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it from the cracks that Light gets tin... Anthem-Leonard Cohen

A new dawn for testing General Relativity

Albeit we “use” GR everyday (e.g. GPS) still it has some tantalising

features and it has resisted so far any attempt to be quantised...

*  The cosmological constant problem
*  Faster than light and Time travel solutions
*  AdS/CFT duality, holographic behaviour

*  Information Problem in BH Physics
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naway (e ed m ool Wi

No more -

g -
A
A "M N v
AN V. . -

: . ’
g

|

4

: "I l‘" 1
; J\/\/\'\'.ﬁ» - \/\/\.“‘.Ivu MW/W ]

— ol Towe bn Tome 14

Sources

Datactorn




it from the cracks that Light gets tin... Anthem-Leonard Cohen

A new dawn for testing General Relativity

Albeit we “use” GR everyday (e.g. GPS) still it has some tantalising

features and it has resisted so far any attempt to be quantised...

* Singularities *  The cosmological constant problem

* Critical phenomena in gravitational collapse _ _ _
*  Faster than light and Time travel solutions

* Horizon thermodynamics

*  AdS/CFT duality, holographic behaviour
* Spacetime thermodynamics: Einstein

equations as equations of state. _ _ _
*  Information Problem in BH Physics

There are a ubiquitous objects that are associated to most of these odd GR features:
Black Holes
Understanding them “in nature” would be key to test our understanding of gravity.
Unfortunately so fare very sparse knowledge was allowed by observations...
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it from the cracks that light gets tn... Anthem-Leonard Cohen

BLACK HOLES:
THE ROSETTA STONE OF GRAVITY

“The black holes of nature are the most perfect macroscopic objects there are in the universe:

the only elements in their.construction are our.concepts ofispace and time.”
ubrahmanyani@handrasekhar:

7
0’0

ALBEIT WE ARE NOWADAYS FAMILIAR WITH THE CONCEPT OF
Br.Aack HOLES THEIR ACCEPTANCE AS A PHYSICAL SOLUTION
OF GENERAL RELATIVITY HAS BEEN FAR FROM OBVIOUS.

< KEVEN ONCE WAS UNDERSTOOD THE NATURE OF THE EVENT
HORIZON, BH ARE STILL. CHARACTERISED BY “HARD TO
DIGEST  STRUCTURES

% SINGULARITIES: INFINITE CURVATURE

% (CAUCHY HORIZONS (ASSOCIATED TO TIMELIKE
SINGULARITIES AND TIME MACHINES): END OF
PREDICTABILITY

outer ergozphere  inner ergocsphere  ring singularity inner herizan outer harizan

QG is supposed to “cure” these features:
If it does so just in a hidden QG core of Planck scale then BH will be exactly as in GR.
But what if the “cure” requires long range (in time and / or space) effects?
Then maybe we could test QG using BH... could we?



Singularity

A singularity is where General relativity is no more predictive: we cannot describe spacetime there —> missing points.

Penrose’s theorem is what makes very confident that singularities must form inside black holes generically

Penrose’s singularity theorem

Assumptions
+ The theory of gravity is GR < )

=
+ The gravitational collapse becomes enough strong to have convergent light cones (trapped region) Et ‘

“ time
+ Matter gravitates in the standard way (no exotic/quantum matter: if p=wQ w>-1) 1

@ 3
B

Implication
Once a trapped region forms the collapse would be unstoppable and has to lead to a singularity v = const.

Avoidance of this conclusion requires at least one of the following

+ The weak energy condition is violated.

+ The Einstein field equations do not hold.

matter

+ Lorentzian geometry does not provide an adequate description of spacetime inside BHs.

+ Global hyperbolicity (Cauchy evolution) breaks down.

We shall be ready to give up the first two and hold the last two...

r=2M



Focussing on the focussing point

Let’s assume that QG produces a space-time which is regular and entirely predictable in the sense of a Cauchy problem.

No singularities both in the sense of incomplete geodesic as well as curvature singularities (metric is at least C2).

Penrose’ theorem works by proving first that in a collapse a
focussing point for outgoing light rays is reached and then

by showing that this point (or sets of points) cannot be part
of the spacetime. If QG removes such a focussing post what

can happen? We can have e
@
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Apart from the above behaviour of the outgoing light rays

we can catalogue all the possible cases by considering the radius R at which defocussing
appears and the behaviour of the ingoing light rays there.
We then get only

4 viable classes:

1. (20.Ro.6® < 0) 3. (0,R.. 8% <0)

2. (A,Ro, 6™ > 0) 4. (00,R,, 8% >0)



Class 1: Evanescent horizons

+ The expansion relative to the outgoing null vector vanish and changes sign.

+ The expansion of the intersecting ingoing radial null geodesics remains negative.

i i+

+ We recover the geometry of an evanescent
regular black hole.

+ The geometry possesses an outer and an inner
horizon that merge in finite time.

» This situation corresponds to a regular BH
with no singularity or a bounce from a BH to a |
White Hole (the time reversal of a black hole) i~ Regular BH ‘ Bounce

Note: one can think of Inner Horizons as White y
Horizons which have been turned Inside Out

Figure by courtesy of R. Carballo-Rubio



Class 2: One way hidden wormholes

The expansion relative to the outgoing null rays vanish and changes sign.

The expansion of the intersecting ingoing radial null rays changes sign as well.

The geometry possesses a minimum radius
throat that resembles the one of a wormhole;

The throat 1s inside a trapping horizon and can be
traversed only in one direction.

Problematic creation from gravitational collapse
as topology change 1s incompatible with global
hyperbolicity. However, if one gives up (at least
in two points) metric analyticity requirement then
possible to conceive a geometry with minimum
finite radius locally.
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= The throat 1s inside a trapping horizon and can be
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Asymptotic resolutions: Cases 3,4

* These are (idealised?) cases in which the defocussing point is
pushed at infinity.

Everlasting horizons Asymptotic hidden wormholes

These are allowed but rather unphysical singularity resolutions.
We shall not deal with these asymptotic cases further...



First take home message

The analysis of the singularity
resolutions tells us that
substantially, once a trapping
horizon forms, there are two
classes of singularity free solutions
(local in space and time) available:

Simply connected topology:
Regular black holes (and
bounces) with inner horizons.

Non-simply connected
topology: Hidden Wormholes
(wormholes shielded by a
trapping horizons)

Regular BH

Figures by courtesy of R. Carballo-Rubio



Limiting cases

« In both these cases one can ask what happens if Ry — r,,:,,, and “overtakes it”

* The answer is simple one gets two corresponding new classes of objects
+ Horizonless Quasi-BH

+ Naked wormbholes

Quasi-BH

Let us define a static and spherically symmetric quasi-
black hole as a spacetime satisfying:
(i) the geometry is Schwarzschild above a given radius
R that is defined to be the radius of the object,
(ii) the geometry for r < R is not Schwarzschild, and
(iii) there are no event or trapping horizons.

Naked Wormhole

Easy to engineer WH-mickers by “gluing” two copies of
Schw. or Kerr spacetime cut just above the horizon but in

general these are not correspondent to regularised solutions.



Class 1: Simply connected spacetimes

2
ko Rod (1 B 2m(7“)> Qt2 ( d?2“ ( )) + 72 [d6? + sin2 0 d¢?] . Model m(r)
: e 3
Bardeen [44] MW
r3
m(r)=Misner-Sharp Mass L dy Co | N

Dymnikova [46] M [1 — exp(Z—;)}

Fan-Wang [47] M 2

o Requirements for the mass function
m(r) = M asr — o and m(r) = O(r3) as r — 0 (at least)
e Asymptotic flatness+Regularity at the core+Outer Horizon imply also Inner Horizon.
The position of the inner and outer horizons and their surface gravity depend on m(r)
e Within GR, RBHs are non-vacuum solutions, the effective stress-energy tensor can be
read off from the Einstein tensor; several interpretations in terms of non-linear
electrodynamics. In general Violations of energy conditions.
. Even non-rotating RBH have inner horizons
o Rotating regular black holes (Kerr-like) can be constructed e.g. using
generalised Janis-Newman procedure (albeit care is required...)




Class 1: Regular-BH limit

My
r3+202M’
“ The effective stress energy tensor takes the form associated with an anisotropic perfect fluid

322 (m()\° 322 P —2M (m(r)\° 2P -20M
2 < r > S A n r3+20°M < > T R y20M
+ 2m(r) = r has 2 roots for M/ > 3\/5 /4 a degenerate/double root for M/ = 3\/5 /4 (at r = \/5 ¢ )and no roots for M/¢ < 3\/5 /4

. Let us take Hayward RBH for concreteness: m(r) =

¢(r) = 0.

p(r) = p(r).

73

Assuming M/ > 3\/5 /4 and M > ¢ one has a RBH a

ultra compact object with 4 “zones” . Vacuum
Atmosphere

 The (approximately isotropic) core [r ~ £ < 2M]:

3
PO ==p&) = [1 =0 (¢IM)] = = p(®).

o The (mildly anisotropic) crust [r ~ L, =

3

2£2M] : Isotropic
AO AO Core =
p(L)=—-p[L,) = = [1+0(¢/M)],  p(Ly) = = [1+0(21M))]. Core
 The (grossly anisotropic) atmosphere [r ~ 2M]:
4

¢
p(M)=—p (M) =A, (W) 1+ 06 (2 IM?*)|,  pM)=2pM)|1+ 06 (£2/M?)].
o The (approximately vacuum) asymptotic region [r ~ R > M]:

4 ’ 2M ’ 2 3 2 S =
p(R) = —p,(R) = A, (W) <7> |1+ 6 (£2°MIR%)|, p(R) =2pR)|1+ 6 (£°MIR%)].



Class 1: Quasi-BH limit

¢(r) = 0.

. Let us take Hayward RBH for concreteness: m(r) = ,
r3+262M

+ The effective stress energy tensor takes the form associated with an anisotropic perfect fluid

322 (m(r)\* 372 B 2M (m()\® 23 —20°M
=—p(7’), pt(r)= =
27 f r34+282M r3+282M

+ 2m(r) = r has 2 roots for M/ > 3\/§ /4 a degenerate/double root for M/¢ = 3\/5 /4 and no roots for M/t < 3\/5 /4

0 = p(r).

7 e

Vacuum

Assuming M/¢ S 3\/§ /4 and M ~ Z. In this case, the different scales £ and M

coalesce, the horizons disappear, with the core growing in size and the crust and Isotropic
atmosphere shrinking. Core

Atmosphere

Similar structure to
gravastars



A class 2 example: The Simpson-Visser Metametric

oM oM \~1 - -
ds2 b (1 i ) dtQ i (1 e ) d7’2 it (7’2 s 52) {d02 it Sin2 9d¢2} ; A.Simpson, M.stse-r. JCAP 02 (2019) 042
r2 + (2 r2 + (2 e-Print: 1812.07114 [gr-qc]
e a two-way, traversable wormhole a la Morris-Thorne for ¢ > 2M,
RN extension:
e a one-way wormhole with a null throat for £ = 2M, and E.Franzin,SL, ]. Mazza, A.Simpson, M. Visser. JCAP 07 (2021) 036.

e-Print: 2104.11376 [gr-qc]
e a regular black hole, in which the singularity is replaced by a bounce to a different

universe, when ¢ < 2M; the bounce happens through a spacelike throat shielded by
an event horizon and is hence dubbed “black-bounce” in [6] or “hidden wormhole” as
per [4].

J.Mazza, E.Franzin, SL. J[CAP 04 (2021) 082 e e-Print: 2102.01105 [gr-qc]

Rotating Counterpart

AM a sin? 6+/r2 + (2 Asin? 6

2M/ r2 02
ds?=—[1- Y g2+ Z ge? 4 mag? — dtde + d¢?
A b b
(2.16)
with
£/M
Y =74+ 02+ a?cos? 0, A=r>4+024a%—2M\Vr?2+ 02,
2 |
WOoH traversable wormhole; A= (7“2 + 02 + a2)2 — Aa’sin? 6. "Wop
nWoH null WoH, i.e. one-way wormhole with null throat; WoH
RBH-I regular black hole with one horizon (in the r > 0 side, plus its mirror image in the . REH-|
r < 0 side);
RBH-II regular black hole with an outer and an inner horizon (per side);
(=4
eRBH extremal regular black hole (one extremal horizon per side); ARBY RBH-II T

a/M
nRBH null RBH-I, i.e. a regular black hole with one horizon (per side) and a null throat. 0 0.5 ]


https://arxiv.org/abs/2102.01105
https://arxiv.org/abs/1812.07114
https://arxiv.org/abs/2104.11376

Class 2 limiting case: wormholes

M IM -1
2 _ & 2 B 2 2 2 2 . 2 2
ds ——(1 —r2—|—£2)dt —I—(l —r2—|—€2) dre = +€)[d9 + sin 9d¢},

<1 —2MI(\ r* + 52> = 0 has no roots for £ > 2M

Similarly for the rotating case.

* Energy conditions violation at the WH throat

* Even worse Topology change is known to be
unsustainable from QFT in Curved Spacetimes leading at a
paroxysmal particle creation. One really needs QG...

This suggest that wormholes might be generated by QG effects at the end of a gravitational
collapse which somehow “bounce back” to a macroscopic regularisation radius ¢ larger than
the configuration gravitational radius



Viability

Are all these singularity resolutions equally viable?

Already at the theoretical level
all of these GR black hole
mimickers present different
1ssues...




BH Mimickers

* Regular BH
* Bouncing Geometries
* Quasi-BH

+ Hidden Wormbholes

+* Traversable wormholes

Without fine tuning there is an instability at inner horizon (mass
inflation) in QG time scale, while evaporation time is generically
infinite. Note also that possible cosmological constant relevant
only after a time v ~ 1/ \/K Similarly, ingoing Hawking flux can
become relevant (see Buonanno et al. 2022) but too late for
astrophysical black holes?

R.Carballo-Rubio, EDi Filippo, SL, C.Pacilio and M. Visser,
JHEP 1807, 023 (2018). [arXiv:1805.02675 [gr-qcll.
JHEP 05 (2021) 132 ¢ e-Print: 2101.05006 [gr-qc]


https://arxiv.org/abs/2101.05006
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BH Mimickers

Without fine tuning there is an instability at inner horizon (mass
inflation) in QG time scale, while evaporation time is generically
infinite. Note also that possible cosmological constant relevant

* Bouncing Geometries
only after a time v ~ 1/ \/K Similarly, ingoing Hawking flux can

“ Quasi-BH become relevant (see Buonanno et al. 2022) but too late for
astrophysical black holes?
* Hidden Wormholes R.Carballo-Rubio, E.Di Filippo, SL, C.Pacilio and M. Visser,

JHEP 1807, 023 (2018). [arXiv:1805.02675 [gr-qcll.

+* Traversable wormholes
JHEP 05 (2021) 132 ¢ e-Print: 2101.05006 [gl‘-qC]

These results suggest that or
A black hole mimicker with a non-zero inner horizon surface gravity MUST evolve toward some stable state
Options:

A RBH with zero IH surface gravity, k. = 0

A bounce
Its quasi-BH limi
A hidden wormbhole solution



https://arxiv.org/abs/2101.05006

Stable regular black holes

Basic idea: a possible stable endpoint is a Regular BH with zero surface gravity at the IH
but non zero one at the outer horizon given that mass inflation is exponential in x_
—k_=0

/7
0’0

----- k_ = 1072 k_ =103

my

R. Carballo-Rubio, F. Di Filippo, S. Liberati, C. Pacilio and M. Visser, "Regular black holes
without mass inflation instability,”" JHEP \textbf{09} (2022), 118. [arXiv:2205.13556 [gr-qc]].

104+

ds? = —e 20 P(r)de? + 2e7Mdudr + r2dQ2,

100 |-

Misner-Sharp quasi-local mass m
(r=r ) (r=ry)
F = =
(r) (r—r_) (r—ry) +2Mr3 + [ay — 3r_(ry +7_)]r2’ #lr) =0,

0.01+

subject to
9
~Y N ~Y [ ] > . 1 L 1
r_ <L ry ~2M, r_ o~ |ry —2M|; az 3 4 T+T— . - e 7
E. Franzin, S.Liberati, J. Mazza and V. Vellucci, “Stable Rotating Regular Black Holes,”. [arXiv:2207.08864 [gr-gc]]
= at+r3ry —3a’r_(r— +ry)
U 2m(r)r 4am(r)rsin® 0 z Asin? B 2a2M ’
ds2=§{— (1— s )dt2— S dtdgb+zdr2+2d92+ = d¢? |, ﬁ_az(zM_gr__r+)+r3(r_+3r+)
B 2M ’
Y =1r2+a%cos’f, A=r? —2m(r)r—|—a2 A= (1“2-|-a2)2 — Ad?sin’ 6 R P A
= 5 = ’ B ) Ti?”_i_ T+:M+‘/M2—CL2,
# = o .
a? ro=a? [M+(1-e)VM2—a2]

b
\I]:E—I_’]“_?”
(r) r2+ar+ 8
m(r)=M ———.
T2t Tyl

QNM and Shadow
so far cast (mild) constraints on the parameters of the rotating metric.

(see R. Ghosh, M. Rahman and A. K. Mishra, [arXiv:2209.12291 [gr-qc]])




BH Mimickers

Dynamically, it seems more natural
to expect that the existence of a

k4 RegUIaT BH repulsive core would lead generally
to bouncing solutions via a
> Bouncing Geometries dominant energy condition
violation, t=rather than a stable de
B . Sitter core.
* Quasi-BH

>

,

<,

* Hidden Wormholes

TW() MAIN FEATURES CAN BE ASSOCIATED TO THESE SOLUTIONS
)

+ Traversable wormholes
I. THE TYPICAL TIMESCALE OF THE BOUNCE

T =T ~ tp(M/mp)’, =it
where j=3 would be the standard Hawking evaporation time.

2. AN UNAVOIDABLE NON-CLASSICAL REGION OUTSIDE THE TRAPPING HORIZON

If observation time scale is At then deviations from the classical geometries would be suppressed by the dimensionless quotient At/T

However, in the most natural scenarios, modifications in these geometries are by construction O(1) only after the time .

So far indication that 9 ~M, so fast bounces, possible mechanism with fast bounce compatible with observations

would be fast bounce only at the end of evaporation, or a series of fast dissipative bounces leading to a stable Quasi-BH
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BH Mimickers

* Regular BH

* Bouncing Geometries

o - WITHOUT COMMITTING TO A SPECIFIC MODEL THERE ARE TWO MAIN
+* Quasi-BH
QUANTITIES THAT CAN BE USED TO CHARACTERISE THESE SOLUTIONS.

A)  THE TRANSIENT TIME 7. THAT IT TAKES FOR A COLLAPSE (OR MERGING?) TO

+* Hidden Wormholes

SETTLE DOWN TO THE SOLUTION (END POINT OF BOUNCE OR RBH
INSTABILITY)
T's

* Traversable wormholes |») Thi DEGREE OF CoMPAGTNESS  p1 = 1 — —.

For u « 1, and if the surface is at a proper radial distance £«rs from rs, one has y ~ (f / rs)z A= (MO/M )2 (f / fp)z

E.g. {~ £p and the mass corresponding to Sgr A*, M = 4 x 100 Mo, which yields p ~ 10~91

Ultra compact object light ring instability
In the absence of an horizon there could be, inside the

standard unstable light ring, another stable light ring.

Rotating solutions: Generically for

perfectly reflecting surface there is an

This structure can lead to unbounded accretion and
generate an instability. However, for our UCO always

ergoregion instability
E. Franzin, S.L, J. Mazza, R. Dey and S. Chakraborty,

Phys. Rev. D 105 (2022) no.12, 124051
[arXiv:2201.01650 [gr-gc]].

P.V.P. Cunha,et al. [arXiv:2207.13713 [gr-qc]].



BH Mimickers

p(R) =0
o Non-perturbative Perturbative
- Re gUIar BH solution solution

* Bouncing Geometries 2GM

WITHOUT COMMITTING TO A SPECIFIC MODEL THERE ARE TWO MAIN
QUANTITIES THAT CAN BE USED TO CHARACTERISE THESE SOLUTIONS.

A)  THE TRANSIENT TIME 7. THAT IT TAKES FOR A COLLAPSE (OR MERGING?) TO

@ Hiddormholes

SETTLE DOWN TO THE SOLUTION (END POINT OF BOUNCE OR RBH
INSTABILITY)
T's

“ Traversable wormholes |» ThE DEGREE OF CoMPACTNESS f1 = 1 — —.

For u « 1, and if the surface is at a proper radial distance {«rs from rs, one has y ~ (f / rs)z A= (MQ/M )2 (f / fp)z

E.g. {~ £p and the mass corresponding to Sgr A*, M = 4 x 100 Mo, which yields p ~ 10~91

Ultra compact object light ring instability
In the absence of an horizon there could be, inside the

Rotating solutions: Generically for

standard unstable light ring, another stable light ring. perfectly reﬂecting surface there is an

This structure can lead to unbounded accretion and
1 T4 () A lxAa7o

ergoregion instability
E. Franzin, S.L, J. Mazza, R. Dey and S. Chakraborty,

Phys. Rev. D 105 (2022) no.12, 124051
[arXiv:2201.01650 [gr-gc]].

P.V.P. Cunha,et al. [arXiv:2207.13713 [gr-qc]].



BH Mimickers

* Regular BH
* Bouncing Geometries
+* Quasi-BH

* Hidden Wormbholes

+ Traversable wormholes

E. Franzin, S.L, J. Mazza, R. Dey and S. Chakraborty,
Phys. Rev. D 105 (2022) no.12, 124051
[arXiv:2201.01650 [gr-qc]].

QNM analysis:

hidden wormholes are stable

* Only the detailed structure of the metric/SET outside the horizon
can distinguish this case from a standard Regular Black Hole.

* Unclear if the “opening” of the wormhole mouth during collapse
can lead to any special signature observable at infinity

Superradiance analysis:
e The superradiant range for m does not change, the

the effect gets smaller as £ gets bigger
e Energy extraction is suppressed by increasing ¢
Regular black holes superradiate less
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* Regular BH
* Bouncing Geometries
Gden WormhaliD

* Only the detailed structure of the metric/SET outside the horizon
can distinguish this case from a standard Regular Black Hole.

+ Traversable wormholes

* Unclear if the “opening” of the wormhole mouth during collapse
can lead to any special signature observable at infinity

E. Franzin, S.L, J. Mazza, R. Dey and S. Chakraborty, ! )
Phys. Rev. D 105 (2022) no.12, 124051 Superradlance analy81s:

aralcalihle 0o eCll e The superradiant range for m does not change, the

the effect gets smaller as £ gets bigger
e Energy extraction is suppressed by increasing ¢
Regular black holes superradiate less

QNM analysis:

hidden wormholes are stable




BH Mimickers

* Regular BH
* Bouncing Geometries

‘ °

+* Quasi-BH

* Itis generally assumed that standard particles of matter and waves can
cross traversable wormholes without experiencing appreciable

o Hldden Wormh01e S interactions with the exotic matter opening the throat. Hence, the
interior of wormholes is essentially transparent
D TI' avers able WorthIeS * This assumption would be certainly more reasonable if the exotic matter

inside the wormhole comes entirely from the polarization of the
quantum vacuum.

The traversability property (the lack of a physical surface) represents

E. Franzin, S.L, J. Mazza, R. Dey and S. Chakraborty, the main difference between wormholes and quasi-black holes.

Phys. Rev. D 105 (2022) no.12, 124051
[arXiv:2201.01650 [gr-qc]].

QNM analysis: Superradiance analysis:
Slowly rotating wormholes are stable If one does not assume symmetry on the two

Fast rotating wormholes show an ergoregion sides of the throat, then no superradiance (general
instability result for axisymmetric traversable wormholes)
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* Regular BH
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* Bouncing Geometries

+* Quasi-BH

cross traversable wormholes without experiencing appreciable

o Hldden Wormh()le S interactions with the exotic matter opening the throat. Hence, the

interior of wormholes is essentially transparent

4

‘(Traversable wormholes)

* This assumption would be certainly more reasonable if the exotic matter
inside the wormhole comes entirely from the polarization of the
quantum vacuum.

* The traversability property (the lack of a physical surface) represents

E. Franzin, S.L, J. Mazza, R. Dey and S. Chakraborty, the main difference between wormholes and quasi-black holes.
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[arXiv:2201.01650 [gr-qc]].

QNM analysis: Superradiance analysis:
Slowly rotating wormholes are stable If one does not assume symmetry on the two

Fast rotating wormholes show an ergoregion sides of the throat, then no superradiance (general
instability result for axisymmetric traversable wormholes)




Phenomenology: parametrising the uncertainties

Size, R = rg(1 + A): the value of the radius below which the modifications to the classical geometry are O(1). A > 0.
Note the compactness parameter pu = A/(1 + A). So for A <« 1 one has u = A

- T_ -formation K-Absorption I'-Elastic T -Inelastic :
UeF - Liftitts time M~ compactness Coeft. reflection Coeff. reflection Coeff. S(I)- fails
Classical
CR BH 0o ~10 M 0 1 0 0 0
Trapped
(st U ndertermined ~10 M 0 1 0 0 Non-zero
(RBH+Hidden WH)
Q  BH R Model Model Model Model Model Model
L dependent dependent dependent dependent dependent  dependent
Bouncing
. : Model non-zero and
Ugomainls 2 dependent 0 1 0 0 r.= O(rs)
(long lived)
Traversable Model Model
Wormholes e Sl >0 dependent L 0 dependent

NOTE: ONE OF THE PARAMETERS IS NOT INDEPENDENT: E.G. INELASTIC INTERACTION PARAMETER MUST SATISFY I = 1 —x — T

INCLUDING ADDITIONAL INDEPENDENT PARAMETERS WOULD PROVIDE MORE FREEDOM TO PLAY WITH THE OBSERVATIONAL DATA BUT LESS
CONSTRAINING POWER. THE SET INTRODUCED IS MINIMAL, BUT STILL ABLE TO ASSES THE OBSERVATIONAL STATUS OF BLACK HOLES.



EM channels

1. Stars orbiting the BH mimicker

» Tracking several stars we can determine the mass of Sgr A* and our

distance from it. M = 4x10® Mg and d = 8 Kpc

* Most close orbiting star S2 constraints the radius of Sgr A*: The

periastron of S2 is 17 light hours, while the Schwarzschild radius of
Sgr A* is 40 light seconds. Therefore, A < 0(103).
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distance from it. M = 4x10® Mg and d = 8 Kpc

, * Most close orbiting star S2 constraints the radius of Sgr A*: The
= periastron of S2 is 17 light hours, while the Schwarzschild radius of

2. Infalhng matter. Sgr A* is 40 light seconds. Therefore, A < 0(103).

1. Stars orbiting the BH mimicker

NAIVE EXPECTATION:
STRONG CONSTRAINTS FROM ABSENCE OF THERMAL RADIATION FROM HARD SURFACE IN THE CASE OF QUASI-BH

HOWEVER QUITE GENERALLY RADIATION EMITTED AS A CONSEQUENCE OF SMASH OF MATTER ON A HARD
SURFACE RATHER THAN A HORIZON WILL BE SUBJECT TO STRONG LENSING. INDEED THE ESCAPE SOLID ANGLE IS

A 2
For Eavasie L S O(u?).
ot o= —ut o)

THEREFORE, ONLY A SMALL FRACTION OF THE LIGHT EMITTED FROM
THE SURFACE OF THE OBJECT WILL IMMEDIATELY ESCAPE TO INFINITY
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<3+ Cataclysmic events (stars disruptions)

weak constraint due to complex physics  # <107

THEREFORE, ONLY A SMALL FRACTION OF THE LIGHT EMITTED FROM
THE SURFACE OF THE OBJECT WILL IMMEDIATELY ESCAPE TO INFINITY
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weak constraint due to complex physics  # <107 = ) :

4rre A0y ( M
+2e5Steady accretion
Claims in the past of the exclusion of horizonless objects of ANY compactness. (Narayan-Broderick, 2006).

These derivations are based mainly on two strong assumptions:
1. Thermalisation of the reemitted flux. OK thanks to strong lensing.
2. Steady state: i.e. equilibrium of ingoing (accretion) and outgoing (reemission) fluxes. Not OK due to possible absorption
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» Tracking several stars we can determine the mass of Sgr A* and our
distance from it. M = 4x10® Mg and d = 8 Kpc

* Most close orbiting star S2 constraints the radius of Sgr A*: The
periastron of S2 is 17 light hours, while the Schwarzschild radius of

Sgr A* is 40 light seconds. Therefore, A < 0(103).

1. Stars orbiting the BH mimicker
€

2. Infalling matter.

NAIVE EXPECTATION:

STRONG CONSTRAINTS FROM ABSENCE OF THERMAL RADIATION FROM HARD SURFACE IN THE CASE OF QUASI-BH
HOWEVER QUITE GENERALLY RADIATION EMITTED AS A CONSEQUENCE OF SMASH OF MATTER ON A HARD
SURFACE RATHER THAN A HORIZON WILL BE SUBJECT TO STRONG LENSING. INDEED THE ESCAPE SOLID ANGLE IS

AN SR

2 THEREFORE, ONLY A SMALL FRACTION OF THE LIGHT EMITTED FROM
For r—1, — = —p+ O(p°).
7 8 THE SURFACE OF THE OBJECT WILL IMMEDIATELY ESCAPE TO INFINITY
LR M, 108 M\ *
: : <10~ =0(1) x ,
weak constraint due to complex physics H = drr? (1) ( M )

+2e5Steady accretion
Claims in the past of the exclusion of horizonless objects of ANY compactness. (Narayan-Broderick, 2006).

These derivations are based mainly on two strong assumptions:
1. Thermalisation of the reemitted flux. OK thanks to strong lensing.
2. Steady state: i.e. equilibrium of ingoing (accretion) and outgoing (reemission) fluxes. Not OK due to possible absorption

Neglecting k and I'still one gets from SgrA* and IR emission 10-2 fainter than expected p~ A < ¢(107*7).

102 meters over a size of 1010 m! Still very far from Planck scale.
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» Tracking several stars we can determine the mass of Sgr A* and our
distance from it. M = 4x10® Mg and d = 8 Kpc

, * Most close orbiting star S2 constraints the radius of Sgr A*: The
= periastron of S2 is 17 light hours, while the Schwarzschild radius of

2. Infalhng matter. Sgr A* is 40 light seconds. Therefore, A < 0(103).

1. Stars orbiting the BH mimicker

NAIVE EXPECTATION:
STRONG CONSTRAINTS FROM ABSENCE OF THERMAL RADIATION FROM HARD SURFACE IN THE CASE OF QUASI-BH

HOWEVER QUITE GENERALLY RADIATION EMITTED AS A CONSEQUENCE OF SMASH OF MATTER ON A HARD
SURFACE RATHER THAN A HORIZON WILL BE SUBJECT TO STRONG LENSING. INDEED THE ESCAPE SOLID ANGLE IS

A 2
For Eavasie L S O(u?).
ot o= —ut o)

THEREFORE, ONLY A SMALL FRACTION OF THE LIGHT EMITTED FROM
THE SURFACE OF THE OBJECT WILL IMMEDIATELY ESCAPE TO INFINITY

2
— KZTM 108M®
weak constraint due to complex physics ~ # < 107* 4M§* =0(1) x ( i ) :

+2e5Steady accretion
Claims in the past of the exclusion of horizonless objects of ANY compactness. (Narayan-Broderick, 2006).

These derivations are based mainly on two strong assumptions:
1. Thermalisation of the reemitted flux. OK thanks to strong lensing.
2. Steady state: i.e. equilibrium of ingoing (accretion) and outgoing (reemission) fluxes. Not OK due to possible absorption

Neglecting k and I'still one gets from SgrA* and IR emission 10-2 fainter than expected p~ A < ¢(107*7).

102 meters over a size of 1010 m! Still very far from Planck scale.

Let’s analyse in detail the case of non-zero absorption
(i.e. simple case k # 0 but I’ = 0)




R. Carballo-Rubio, F. Di Filippo, S.L. and M.Visser,
JCAPO8 (2022) no.08, 055.[arXiv:2205.13555 [astro-ph.HE]].

EH'T Constraints from Reemission

The minimum surface luminosity expected at infinity Leo can be estimated as
L. > nM where n = E/M

An upper bound on the observed luminosity can then be translated into a
constraint on the 7 parameter. From ETH we know 5 < 1072

Compact object ,
How this translates onaboundon y =1 — 2M/r. ? A

-~
-~
-

Assuming that all the kinetic energy of infalling matter is converted to outgoing
radiation, leads to the naive resulty = 1 — \//7

AT]< ‘%>
However, this does not take into account the physical relevant case in which part =
of the radiation is absorbed by the Quasi-BH. lL.e.thecasex #0. - <o _;;j‘". .
This plus the narrow escaping angle (remember AQ/27z = 27u/8 + O(u?))

1At : Al -0
leads to several bounces of the radiation over the surface which can be summed up.

E AQ (1-&) 1 (1= )T (1 - AQ)t/ v t=time over which SGrA* has been accreting
) .

Th ffect i = = — s e 8
e net eftect 1s n(t) M or ot 2201 —x o t = Tggq =~ 3.8 X 10° yr

7 = time for each bounce ~ O(10M) ~ 10% s

Al Lo Soeg.forl’'=1-x=10" = p S 107’

For the physical limit 7/7T < k < 1 N = . !
2% i o (LK) orforf=1-k=102=pu<1

So no meaningful upper-bound constraints can be placed for objects with large absorption coefficients
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EH'T Constraints from Reemission

The minimum surface luminosity expected at infinity Leo can be estimated as
L. > nM where n = E/M

An upper bound on the observed luminosity can then be translated into a
constraint on the 7 parameter. From ETH we know 5 < 1072

Compact object ‘_
How this translates on a bound on y = 1 — 2M/r. ? A

AQ
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Assuming that all the kinetic energy of infalling matter is converted to outgoing - —>—

radiation, leads to the naive result7 = 1 — /u %o (-2)
A % 2n
However, this does not take into account the physical relevant case in which part —
of the radiation is absorbed by the Quasi-BH. lL.e.thecasex #0. - - Ly o

€

This plus the narrow escaping angle (remember AQ/27z = 27u/8 + O(u?))
leads to several bounces of the radiation over the surface which can be summed up.

NG () AQ\ YT t=time over which SGrA* has been accreting
—= NS S . t & Tggg = 3.8 x 10° yr
M 21 k+52(1— k) o Edd y

" 7 = time for each bounce ~ O(10M) ~ 10% s

AG-0

The net effect is 5(t) =

Al Lo Soeg.forl’'=1-x=10" = p S 107’

For the physical limit 7/7T < k < 1 N = . R
2% i o (LK) orforf=1-k=102=pu<1

So no meaningful upper-bound constraints can be placed for objects with large absorption coefficients



® Zulianello, Carballo-Rubio, SL, Ansoldi: Phys.Rev.D 103 (2021) 6, 064071 « e-Print: 2005.01837 [gr-qc]

Extension to rotating BH

Probability of photon escape for spinning UCO

a=0.65
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FIG. 11: Visualizations of photon escape probability for different values of a, normalized to the same color scale. The value
P =1.6875-10"° corresponds to the case a = 0.

The re-emission of radiation can be enhanced or suppressed w.r.t. the non-rotating case if it
happens respectively at the equator or at the poles, due to the dependence of the escaping
angle to the azimuthal coordinate.


https://arxiv.org/abs/2005.01837

EM channels

EM probing of BH mimickers can come from two other forms of interaction with matter:

Event Horizon Telescope actual Image of M87

Role of parameters: elastic reflection (I)
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EM channels

EM probing of BH mimickers can come from two other forms of interaction with matter:

Event Horizon Telescope actual Image of M87

1. Hunting shadows

Role of parameters: elastic reflection (I)

BH mimickers with a clean photon sphere can very

easily mimic the BH shadow. However, in the case of .
very long tail effects strong constraints are expected. -
Still recent studies suggest that some models will be z 5 E

I
S

constrainable with better resolution.

o
[N}

See e.g. R. Carballo-Rubio, V. Cardoso and Z.
Younsi, Towards VLBI Observations of Black Hole Socis o s oS
Structure,” [arXiv:2208.00704 [gr-qcll.

©
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Role of parameters: elastic reflection (I)
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2. Burst from Bounces

Present calculations favour a timescale tW~t,(M/M;1) with a signal expected at freq.~1/z®. This

timescale is incompatible with long living BH candidates observed but it does not imply
disappearance of the object (e.g. multiple bounces leading to stable ultra-compact object).

If timescale is 7@~t,(M/Mp1)?2 (long living bounce) expected UV+IR components

UV Component~Temperature of the universe at the time of the collapse

IR Component~Size of the bouncing Object
For primordial black holes whose lifetime is of the order of the Hubble time, IR ~MeV-GeV scale UV~TeV range (cf. Barrau, Rovellj,
Vidotto)



GW channel: Echoes



GW channel: Echoes

e In the case of a black hole GW scattered back at the potential barrier (usually close to the light ring) are lost
inside the horizon.
e For an horizonless object (quasi-BH or traversable wormhole) instead the wave can go through the center and
bounce again at the potential barrier with a part transmitted at infinity and one par reflected.
This generates “echoes”.



GW channel: Echoes

e In the case of a black hole GW scattered back at the potential barrier (usually close to the light ring) are lost
inside the horizon.
e For an horizonless object (quasi-BH or traversable wormhole) instead the wave can go through the center and
bounce again at the potential barrier with a part transmitted at infinity and one par reflected.
This generates “echoes”.

Key point: even for ultra compact objects the delay between such echoes is macroscopic
(logarithmic scaling).

Time delay for an object of compactness A = r/2M, — 1 s

rpeakz3M0 b |
Alecho = 2[ ~ 2M, [1 —2A — 21n(2A)] 0.06- ‘
rg=2My(1+A) 1 —2M,/r

0.04¢

1° echo 2° echo

* The amplitude of gravitational wave echoes would be 0.02| }
proportional to I

30M;)

0.00¢

w(r.

* A non-observation of echoes can only constrain this parameter. vonl

* A positive detection of echoes could be used in order to
determine also A.

-0.04+

0.0l S
0 50 100 150 200 250 300

* The other two parameters which are relevant for the process

are T+, which has to be greater than the characteristic time

scale of echoes (this would place a very uninteresting lower
bound on this quantity), and t. which has to be smaller . So far searches for quasi-periodic signals...



Echos and Non-linear back reaction

ic compact objects,"
14170 [gr-qc]].



Echos and Non-linear back reaction

t
NON-LINEAR INTERACTIONS BETWEEN THE GW AND THE CENTRAL OBJECT

* These are neglected in extant analyses. However, this appears to be inconsistent
* For quasi-BH even modest amounts of accretion will generate a trapped region

* The formation of a trapping horizon might be avoided by nonlinear interactions
Example: If vacuum polarisations supports a QUasi-BH in Boulware vacuum

oM\ ~°
RSB = Sl ==

so even tiny change 2M—r can generate huge back-reaction.
r

0 - r_s(1+4) o
V. Vellucci, E. Franzin and S. Liberati,

“Echoes from backreacting exotic compact objects,"
arXiv:2205.14170 [gr-qc]].



Echos and Non-linear back reaction

NON-LINEAR INTERACTIONS BETWEEN THE GW AND THE CENTRAL OBJECT

* These are neglected in extant analyses. However, this appears to be inconsistent
* For quasi-BH even modest amounts of accretion will generate a trapped region

* The formation of a trapping horizon might be avoided by nonlinear interactions

Example: If vacuum polarisations supports a QUasi-BH in Boulware vacuum

oM\ ~°

RSETx — | 1 —— so even tiny change 2M—r can generate huge back-reaction.

r

The more compact the central object is, the larger is the fraction of
the energy stored in the gravitational waves to be transferred
through nonlinear interactions. I.e. large absorption

k=1- Eout/Ein
A model-independent outcome of these interactions has to be the
expansion of the central object in order to avoid the formation of
trapping horizons.

For very compact objects, very small AM corresponds to large
variations in the compactness.

So, even for k ~ 0.01 % one get noticeable delays between echoes
given that the compactness of the object has to increase

=30My)

w(r,

0 r_s(1+4)

V. Vellucci, E. Franzin and S. Livberati,

“Echoes from backreacting exotic compact objects,"

arXiv:2205.14170 [gr-qc]].
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Toy modelling the back-reaction

1. The object varies its compactness up to a certain asymptotic limit (max compactness)
2. The object expands so to keep its initial compactness
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Toy modelling the back-reaction

1. The object varies its compactness up to a certain asymptotic limit (max compactness)
2. The object expands so to keep its initial compactness

Assume £,

Example case 1

k(A)=a| 1 —tanh P i T
A — APlanck § o




Echos and Non-linear back reaction

Toy modelling the back-reaction

1. The object varies its compactness up to a certain asymptotic limit (max compactness)
2. The object expands so to keep its initial compactness

o
Assume £ . |
Example case 1 ; ey
kK(A)=a| 1 —tanh o |
A — APlanck % o
o
Example case 2 A
. 0.06
Assume expansion law .
I’O(t -+ Af) I"O(t 1 0.04y — k=0.015%
YT e i
20M(t) + AE)  2M(¥) :
@ 0.00
E
-0.02¢
-0.04}
~0.06 50 100 150 200 250 300

t/Mn



Echos and Non-linear back reaction

Toy modelling the back-reaction

1. The object varies its compactness up to a certain asymptotic limit (max compactness)
2. The object expands so to keep its initial compactness

giii f

Assume £ . |

Example case 1 B e VA N 1
kK(A)=a| 1 —tanh o |

A — APlanc:k § o

.

Example case 2 e e e e

Assume expansion law
ro(f + Ar) r (¢ 004
== e Zﬁ&() -+_ 1‘ 0.02!

2(M(t) + AE) 2M(1)

0.00

30My)

Upshot:

w(r.

-0.02¢

Case 1: Lost of signal quasi-periodicity!
Case 2: At , & constant (but there might be a transient phase)
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Echos and Non-linear back reaction

Toy modelling the back-reaction

1. The object varies its compactness up to a certain asymptotic limit (max compactness)
2. The object expands so to keep its initial compactness

o L -
Assume £ .
Example case 1 ; o S N R R
kK(A)=a| 1 —tanh ; |
A — APlanc:k § o
gz::
Example case 2 A
Assume expansion law
ro(t + Atr) r (¢ o0
Sy (i
QM) + AE)  2M(D)
UpShOtI % 0.00
-0.02¢
Case 1: Lost of signal quasi-periodicity!
Case 2: At,,, & constant (but there might be a transient phase) 004
0.06

We need improved analyses and model sensitive searches! ~ ™™ = w e me m

t/Mn
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%* Basic arguments from Penrose singularity theorem show that regular spacetime
resolutions of singularities are divide in two families depending on the absence/presence

of a minimal radius (topology change)
2 For both these families there are related horizonfull and horizonless solutions.
% In any case: avoiding the central singularity appears to generically lead to long range
effects (in time or space).

% The resulting black hole mimickers are very hard to exclude with current observations

but they are not hopeless and better modelling plus multimessanger astrophysics will be
the key to this.

Hopefully, we might be at the dawn

of a new torm of QG

phenomenologyibasedionibEl
OPSEIVAHONS!




THANK YOU!

No amount of
experimentation can
ever prove me right; a
single experiment can

prove me wrong.
Albert Einstein




