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? ? ? 



Standard Model of Particle Physics 
and Cosmological Standard Model

GR

QFT



The Cosmological 
Constant Problem(s)

Scanning the literature, we can find at least four claimed issues 
attached to the cosmological constant phenomenology: 

1. The Weight of Vacuum.

2. Phase Transitions.

3. Dark Energy.


4. UV Sensitivity.



The gravitating vacuum energy at the level of the Einstein equations receive 
contributions from the vacuum energy of the fields in the SM.  QFT calculations of 

the vacuum energy of a field with mass ￼  for a given energy scale ￼  scales as


.￼ .


For instance, the mass of the top quark is ￼  while ￼ , leading to 
a 55-orders-of-magnitude gap!

m μ

ρvac ∼ m4 ln (m2/μ2)

1011 eV ρΛ ∼ 10−11 eV4

The Weight 
of Vacuum. 

The Cosmological 
Constant Problem(s)



￼  , but global minimum shifts as the background 
temperature of the Universe changes.  

V(ϕconst.) = ρ(ϕ)
vac

Phase 
Transitions.

(Martin, ’12)

The Cosmological 
Constant Problem(s)



The Universe is undergoing a period of accelerated 
expansion that can be explained by a positive 

cosmological constant, such that 


￼ .


Where does this vacuum energy come from? 

ρΛ ∼ 10−11 eV4

Dark 
Energy. 

The Cosmological 
Constant Problem(s)



These first three problems are all ‘classical’. What really 
gravitates is 


￼ ,


that’s the lambda in ￼ . That we simply measure, 
as any other fundamental constant. 

Λeff = ΛB + κρvac

ΛCDM

￼Rμν − 1
2 Rgμν =

￼−Λeffgμν + κTmatter
μν

The Cosmological 
Constant Problem(s)



The vacuum energy computed in QFT is UV sensitive, despite being a constant 
throughout spacetime:


a. The Higgs' mass squared is highly UV sensitive (quadratic in cutoff ). But the 
vacuum energy scales with the ￼ , thus an even worse sensitivity;


b. As we increase the QFT cutoff, new fields with higher masses can be excited, 
disturbing the fixing of the CC done at lower scales..


In short, once we change the energy scale in which we are computing the vacuum energy, 
the radiative corrections from higher-order loop corrections shift the value of ￼ .

m4

ρvac

UV 
Sensitivity.

The Cosmological 
Constant Problem(s)



There have been countless proposals attempting at tackling these 
issues. What is the best attitude?  


a. Modify GR (self-tuning)




There have been countless proposals attempting at tackling these 
issues. What is the best attitude?  


a. Modify GR (self-tuning)


b. Modify the standard model (SUSY, for instance)


A more radical proposal: 


Take the CCPs as a strong empirical evidence of the 
breakdown of QFT in the presence of gravity. 




L

R

Bekenstein Bound (’81)

Gravity cannot be a QFT. 

dim ￼ℋR < ∞

(Bao, Carroll, Singh ’17)

SR ≤ πkLE
ℏc

In fact, another argument: 



What is the elephant?

AdS/
CFT

EPR=ER Holography

Bekenstein’s 
Bound

CCPs
Quantum/

Classical Limit



Questions? 



𝒰a

𝒰2
𝒰b

ℳ

𝒰1

Spacetime 
Emergence

ℋ

ℋ1

ℋ2

ℋa

ℋb



a. Hilbert space ￼ ,  state ￼ ,  Hamiltonian ￼ 


b. Schroedinger equation:   ￼ 

c. ￼ 


d. compute the mutual information ￼ 


e. define  the metric ￼ 

f. reconstruct smooth geometries

g. ￼   obeying Einstein’s equations 

(ℋ<∞) ( |Ψ⟩) (H)
iℏ∂t |ψ⟩ = Ĥ |ψ⟩

ℋ = ⊗i ℋi → H local

(Iab)
dsab (Iab)

δ |Ψ⟩ → δIab → δdsab → hμν

Quantum-first approach
(van Raamsdonk, ’10)


(Cao, Carroll, Michalakis, ’16)


di
st

an
ce

entanglement



I(A, B) = S(A) + S(B) − S(A ∪ B)

⟨𝒪A(xA)𝒪B(xB)⟩ ∼ e−mL

￼I(A, B) ≥ (⟨𝒪A𝒪B⟩ − ⟨𝒪A⟩⟨𝒪B⟩)2

2 |𝒪A |2 |𝒪B |2

(Wolf, Verstraete, 

Hastings, Cirac, ’18)

(scalar, symmetric, non-negative)

(van Raamsdonk, ’10)

(Cao, Carroll, Michalakis, ’16)

On the mutual information



e.g. ￼Φ(x) = − log(x)

(van Raamsdonk, ’10)

“more entangled” ￼ 

 “close together”

∼

𝒰
a

𝒰
2

𝒰
b

ℳ

𝒰
1

ℋ

ℋ
1

ℋ
2

ℋ
a

ℋ
b

￼Φ(1) → 0
￼Φ(0) → ∞

￼Φ (IAB/Imax)



d(p, q) = min
path p

k−1

∑
n=0

w (pn, pn+1)

￼w(p, q) =
￼ 

￼
l0 Φ (I(Ap, Aq)/I0), p ≠ q

0, p = q{

￼A :=
I(Ap, Aq)

2α



(Cao, Carroll, Michalakis, ’16)

(Faulkner, Guica, Hartman, Myers, Raamsdonk, ’13)
(Blanco, Casini, Hung, Myers, ’13)

￼δA ￼δS

￼ℛ

￼G00

￼δ⟨K̂⟩

￼T00

A :=
I(Ap, Aq)

2α

δS = δ⟨K̂⟩

δ⟨K̂⟩ → δ⟨T00⟩

δA = −
ΩD−1rD−1

2D(D + 2)
ℛp

ℛp = 2G00(p)

￼Gμν ∝ Tμν

Lorentz 

Invariance

Entanglement 1st Law



Questions? 



Space(-time) Emergence


Experimental Signatures



Quantum 
Gravity: 
observational 
signatures





Quantum Gravity: table-top 
gravitational-quantum 
experiments

It is argued that if gravity can entangle two systems then 
we should conclude that is indeed quantum 

(superimposed metric fluctuations). 

(Bose, Mazumdar, Morley, Ulbricth, Toros, ’17)

(Marletto, Vedral, ’17)


(Carney, Stamp, Taylor, ’18)

Bose-Marletto-Vedral experiment: 

two particles start off in a superposition of two different 

spatial positions, leading to four different branches of the 
wavefunction. In each branch the gravitational interaction 

between the particles yields a different phase shift, 
entangling them.



However, suppose space(-time) is emergent from more fundamental 
quantum degrees of freedom. 


Then, it is unclear what to conclude from these experiments, as 
we do expect that these more fundamental degrees of freedom 

are ruled by interactions that produce entanglement, despite not 
being gravitational. 


One way to parse out this “degeneracy" about the nature of gravity is 
probing its emergent nature.



Curvature and Entanglement 
Perturbations

￼̄Ap

Ap

              Consider a quantum state, ￼ . Then, 


￼   


Now perturb the state locally by changing entanglement 

between ￼ : 


￼ .

ρ = |ψ⟩⟨ψ |

ρAp
= TrĀp

ρ and αA = I (Ap, Āp)/2

Ap and Āp

ρ′￼ = U†
ApĀp

ρUApĀp
→ δI(Ap, Āp) = 2δS(Ap)

ℋ = ℋAp
⊗ ℋĀp



a. Introduce Riemann coord. around ￼ : 


b. For fixed volume: 


c. But 


d. Thus: 

Ap

αA = I (Ap, Āp)/2

δA = −
ΩD−1rD−1

2D(D + 2)
ℛp,

hij = δij −
1
3

r2ℛijklxkxl + 𝒪(r3)

What about the geometry? 

ℛp = −
2D(D + 2)
αΩD−1rD−1

δSAp

δSAp
< 0 → ℛp > 0

δSAp
> 0 → ℛp < 0



Now perturb the state non-locally,


￼ 


Then,

UApĀpB = UApB ⊗ IĀp
.

ℋ = ℋAp
⊗ ℋĀp

⊗ ℋB

￼Ap

Āp

￼̄Ap

Ap
B

δI(Ap, Āp) < 0 ℛp > 0!

Thus, the induced curvature is always positive. 



(In collab. w/ Florian Niedermann) 

Cosmological 

Signatures

At any given time, there are three different sort of modes: 


a. Deep UV ￼ 


b. Sub- and supper-Hubble ￼ 


c. Deep IR  (beyond horizon) ￼

(B)

(Ap)

(Āp)

￼Ap

Āp

Deep IR

∼ H−1

Deep UV


1. Apply formalism to FRW's spatial hypersurfaces, which seems to lead to positive spatial curvature. 
Then consider that in the context of current expansion and inflation; 


2.  Covariantize it for Lorentzian manifolds and see what the implications would be for the full scalar 
curvature (and dark energy). One needs to understand better what kind of areas are to be considered 
(covariant entropic bounds). 


   (Bousso, ’02)





LIGO-like 

detector

￼I (ρent)/qubit = 2 ln 2

Mutual information provides 
upper bound on correlations. 

Bose-Einstein 

Condensate

Bose-Einstein 

Condensate

(In collab. w/ M. Lawson ,S. Baum, S. Qvarfort) 



￼I (ρent)/qubit = 2 ln 2

￼I (ρmix)/qubit = ln 2

Mutual information provides 
upper bound on correlations. 

LIGO-like 

detector

(In collab. w/ M. Lawson ,S. Baum, S. Qvarfort) 



Gravimetry through 
non-linear 
optomechanics
H = ℏωc ̂a† ̂a + ℏωmb̂†b̂ − ℏk ̂a†a(b̂ + b̂†)

−mSg0[a + ϵ(ωgt + ϕg)](b̂† + b̂)

(Qvarfort, Plato, Bruschi, Schneiter, Braun, Serafini, Rätzel, ’21)

(In collab. w/ M. Lawson ,S. Baum, S. Qvarfort) 
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