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Gravitational lensing

Lensing of EM waves

- Established probe at very
different scales

- Powerful insights on matter
distribution

Lensing of GWs can soon become
reality

- Sensitivity to 1/r instead of 1/r?

- No absorption: probe of dense [ @

DM regions
A~ )

detector



EM vs GW lensing signals

- Poor sky localization for GWs:
images are not spatially resolved

- However, we can measure time
delays and relative magnification
of the images

- GW sources: coherent emission.
Frequency-dependent effects
(wave-diffraction effects) from
the lens are detectable

[NASA - ESA - Hubble - S.H. Suyu et al.]
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Lensing of GWs

* Guv = gw, + huy, Ohpy =0
- Amplification factor:

F(w) = h*(f)/h°(f)

_ ﬂ dQI‘ eiw¢(m,y)

2mi

[Schneider, Gravitational Lenses '92]
- x, y dimensionless distances in units of the Einstein’s radius

Rg ~ A4GMp.Dy,

- Fermat potential: ¢(x,y) « time delay
1
é(@.y) = eyl — v(a)
- Lensing potential: ¢ (x), sourced by the projected mass distribution

+ Dimensionless frequency: w = 87GMy.f = yorki=- i,
M. = redshifted lens mass




Lensing regimes

‘Wave Optics M. =3M; M. =3-10°M, M. =3-10°M,
+— Perturbative Geom. Optics —» -
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- w < 1. wave does not feel the lens F(w) ~ 1 + Aw®
no analytic expansion for F'(w).

- Geometric optics (GO) w >> 1: stationary-phase approx. (lens equation)
Vag(x,y) =z —y— Vaip(z) =0

solutions: images J with magnification u s, time delay ¢ s, beyond GO correction
Ay and Morse phaseny =0,1/2,1
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Computing F(w): contour method

- Standard numerical integration is troublesome: highly oscillatory

integral

- We implemented a “contour method™: [A. Ulmer, J. Goodman, '94]
evaluate the time-domain signal Z(r), then use inverse Fourier
transform

) - /ﬁ ; /Lw /
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- Reduced to a 1D integral over contours ;. of constant ¢(x,y) = 7.
The sum Y, is over stationary points (images), where the contours end.



Computing F(w): contour method
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Computing F(w): complex-deformation method

Alternative method: exploit Cauchy’s theorem [ Feldbrugge, U-L. Pen, N. Turok, ‘19+]

- Simplified example: 1D integral

e iwf () s
F(w) = dz g(z)e

—o00 2

- Idea: deform the integration contour into the
complex plane !

1 reC
. . —— integration path
- The flow equation evolves a point z € R to B AT 2 51 |
z(A\) eC Re
d of*
o) =i
dX oz* . . -
- The flow select the optimal integration z ;0
contour : o ;;
f— Of dz af oo
8z dx 0z 710
- Elegant, but numerically slower that the 72'””0 P e e

contour method 5 (affine parameter)



Lens models and lensing features

- We focus on spherically-symmetric density profiles modelling DM halos

- DM halos roughly described by the Singular Isothermal Sphere (SIS)
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- We study deformations from the SIS, motivated by DM models.
Can we distinguish different lens features?

- The presence of a core modelled by the Cored Isothermal Sphere (CIS)
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- Specific DM models (e.g. Fuzzy DM, Self-interacting DM) predict cores
[L. Hiu+, "16; M. Kaplinghat, S. Tulin, H-B. Yu, '15]



Lens models and lensing features

matter density p(r) lensing potential ¢(x) lens equation y(z)
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- SIS: two GO images in strong lensing (SL), one image in weak lensing
(WL). Center of the lens is cuspy

- CIS with core radius r.: three images in SL, one in WL
= New central image from the core



Lens models and lensing features

Let us consider the GO regime first: F(w) is described by the images only
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- Central image has a finite
minimum magnification

WH > o = 122/ (1 — 2z.)
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- Potential for GW observations:
for z. # 0 an additional GW
signal can be detected

(GW magnification)
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- Third image allows to extract info
about the core w

- Time delays between images can
be of order of days AT ~
(1day) (Myir/101 M) *® Ag
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Lensing of GW: results and forecasts

- Lensing features are investigated
in current detectors

[L.Dai+, '20; LIGO, Virgo, '21]

- Previous analyses mostly focused
on singular lenses

[R. Takahashi+ '03; P. Cremonese+, '21; H. G. Choi+, '21; ...]
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- We focus on distinguishing between different lens features:

cored vs. singular DM distribution

Evaluate sensitivities on lens parameters (core size x. for LISA)



Probing r. with GWs
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- Third image appears in frequency domain as a modulation of the signal

- This feature is not present for SIS



Probing r. with GWs

- Central image:
pr > po = 4a?/ (1 — 2xc)?

Can be detected for large enough SNR
hi(f) = F(f)ho(f)

- More quantitative: mismatch M with
SIS lens
(h1]h2)

M=1— —— =
(h1|h1)(h2|h2)

-+ If M > SNR2, we expect to
distinguish the two signals
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Lensing of GW: addressing degeneracies

- We perform a Fisher matrix
forecast on source and lens 10

parameters for LISA 0
[M. Vallisneri, '07]
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- Focus on strong-lensing regime "

(multiple images) w

- Fiducial lens parameters: ‘ Vi 001
My, =107 Mg,y = 0.3, 2. = 1072




Results and forecasts: dependence on source mass
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- High M. dominated by GO regime (results saturate). Low My . gives no

lensing (lens parameters cannot be reconstructed)

- SNR typically peaked at the Innermost Stable Circular Orbit (ISCO), with

fisco ~ 1/MgBu

- Lighter BBH give better constraints at small My,.: easier to have larger

w at ISCO
wisco ~ Mr./Mssu



Results and forecasts: dependence on y
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Larger y improves the constraints

- My, is probed in GO through the time delays, that increase for large y

- z.: magnification of the third image increases with y



Application: Ultra-light DM (preliminary)

- Forecast results on lens
parameters have implications for
constraints on DM models

- Models of Ultra-light DM predict
cores with a minimum size and
mass

r1/2 = 0.33kpc

c me

i 10722 \V4 3/2
M™in &~ 15107 Mg (76)
me

[L. Hiu+, "16]

- A non detection of core features
or of small My, would imply
bounds on DM mass, assuming
halos can be described by the CIS
lens
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Future directions: Weak Lensing regime

Weak lensing regime: large y and only one image
with S. Savastano, H. Villarrubia Rojo and M. Zumalacarregui

CIS . =0.05

- Lensing effects decrease as ~ 1/y

- Instead, the lensing probability
increases as p « y>2

- At intermediate w we have “remnant”
oscillations, associated to the
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Conclusions and outlooks

- GW lensing is a very promising tool for DM characterization

- We implemented fast, accurate and flexible methods to evaluate
lensing signals in the WO regime

- Lensed LISA ans LIGO events could test DM-halos features, such as the
presence of cores

Future directions

- Investigation of the weak-lensing regime (single image): WO effects give
more information about the lens model

- Include more GW parameters (e.g. LIGO/LISA antenna pattern, spins
ecc..) to provide more robust lensing forecasts

- Study of more complicated lens models and configurations

21
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Lensing of GWs: definitions

- Amplification factor:

B zf ) _ DrDrs
F(f)= d*Eexp [2mif ta(€,m)] , dest = (14 2.)Ds
- Time delay:
2
ta(§,m) ‘Ef FEn| = (&) + dm(n).

- Lensing potential:

Ve (€) = 8nGE(E) .

- Rescaling: make quantities dimensionless by rescaling by &

1+ degt »
b@y) = Stalw,y),  lay) = D y)
£o €0
)
_5 Y= .
- Dimensionless frequency:
2
’wESﬂGMLZf, MLz = 0

2dcﬁ

22



Results and forecasts: correlations

Mgpu = 10° Mg, SNR = 10°
- For high M., precision on lens o

03010 108

parameters saturates - 10’

0.3005 -0

= 0.3000

- In this limit, we are sensitive to
linear combinations of the
parameters: their accuracy
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increases and the parameters
become almost degenerate
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- Precision could drastically ooms
improve if some parameters are
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