UV-IR effects [PMH-Kawai 22]

black hole formation

characteristic scale:

Schwarzschild radius (horizon)

$$a = 2M\ell_p^2$$

$$(c = 1, \hbar = 1, G_N = \ell_p^2 = 1/M_p^2)$$

Estimates in powers of

$$(a/\ell_p)^n$$
 or $(\ell_p/a)^n$

Light-cone coordinates:

Distant observers:

$$u = t - r, \qquad v = t + r$$

Freely falling observers:

$$U = -2ae^{-u/2a}$$

$$\Rightarrow \frac{dU}{du} = e^{-\frac{u}{2a}}$$

$$U \in (-\infty, 0)$$
 for $u \in (-\infty, \infty)$

natural wave packet for distant observers (in u-coordinate)

Due to $\frac{dU}{du} \simeq e^{-u/2a}$, for freely falling observers (in U-coordinate)

Hawking radiation [Hawking 74]

$$U \simeq -2ae^{-u/2a}$$

$$\Omega \sim \omega \frac{du}{dU} \simeq \frac{1}{a} e^{u/2a}$$
 for $\omega \sim 1/a$

(Ignore the interaction between outgoing modes and collapsing matter.)

The excited state with Hawking radiation

= the Minkowski vacuum of the infinite past.

There is no information in Hawking radiation.

information loss?

Decoupling theorem:

Quantum Gravity is not needed unless there are high-energy events.

Nice-slice argument \Rightarrow no high-energy event.

Hawking: "Effective theory predicts information loss."

Q: Are there high-energy events?

literature review

- Hawking radiation [Hawking 76]
- "Sonic analog of black holes..." (analog gravity) [Unruh 95]
- "Hawking radiation without trans-Planckian frequencies" [Brout-Massar-Parentani-Spindel 95]
- "Hawking radiation and high-frequency dispersion" [Corley-Jacobson 96]
- "Hawking radiation and ultraviolet regulators" [Hambli-Burgess 96]
- "On the universality of the Hawking effect" [Unruh-Schutzhold 04]
- "Insensitivity of Hawking radiation to an invariant Planck-scale cutoff" [Agullo-Navarro-Salas-Olmo-Parker 09]

literature review

- microscopic states counted for BH entropy in string theory [Strominger-Vafa 96]
- BH complementarity? [Susskind-Thorlacius-Uglum 93]
- incompatibility of unitarity, locality, causality in **EFT** paradox sharpened [Mathur 09, Braunstein-Pirandola-Zyczkowski 09, Almheiri-Marolf-Polchinski-Sully 12]
- quantum entanglement → geometry (AdS/CFT duality) [Maldacena 01, Ryu-Takayanagi 06, Van Raamsdonk 10]
- geometry and entropy intertwined via entanglement generalized entropy, quantum extremal surface, entanglement wedge [Engelhardt-Wall 14]
- "Island" transferred to a subspace of radiation Hilbert space [Penington 19, Almheiri-Engelhardt-Marolf-Maxfield 19] *Mechanism? Non-local?* [Martinec 22]

nice-slice argument

[Polchinski 95]

The curvature $\sim \mathcal{O}(1/a)$.

Adiabatic theorem ⇒

If the initial state is vacuum, excitations of energies $\lesssim \mathcal{O}(1/a)$ from time evolution.

⇒ Effective theory remains valid.

Decoupling theorem

nice-slice argument

[Polchinski 95]

The curvature $\sim \mathcal{O}(1/a)$.

Adiabatic theorem ⇒

If the initial state is vacuum, excitations of energies $\lesssim \mathcal{O}(1/a)$ from time evolution.

⇒ Effective theory remains valid.

Decoupling theorem ← loophole

Effective theory breaks down for trans-Planckian observations.

Lorentz-invariant UV cutoff

[PMH-Kawai 22]

3 Lorentz-invariant high-energy scale:

Large c.o.m. energy btwn bckgrd and outgoing quant. fluctuations

→ UV physics (QG) is relevant for outgoing quant. fluctuations.

$$P_U P_V' \sim \Omega \cdot 1/a$$

If
$$\Omega \ge M_p^2 a$$
 \Rightarrow $P_U P_V' \ge M_p^2$

Nice-slice argument still holds: no high-energy event in effective theory.

UV theory needed for Hawking particles as "Wheeler's delayed choice".

trans-Planckian problem revisited

Particles of energies $\omega \sim 1/a$ at large distances have arbitrarily larger energies at the horizon at large u:

$$\Omega \sim \omega \frac{du}{dU} \simeq \frac{1}{a} e^{u/2a}$$

$$u \sim na \log(a^2/\ell_p^2),$$

it is **trans-Planckian** for
$$n>2$$
: $\Omega \sim \left(\frac{a}{\ell_p}\right)^{n-1} M_p \gg M_p^2 a$

UV cutoff turns off HR

[PMH-Kawai 22]

$$\mathcal{N}_{(\omega_0, u_0)} \equiv b_{(\omega_0, u_0)}^{\dagger} b_{(\omega_0, u_0)}$$

$$\langle 0 | \mathcal{N}_{(\omega_0, u_0)} | 0 \rangle \simeq \frac{1}{e^{4\pi a \omega_0} - 1} \left(\int_{-\infty}^{2a \log(2a \Omega_{\Lambda})} du \, \rho_{(\omega_0, u_0)} \right)$$

$$\rho_{(\omega_0,u_0)} \equiv \psi_{(\omega_0,u_0)}^* \left(i \frac{\partial}{\partial u} \psi_{(\omega_0,u_0)} \right) - \psi_{(\omega_0,u_0)} \left(i \frac{\partial}{\partial u} \psi_{(\omega_0,u_0)}^* \right)$$

The particle number $\to 0$ when $u_0 \gg 2a\log(2a\Omega_{\Lambda})$

$$u_0 \gg 2a \log(2a\Omega_{\Lambda})$$

Minimal length in QG \Rightarrow Hawking radiation turned off after scrambling time.

This is the simplest way to resolve the information loss paradox.

Comments

Models of Quantum Gravity often have "minimal lengths"

- ⇒ UV cutoff
- ⇒ Hawking radiation turned off after scrambling time.

If no UV cutoff:

- Large particle number in Hawking radiation
 due to higher-derivative (non-renormalizable) interactions.
- HR becomes sensitive to the IR cutoff.

higher-derivative interactions

[PMH-Yokokura 20, PMH 20, PMH-Kawai-Yokokura 21]

Example:

$$g^{\mu_1\nu_1}\cdots g^{\mu_{2n}\nu_{2n}} \left(\nabla_{\mu_1}\cdots\nabla_{\mu_n}\phi_1\right)\left(\nabla_{\mu_{n+1}}\cdots\nabla_{\mu_{2n}}\phi_1\right)\left(\nabla_{\nu_1}\cdots\nabla_{\nu_n}\phi_2\right)\left(\nabla_{\nu_{n+1}}\cdots\nabla_{\nu_{2n}}\phi_2\right)$$

$$\longrightarrow \qquad \left(g^{uv}\right)^{2n} \left(\nabla_u^n\phi_1\right)^2\left(\nabla_v^n\phi_2\right)^2$$

$$\longrightarrow \qquad E^2 \sim g^{uv}p_u^{(1)}p_v^{(2)} \sim p_U^{(1)}p_V^{(2)} \propto \Omega \cdot 1/a$$

$$\left(1-\frac{a}{r}\right)^{-1}$$

$$\longrightarrow \qquad \mathcal{A} \propto \frac{\Omega^n}{M_n^n}$$
 blue-shifted for given ω

large amplitude of particle creation

[PMH-Yokokura 20, PMH 20, PMH-Kawai-Yokokura 21, PMH-Kawai 22]

For
$$p_u = \omega \sim 1/a$$

$$\mathscr{A} \sim \left(\frac{\ell_p^2}{a^2}\right)^m e^{ku/2a} \quad \text{for some} \quad m, k > 0$$

$$\Rightarrow \mathscr{A} \gtrsim \mathscr{O}(1) \quad \text{at} \quad \left(u \gtrsim \mathscr{O} \left(a \log \left(a^2 / \ell_p^2 \right) \right) \right)$$

- \Rightarrow Higher-derivative interactions \rightarrow higher exponential contributions.
- → Hawking radiation is not a reliable prediction of effective theory.

Unruh effect

[in progress]

The particles detected by accelerating observers is a reflection of the trans-Planckian feature of the background state (affected by the matter).

- → Matter does not dissolve or decay into radiation.
- Higher-derivative interactions with inertial matter enhances Unruh effect.

Trans-Planckian Censorship

[Blamart-Laliberte-Brandenbergere 23]

- Hawking radiation turned off after scrambling time by UV cutoff because trans-Planckian modes turned into Hawking particles after scrambling time.
- ightharpoonup Gibbons-Hawking radiation in de Sitter space turned off by UV cutoff after "scrambling time" ($a
 ightharpoonup H^{-1}$). [Blamart-Laliberte-Brandenbergere 23]
- Tran-Planckian Censorship protected
 - → Hawking radiation turned off after scrambling time.

conclusion

Hawking radiation is sensitive to UV physics.

A UV cutoff turns off Hawking radiation after scrambling time.

Analogous problems should be re-examined.

Unruf effect, Gibbons-Hawking radiation, inflation, ...

Details about the measurement/observation can be important.

localized wave packet forms, interactions with detectors, ...

String theory effect?

Thank you!