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Outline

• Introduction on Gravitational lensing

• Lensing signals: methods and lens models

• Forecasts for gravitational wave (GW) detectors

• Applications to Dark Matter (DM) models

• Future directions: weak lensing

• Conclusions and outlooks
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Gravitational lensing

Lensing of EM waves
• Established probe at very
different scales

• Powerful insights on matter
distribution

Lensing of GWs can soon become
reality
• Sensitivity to 1/r instead of 1/r2

• No absorption: probe of dense
DM regions
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EM vs GW lensing signals

• Poor sky localization for GWs:
images are not spatially resolved

• However, we can measure time
delays and relative magnification
of the images

• GW sources: coherent emission.
Frequency-dependent effects
(wave-diffraction effects) from
the lens are detectable

[NASA - ESA - Hubble - S.H. Suyu et al.]

[B.P. Abbott et al., ’17]
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Lensing of GWs

• gµν = gFRW
µν + hµν , □hµν = 0

• Amplification factor:

F (w) ≡ hL(f)/h0(f)

=
w

2πi

∫
d2x eiwϕ(x,y)

DLS

DS

y

x

Lens

Observer

Source

DL

[Schneider, Gravitational Lenses ’92]

• x, y dimensionless distances in units of the Einstein’s radius
RE ∼

√
4GMLzDL

• Fermat potential: ϕ(x,y) ∝ time delay

ϕ(x,y) =
1

2
|x− y|2 − ψ(x)

• Lensing potential: ψ(x), sourced by the projected mass distribution

• Dimensionless frequency: w ≡ 8πGMLzf ≃ MLz
107 M⊙

· f
mHz

,
MLz ≡ redshifted lens mass

5



Lensing regimes
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• w ≪ 1: wave does not feel the lens F (w) ≃ 1 +Awα

• Intermediate regime w ∼ 1: no analytic expansion for F (w).

• Geometric optics (GO) w ≫ 1: stationary-phase approx. (lens equation)

∇xϕ(x,y) = x− y −∇xψ(x) = 0

solutions: images J with magnification µJ , time delay ϕJ , beyond GO correction
∆J and Morse phase nJ = 0, 1/2, 1

F (w) ≃
∑
J

|µJ |1/2
(
1 +

i∆J

w

)
eiwϕJ−iπnJ
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Computing F (w): contour method

• Standard numerical integration is troublesome: highly oscillatory
integral

• We implemented a “contour method”: [A. Ulmer, J. Goodman, ’94]

evaluate the time-domain signal I(τ), then use inverse Fourier
transform

I(τ) =
∫

dw e−iwτ F (w)

(−iw) =

∫
dw

2π

∫
d2x eiw(ϕ(x,y)−τ)

=

∫
d2x δ (ϕ(x,y)− τ) =

∑
k

∮
γk

ds

|∇ϕ(x(τ, s),y)|

• Reduced to a 1D integral over contours γk of constant ϕ(x,y) = τ .
The sum

∑
k is over stationary points (images), where the contours end.
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Computing F (w): contour method
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Computing F (w): complex-deformation method

Alternative method: exploit Cauchy’s theorem [J. Feldbrugge, U.-L. Pen, N. Turok, ‘19+]

• Simplified example: 1D integral

F (w) =

∫ +∞

−∞
dx g(x)eiwf(x)

• Idea: deform the integration contour into the
complex plane

• The flow equation evolves a point x ∈ R to
z(λ) ∈ C

d

dλ
z(λ) = i

∂f∗

∂z∗

• The flow select the optimal integration
contour

i
d

dλ
f = i

∂f

∂z

dz

dλ
= −

∣∣∣∣∂f∂z
∣∣∣∣2

• Elegant, but numerically slower that the
contour method
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Lens models and lensing features

• We focus on spherically-symmetric density profiles modelling DM halos

• DM halos roughly described by the Singular Isothermal Sphere (SIS)

ρ =
σ2
v

2πGr2
, ψ(x) = x

• We study deformations from the SIS, motivated by DM models.
Can we distinguish different lens features?

• The presence of a core modelled by the Cored Isothermal Sphere (CIS)

ρ = ρ0
r2c

r2 + r2c
, ψ(x) =

√
x2 + x2c + xc log

(
2xc

xc +
√
x2 + x2c

)
• Specific DM models (e.g. Fuzzy DM, Self-interacting DM) predict cores
[L. Hiu+, ’16; M. Kaplinghat, S. Tulin, H-B. Yu, ’15]
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Lens models and lensing features
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• SIS: two GO images in strong lensing (SL), one image in weak lensing
(WL). Center of the lens is cuspy

• CIS with core radius rc: three images in SL, one in WL
=⇒ New central image from the core
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Lens models and lensing features

Let us consider the GO regime first: F (w) is described by the images only

• Central image has a finite
minimum magnification
µH > µ0 = 4x2c/ (1− 2xc)

2

• Potential for GW observations:
for xc ̸= 0 an additional GW
signal can be detected

• Third image allows to extract info
about the core

• Time delays between images can
be of order of days ∆T ≃
(1 day)
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Lensing of GW: results and forecasts

• Lensing features are investigated
in current detectors

[L.Dai+, ’20; LIGO, Virgo, ’21]

• Previous analyses mostly focused
on singular lenses
[R. Takahashi+ ’03; P. Cremonese+, ’21; H. G. Choi+, ’21; ...]
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• We focus on distinguishing between different lens features:
cored vs. singular DM distribution
Evaluate sensitivities on lens parameters (core size xc for LISA)
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Probing rc with GWs
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• Third image appears in frequency domain as a modulation of the signal

• This feature is not present for SIS
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Probing rc with GWs

• Central image:
µH > µ0 = 4x2c/ (1− 2xc)

2

• Can be detected for large enough SNR

h̃L(f) = F (f)h̃0(f)

• More quantitative: mismatchM with
SIS lens

M ≡ 1−
(h1|h2)√

(h1|h1)(h2|h2)

• IfM > SNR2 , we expect to
distinguish the two signals

(h|g) ≡ 4 Re

∫ +∞

0

h̃(f)∗g̃(f)

Sn(f)
df
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Lensing of GW: addressing degeneracies

• We perform a Fisher matrix
forecast on source and lens
parameters for LISA

[M. Vallisneri, ’07]

θi = {DL, ϕ0, MLz , y, xc}
Fij ≡ (∂ihL|∂jhL), ∂i ≡ ∂/∂θi

σ2
i = (F−1)ii, marginalized posteriors

• GW sources with equal mass, non
spinning and fixed orientation,
using PhenomD waveforms

[S. Husa+, ’15, S. Khan, ’15]

• Focus on strong-lensing regime
(multiple images)

• Fiducial lens parameters:
MLz = 107M⊙ , y = 0.3, xc = 10−2
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Results and forecasts: dependence on source mass
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• HighMLz dominated by GO regime (results saturate). LowMLz gives no
lensing (lens parameters cannot be reconstructed)

• SNR typically peaked at the Innermost Stable Circular Orbit (ISCO), with
fISCO ∼ 1/MBBH

• Lighter BBH give better constraints at smallMLz : easier to have larger
w at ISCO
wISCO ∼MLz/MBBH
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Results and forecasts: dependence on y
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Larger y improves the constraints

• MLz is probed in GO through the time delays, that increase for large y

• xc: magnification of the third image increases with y
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Application: Ultra-light DM (preliminary)

• Forecast results on lens
parameters have implications for
constraints on DM models

• Models of Ultra-light DM predict
cores with a minimum size and
mass

r1/2 ≥ 0.33 kpc
109M⊙

Mc

(
10−22eV

mϕ

)2

Mmin
vir ≃ 1.5 · 107M⊙

(
10−22eV

mϕ

)3/2

[L. Hiu+, ’16]

• A non detection of core features
or of smallMLz would imply
bounds on DM mass, assuming
halos can be described by the CIS
lens

• xc ∼ 10−3

• RE ≃
√
GMLzdeff ≃ 1 kpc

for deff ∼ 1Gpc

• rc ≃ xcRE ∼ xc kpc
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Future directions: Weak Lensing regime

Weak lensing regime: large y and only one image
with S. Savastano, H. Villarrubia Rojo and M. Zumalacárregui

• Lensing effects decrease as ∼ 1/y

• Instead, the lensing probability
increases as p ∝ y2

• At intermediate w we have “remnant”
oscillations, associated to the
would-be images

• For y ≫ 1, we obtain

I(τ) ≃ θ(τ)

[
2π + 4

d

dτ

∫ π/2

0
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Conclusions and outlooks

• GW lensing is a very promising tool for DM characterization

• We implemented fast, accurate and flexible methods to evaluate
lensing signals in the WO regime

• Lensed LISA ans LIGO events could test DM-halos features, such as the
presence of cores

Future directions

• Investigation of the weak-lensing regime (single image): WO effects give
more information about the lens model

• Include more GW parameters (e.g. LIGO/LISA antenna pattern, spins
ecc..) to provide more robust lensing forecasts

• Study of more complicated lens models and configurations
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Lensing of GWs: definitions

• Amplification factor:

F (f) ≡ −if
deff

∫
d2ξ exp [2πif td(ξ,η)] , deff ≡ DLDLS

(1 + zL)DS
.

• Time delay:

td(ξ,η) =
1

2deff

∣∣∣∣ξ − DL

DS
η

∣∣∣∣2 − ψ̂(ξ) + ϕ̂m(η) .

• Lensing potential:
∇2

ξψ̂(ξ) = 8πGΣ(ξ) .

• Rescaling: make quantities dimensionless by rescaling by ξ0

ϕ(x,y) =
deff
ξ20

td(x,y) , ψ(x,y) =
(1 + zL)deff

ξ20
ψ̂(x,y) .

x ≡ ξ

ξ0
, y ≡ η

η0
.

• Dimensionless frequency:

w ≡ 8πGMLzf , MLz =
ξ20

2deff 22



Results and forecasts: correlations

• For highMLz , precision on lens
parameters saturates

• In this limit, we are sensitive to
linear combinations of the
parameters: their accuracy
increases and the parameters
become almost degenerate

• Precision could drastically
improve if some parameters are
independently measured (e.g. EM
counterparts)
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