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10/73



Why Hubble Horizon?

Siiglyle]
Cosmology

R. Branden-
berger

Er e o Recall: Fluctuations only oscillate on sub-Hubble
Scenarios SCaleS

Thermal o Recall: Fluctuations freeze out, become squeezed
Fluctuations . .
states and classicalize on super-Hubble scales.

Matrix Theory
Cosmology

Conclusions

11/73



Why Hubble Horizon?

String
Cosmology

R. Branden-
berger

Prolems for o Recall: Fluctuations only oscillate on sub-Hubble

Scenarios Scales'

Thermal o Recall: Fluctuations freeze out, become squeezed
Fluctuations . .

P states and classicalize on super-Hubble scales.
Gosmology o Demand: classical region be insensitive to

Conclusions

trans-Planckian region.
o — no trans-Planckian modes ever exit Hubble horizon.

11/73



Unitarity Problem

String
Cosmology

A e o Recall: non-unitarity of effective field theory in an
expanding universe (N. Weiss, Phys. Rev. D32, 3228
Fropiems for (1985); J. Cotler and A. Strominger, arXiv:2201.11658).

EFT

Scenarios

Thermal
Fluctuations

Matrix Theory
Cosmology

Conclusions

12/73



Unitarity Problem

String
Cosmology

7 Gt o Recall: non-unitarity of effective field theory in an

berger

expanding universe (N. Weiss, Phys. Rev. D32, 3228
Eopems or (1985); J. Cotler and A. Strominger, arXiv:2201.11658).
Scenarios o H is the product Hilbert space of a harmonic oscillator
Thermal Hilbert space for all comoving wave numbers k

Fluctuations

Matrix Theory
Cosmology

Conclusions

12/73



Unitarity Problem

String
Cosmology

7 Gt o Recall: non-unitarity of effective field theory in an

berger

expanding universe (N. Weiss, Phys. Rev. D32, 3228
Froplems for (1985); J. Cotler and A. Strominger, arXiv:2201.11658).
Scenarios @ H is the product Hilbert space of a harmonic oscillator
hemal Hilbert space for all comoving wave numbers k
Matrix Theory o IR cutoff: fixed ki, (comoving).

Cosmology

Conclusions

12/73



Unitarity Problem

String
Cosmology

. Branden- o Recall: non-unitarity of effective field theory in an

berger

expanding universe (N. Weiss, Phys. Rev. D32, 3228
Froplems for (1985); J. Cotler and A. Strominger, arXiv:2201.11658).
Scenarios @ H is the product Hilbert space of a harmonic oscillator
hemal Hilbert space for all comoving wave numbers k
Matrix Theory o IR cutoff: fixed ki, (comoving).

Cosmology

o UV cutoff: time dependent Kmax : kmax(t)a(t)=" = my

Conclusions

12/73



Unitarity Problem

String
Cosmology

. Branden- o Recall: non-unitarity of effective field theory in an

berger

expanding universe (N. Weiss, Phys. Rev. D32, 3228
Froplems for (1985); J. Cotler and A. Strominger, arXiv:2201.11658).
Scenarios @ H is the product Hilbert space of a harmonic oscillator
hemal Hilbert space for all comoving wave numbers k
Matrix Theory o IR cutoff: fixed ki, (comoving).

Cosmology

o UV cutoff: time dependent Kmax : kmax(t)a(t)=" = my
o Continuous mode creation — non-unitarity.

Conclusions

12/73



Unitarity Problem

R.B. arXiv:1911.06056; A. Bedroya and C. Vafa., arXiv:1909.11063

String
Cosmology

7 Gt o Recall: non-unitarity of effective field theory in an

berger

expanding universe (N. Weiss, Phys. Rev. D32, 3228
Eopems or (1985); J. Cotler and A. Strominger, arXiv:2201.11658).
Scenarios o H is the product Hilbert space of a harmonic oscillator
Thermal Hilbert space for all comoving wave numbers k

Fluctuations

Matrix Theory
Cosmology

IR cutoff: fixed kmnjn (comoving).

UV cutoff: time dependent Kmax : kmax(t)a(t) ="' = my
Continuous mode creation — non-unitarity.

Demand: classical region be insensitive to
non-unitarity.

— no trans-Planckian modes ever exit Hubble horizon.

Conclusions

Q
Q
Q
Q

©

12/73



Application of the Second Law of
Thermodynamics

String
Cosmology

R. Branden-
berger

o Consider entanglement entropy Sg(t) between sub-

Fropiems for and super-Hubble modes.

Scenarios o Consider an phase of inflationary expansion.

Thermal
Fluctuations

Matrix Theory
Cosmology

Conclusions

13/73



Application of the Second Law of
Thermodynamics

String
Cosmology

R. Branden-
berger

o Consider entanglement entropy Sg(t) between sub-

Froplems for and super-Hubble modes.

Scenarios o Consider an phase of inflationary expansion.
e o Sg(t) increases in time since the phase space of

Fluctuations

Matrix Theory super-Hubble modes grows.

Cosmology

Conclusions

13/73



Application of the Second Law of
Thermodynamics

String
Cosmology

R. Branden-
berger

o Consider entanglement entropy Sg(t) between sub-

Froplems for and super-Hubble modes.

Scenarios o Consider an phase of inflationary expansion.
e o Sg(t) increases in time since the phase space of
Matrix Theory super-Hubble modes grows.

e o Demand: sg(t) remain smaller than the
post-inflationary thermal entropy.

Conclusions

13/73



Application of the Second Law of
Thermodynamics

String
Cosmology

R. Branden-
berger

o Consider entanglement entropy Sg(t) between sub-

Froplems for and super-Hubble modes.

Scenarios o Consider an phase of inflationary expansion.
. o Sg(t) increases in time since the phase space of
Matrix Theory super-Hubble modes grows.
Cosmology g

o Demand: sg(t) remain smaller than the
post-inflationary thermal entropy.

o — duration of inflation is bounded from above,
consistent with the TCC.

Conclusions

13/73



String
Cosmology

R. Branden-

berger

Problems for
EFT

Application to EFT Description of Inflation

14/73



Application to EFT Descriptions of Inflation

String
Cosmology

R. Branden-

berger TCC implies:

Problems for

EFT 3( {r)
Scenarios a(t )

Thermal
Fluctuations

Ip/ < H(t,q*) !

Matrix Theory
Cosmology

Conclusions

15/73



Application to EFT Descriptions of Inflation

String
Cosmology

R. Branden-

berger TCC implies:

Problems for a(t )

EFT R =1l
—— 1l < H(t

Scenarios a(t*) pl ( R)

Thermal
Fluctuations

Sl Demanding that inflation yields a causal mechanism for

Cosmology

Conclusions generating CMB anisotropies implies:

Sy a <)

15/73



Implications

String
Cosmology

R. Branden-

berger Upper bound on the energy scale of inflation:

Problems for

EFT V74 < 3 x 10%GeV

Scenarios

Thermal
Fluctuations

Matrix Theory
Cosmology

Conclusions

16/73



Implications

String
Cosmology

R. Branden-

berger Upper bound on the energy scale of inflation:

Problems for

EFT V74 < 3 x 10%GeV

Scenarios

Thermal
Pl — upper bound on the primordial tensor to scalar ratio r:

Matrix Theory
Cosmology

Conclusions r < 10730

16/73



Implications

String
Cosmology

R. Branden-

berger Upper bound on the energy scale of inflation:

Problems for

EFT V74 < 3 x 10%GeV

Scenarios

Thermal
Pl — upper bound on the primordial tensor to scalar ratio r:

Matrix Theory
Cosmology

Conclusions r < 10730

Note: Secondary tensors will be larger than the primary
ones.
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e @ The potential of ¢ obeys (de Sitter conjecture)
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Note: d, ¢y, c> constants of order 1.
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Scenarios o No eternal inflation.
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Fluctuations Q NO bare pOS|t|Ve /\
Matrix Theory o Dark Energy is not a bare cosmological constant.
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Conclusions o Quintessence dark energy is constrained (L.
Heisenberg et al, arXiv:1808.02877).
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Fig. la. Diagram of gravitational instability in the ‘big-bang” model. The region of instability is

located to the right of the line M (¢); the region of stability to the left. The two additional lines of

the graph demonstrate the temporal evolution of density perturbations of matter: growth until the

moment when the considered mass is smaller than the Jeans mass and oscillations thereafter. It is

apparent that at the moment of recombination perturbations corresponding to different masses
correspond to different phases.
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e o @ Horizon > Hubble radius in order for the scenario to
=T solve the “horizon problem” of Standard Big Bang
Scenarios CosmOIOgy.

Thermal

Fluctuations o Scales of cosmological interest today originate inside
e the Hubble radius at early times in order for a causal
generation mechanism of fluctuations to be possible.

@ Mechanism for producing a scale-invariant spectrum of
curvature fluctuations on super-Hubble scales.
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Matrix Theory

Semml is lower than the Planck scale.

Conclusions o Inflationary cosmologies are inconsistent with the
TCC unless the energy scale of inflation is fine tuned.
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All early universe scenarios require going beyond EFT.
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o — require matter with p < —1p.
Problems for . . -
EFT o Consider scalar field o as matter: potential energy term
Scenarios has an equation of state p = —p.
e o But one needs to ensure that potential energy
Matrix Theory dominates over other forms of energy!
Cosmology 0 o .
@ Require a slowly rollling scalar field:
Conclusions
"4 < 1
\/ ,77p[ ’

o Require rolling over large distances
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Problems for

EFT o Constructions exist:
Scenarios @ G. Dvali et al: inflationary phase as a condensate of

Thermal

Eypee o gravitons about Minkowski space-time
Matrix Theory (aI‘XIV1 701 08776 [hep'th])

e o H. Bernardo, S. Brahma, K. Dasgupta et al: inflationary
phase as a coherent state in string theory
(arXiv:2007.00786 [hep-th]; arXiv:2007.11611 [hep-th];
arXiv:2009.04504 [hep-th]).
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ACASQF:oITf;?yOW o Anisotropies diluted, creates spatial flatness

Foneisens o Global attractor in initial condition space (A. ljjas et al,
arXiv:2103.00584)

o Note: Negative exponential potentials are
ubiquitous in string theory.
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- g Idea: make use of the new symmetries and new degrees of
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berger freedom which string theory provides to construct a new

e o theory of the very early universe.

o Assumption: Matter is a gas of fundamental strings
Seenarios Assumption: Space is compact, e.g. a torus.

E:Lecrtlzraat‘\ons Key p0|ntS

Cosmology o New degrees of freedom: string oscillatory modes
Eoicibcls o Leads to a maximal temperature for a gas of strings,

the Hagedorn temperature
@ New degrees of freedom: string winding modes

o Leads to a new symmetry: physics at large R is
equivalent to physics at small R
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o o For fixed k, convert the matter fluctuations to metric
e fluctuations at Hubble radius crossing t = ti(k)

Thermal

Fluctuations o Evolve the metric fluctuations for t > t;(k) using the
Matrix Theory usual theory of cosmological perturbations

Cosmology

Conclusions

Note: the matter correlation functions are given by partial
derivatives of the finite temperature string gas partition
function with respect to T (density fluctuations) or R
(pressure perturbations).
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EFT

Scenarios . .
Thermal ds? = &(n)((1 +20)dn? — [(1 — 20)5; + hj]dx’ax!) .

Fluctuations

RS Inserting into the perturbed Einstein equations yields

Cosmology

Conclusions

([O(K)[F) = 1672G2k~*(6T (k)5 T % (K))

(Ih(K)[?) = 1672 GPKk=*(5T' (K)o T';(K)) .
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o slight red tilt like for inflation
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oo inflation for generating the structures we see in
S— cosmological observations.

Fluctuations

e o String Gas Cosmology: nonsingular, solves the horizon
Cosmology prOblem

SeneEon o Achilles heel: how do we describe the emergent phase
mathematically?
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Starting point: BFSS matrix model at high temperatures.

Problems for

EFT @ BFSS model is a quantum mechanical model of 10
Seenarios N x N Hermitean matrices.

Thermal

Fluctuations (] Note no Spacel
Coamoiogy”” o Note: no singularities!
Conelusions o Note: BFSS matrix model is a proposed

non-perturbative definition of M-theory: 10 dimensional
superstring theory emerges in the N — oo limit.
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o Dy: gauge covariant derivative (contains a matrix Ag)

Conclusions

‘t Hooft limit: N — oo with A = g2N = gs/; 3N fixed.
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et Theory artition function : Z = N pe .
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Conclusions

Correspondence : {,} — —i[,]
/dza\/@ — Tr

Obtain grand canonical partition function of IKKT model.
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o Eigenvalues of Ay become emergent time, continuous

R. Branden-

berger in N — oo limit.
bl for o Work in the basis in which A is diagonal: pick n
e (comoving spatial coordinate) and consider the block
Scenarios matriX )(I(t)
Thermal
Fluctuations o Extent of space (emergent space, physical distance):
Cosmology 1
Conclusions X,'(t)2 = <77Tr(X,)(t))2> 9

@ Space continuous in N — oo limit.

o Emergent metric g;: ratio x;(t)?/n? (S. Brahma et al, in
preparation) ??.
o Local Lorentz invariance emerges in N — oo limit.
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Matrix Theory Cosmology
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R. Branden- in N — oo limit.
berger

@ Work in the basis in which Ay is diagonal: X; matrices
Sloplems for become block diagonal — emergent space, continuous
o in N — oo limit.
cenarios
el o Extent of space:
Fluctuations
Matrix Theory 1 -
xi(t)° = <‘Tr<Xf)(t))2> ’
Conclusions n

@ In a thermal state there is spontaneous symmetry
breaking: SO(9) — SO(6) x SO(3): three dimensions
of space become larger, the others are confined.

[J. Nishimura and G. Vernizzi, JHEP 0004, 015 (2000);
]S.-W. Kim, J. Nishimura and A. Tsuchiya, Phys. Rev.
Lett. 109, 011601 (2012)]

63/73



Matrix Theory Cosmology

Siiglyle]
:OZZ:::: o We assume that the spontaneous symmetry breaking
“berger observed in the IKKT model also holds in the BFSS
e o model. extends to the full model (not just the bosonic

=l sector).

::if o Method: generalize the Gaussian approximation

Fluctuations method used to demontrate the existence of the phase

Matrix Theory transition in the IKKT model to the BFSS theory (S.
Brahma et al, in preparation).

Conclusions

64/73



Matrix Theory Cosmology

S. Brahma, R.B. and S. Laliberte, arXiv:2108.1152

Siiglyle]
:OZZ:::: We assume that the spontaneous symmetry breaking
“berger observed in the IKKT model also holds in the BFSS
e o model. extends to the full model (not just the bosonic

=l sector).

f:ﬁ:s o Method: generalize the Gaussian approximation

Fluctuations method used to demontrate the existence of the phase

Matrix Theory transition in the IKKT model to the BFSS theory (S.
Brahma et al, in preparation).

o Thermal correlation functions in the three large
spatial dimensions calculated in the high temperature
state of the BFSS model (following the formalism
developed in String Gas Cosmology).

@ — curvature fluctuations and gravitational waves.

Conclusions
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Copems o o Scale-invariant spectrum of curvature fluctuations
Scenarios o With a Poisson contribution for UV scales.

Thermal

Fluctuations @ Scale-invariant spectrum of gravitational waves.

Matrix Theory
Cosmology

Conclusions — BFSS matrix model yields emergent space, emergent
time and an emergent early universe phase.

Note: Horizon problem automatically solved.
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R Branden @ In light of the TCC and other conceptual problems we
Lol need to go beyond point particle EFT in order to
describe the very early universe.

o BFSS matrix model is a proposal for a non-perturbative
definition of superstring theory.

e @ Consider a high temperature state of the BFSS model.
atrix neory
Cosmology @ — emergent time and space.

conclisions o Consider thermal fluctuations of the BFSS model in
the given state.

@ — scale-invariant spectrum of cosmological
perturbations with a Poisson contribution in the UV.

Problems for
EFT

Scenarios

Thermal
Fluctuations

@ — scale-invariant spectrum of gravitational waves.
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Some Details

Matsubara expansion of the action:

Sgrss = So + Skin + Sint

At high temperature: Si;, and Sj; suppressed compared to
So.

To next to leading order:

=N\ =

where y1 ~ R2A\¥/3T-1/2,
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Some Details

String
Cosmology

R, Branden- o Derivative w.r.t. T — density fluctuations: both terms
S contribute.
Cionems for o Derivative w.r.t. R — pressure fluctuations: only second
term contributes.

Scenarios

i Power spectrum P(k) of density fluctuations: (k = R~1)

Fluctuations

L L o First term dominates in the UV: Poisson spectrum.

Cosmology

Conclusions o Second term dominated in the IR: Scale-invariant
spectrum.

P(k) = 1672G2XY2N2O(1) ~ (Ismpi)~

using the scaling GEN2X*/3 ~ (Ismp)~4.
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