Testing the No-Hair & Area Theorems with LIGO

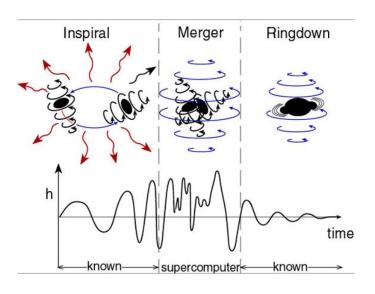
Saul Teukolsky Cornell University & Caltech Copernicus Colloquium, Sept. 15, 2022

Collaborators

- Matt Giesler (Caltech)
- Max Isi (MIT)
- Mark Scheel (Caltech)
- Will Farr (CCA/Stony Brook)

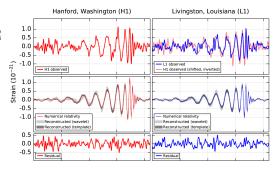
arXiv:1903.08284, 1905.00869, 2012.04486

Waves from Binary Black Holes



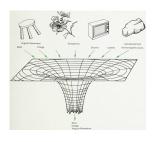
GW150914: GR Is Pretty Good!

- No PN inspiral all NR (or models)
- Residuals ~ noise. GR violations < 4%
- Consistency:
 - Inspiral $\rightarrow M_1, M_2, S_1, S_2$
 - NR $\rightarrow M_f$, S_f
 - Ringdown: 1 QNM $\rightarrow M_f$, S_f



Quasi-normal modes: No Hair?

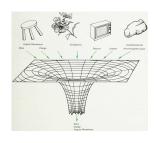
- Stationary BH described only by *M* and *J* (Kerr)
- "A black hole has no hair"
- Not necessarily true in alternative theories



(Ruffini & Wheeler 1971)

Quasi-normal modes: No Hair?

- Stationary BH described only by *M* and *J* (Kerr)
- "A black hole has no hair"
- Not necessarily true in alternative theories



(Ruffini & Wheeler 1971)

- Measure 2 least-damped QNMs
- Check M, J from ω and τ
- Low SNR: next-gen LIGO, LISA

Dreyer et al (2004)

Kerr Perturbations

$$\Psi_4 = \int d\omega \, e^{-i\omega t} \sum_{lm} e^{im\phi} S_{lm}(\theta, a\omega) R_{lm}(r, \omega)$$

$$\frac{d^2 R}{dr_*^2} + \left[\omega^2 - V(r)\right] R = 0 \qquad (a = 0)$$

$$\Psi_4 \sim \frac{d^2 h}{dt^2}$$

Late times:
$$h \sim \sum C_{lmn} e^{-i\omega_{lmn}(t-r_*)} S_{lm}(\theta, a\omega_{lmn})$$

Modes:
$$h_{lm} = \sum_{n=0}^{\infty} C_{lmn} e^{-i\omega_{lmn}t}$$
 $(Y_{lm} \text{ vs. } S_{lm})$

Overtones

Modes:
$$h_{lm} = \sum_{n=0}^{\infty} C_{lmn} e^{-i\omega_{lmn}t}$$

$$\omega = \omega_{\rm r} + i\omega_{\rm i} = \omega_{\rm r} - i/\tau$$
$$h \sim \cos(\omega_{\rm r} t) e^{-(t/\tau)}$$

- \bullet n =overtone index
- No-hair: $\omega_{lmn} = \omega_{lmn}(M_f, a_f)$
- n sorts by decreasing damping times
- Increasing $n \rightarrow lower frequency$
- overtones often ignored ("subdominant")

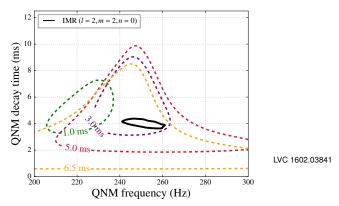
- Buoannano, Cook, Pretorius (2007): equal mass BBH
 - (2,2,0) + 3 overtones good even before peak of Ψ_4
 - $t(\Psi_{4,\text{peak}}) \sim t(h_{\text{peak}}) + 10M$

- Buoannano, Cook, Pretorius (2007): equal mass BBH
 - (2,2,0) + 3 overtones good even before peak of Ψ_{4}
 - $t(\Psi_{4,\text{peak}}) \sim t(h_{\text{peak}}) + 10M$
- EOB ringdown modeled with QNMs including overtones

- Buoannano, Cook, Pretorius (2007): equal mass BBH
 - (2,2,0) + 3 overtones good even before peak of $\Psi_{\rm 4}$
 - $t(\Psi_{4,\mathrm{peak}}) \sim t(h_{\mathrm{peak}}) + 10M$
- EOB ringdown modeled with QNMs including overtones
- Matching to inspiral-merger: sometimes pseudo-QNMs

- - (2,2,0) + 3 overtones good even before peak of Ψ_4 $t(\Psi_{4 \text{ peak}}) \sim t(h_{\text{peak}}) + 10M$
- EOB ringdown modeled with QNMs including overtones
- Matching to inspiral-merger: sometimes pseudo-QNMs
- Community: QNMs good for modeling, but h still non-linear at t_{peak}

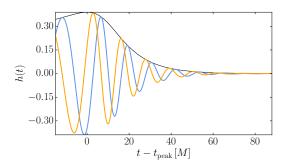
Observing the Ringdown



- $\bullet \ \mathsf{IMR} \colon \ \mathsf{NR} \quad \to \quad (M_f,\chi_f) \quad \to \quad \omega_{220}$
- Single damped sinusoid model
- Sensitive to start time
- Discrepancy: non-linearities?
- When does ringdown start?

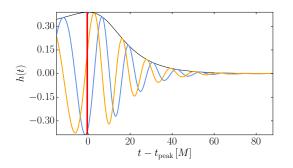
Ringdown Start Time

At what point do QNMs provide the correct description?



Ringdown Start Time

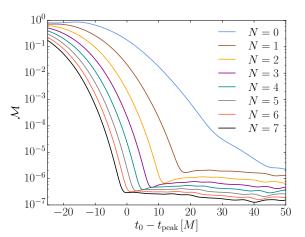
At what point do QNMs provide the correct description?



At t_{peak} (or even before) by including overtones!

$$h_{22} = \sum_{n=0}^{N} C_{22n} e^{-i\omega_{22n}(t-t_0)}$$

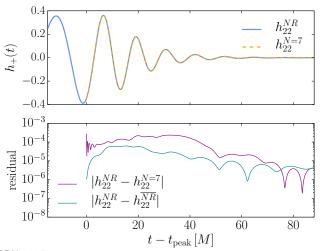
Least-squares $\rightarrow C_{22n}$, $(M_f^{NR}, a_f^{NR}) \rightarrow \omega_{22n}$



$$\mathcal{M} = 1 - \frac{\langle h_{22}^{\text{NR}}, h_{22}^{N} \rangle}{\sqrt{\langle h_{22}^{\text{NR}}, h_{22}^{N} \rangle \langle h_{22}^{N}, h_{22}^{N} \rangle}} \qquad \langle x(t), y(t) \rangle = \int_{t_0}^{T} x(t) \overline{y(t)} \, dt$$

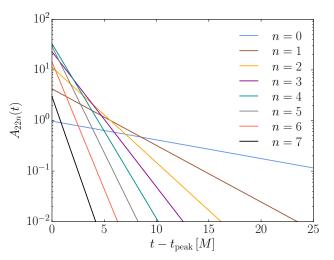
Non-Linearities are Small!

Overtones \rightarrow linear description



 $h_{22}^{NR} = SXS:BBH:0305$

Overtone Decomposition



- Fundamental not dominant until $\sim 10M$ (GW150914: ~ 3 ms)
- Early part dominated by overtones, not non-linearities!

Damped sinusoids are overcomplete

- Damped sinusoids are overcomplete
- Completeness = red herring!

- Damped sinusoids are overcomplete
- Completeness = red herring!
 - QNMs \rightarrow an asymptotic expansion ("Any" wave eqn)

- Damped sinusoids are overcomplete
- Completeness = red herring!
 - QNMs \rightarrow an asymptotic expansion ("Any" wave eqn)
- Fitting \neq expansion in c.o.s.

- Damped sinusoids are overcomplete
- Completeness = red herring!
 - QNMs → an asymptotic expansion ("Any" wave eqn)
- Fitting \neq expansion in c.o.s.
- Instability of QNMs? (Pseudospectra ...)

- Damped sinusoids are overcomplete
- Completeness = red herring!
 - QNMs → an asymptotic expansion ("Any" wave eqn)
- Fitting \neq expansion in c.o.s.
- Instability of QNMs? (Pseudospectra . . .)
 - arXiv:2111.05415 ("Elephant and Flea")

- Damped sinusoids are overcomplete
- Completeness = red herring!
 - QNMs \rightarrow an asymptotic expansion ("Any" wave eqn)
- Fitting \neq expansion in c.o.s.
- Instability of QNMs? (Pseudospectra . . .)
 - arXiv:2111.05415 ("Elephant and Flea")
- Math is an experimental science!

- Damped sinusoids are overcomplete
- Completeness = red herring!
 - QNMs \rightarrow an asymptotic expansion ("Any" wave eqn)
- Fitting \neq expansion in c.o.s.
- Instability of QNMs? (Pseudospectra ...)
 - arXiv:2111.05415 ("Elephant and Flea")
 - Observationally irrelevant (arXiv:2205.08547)
- Math is an experimental science!

Consider *small* deviations from true (ω, τ) :

$$\widetilde{\omega}_{22n}(M_f, \chi_f) = \widetilde{\omega}_{22n}(M_f, \chi_f)(1+\delta), \quad n > 0$$

$$10^{-1}$$

$$\omega_{22n}(M_f, \chi_f)$$

$$\widetilde{\omega}_{22n}(M_f, \chi_f, \delta = 0.01)$$

$$\widetilde{\omega}_{22n}(M_f, \chi_f, \delta = 0.05)$$

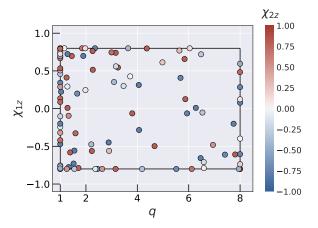
$$\widetilde{\omega}_{22n}(M_f, \chi_f, \delta = 0.20)$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7$$

$$\kappa^2 = (\delta M_f/M_f)^2 + (\delta \chi_f/\chi_f)^2$$

Robustness

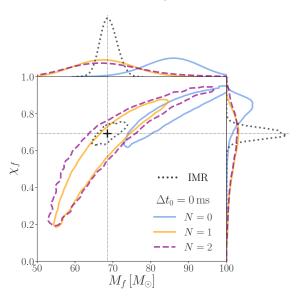
Tested on 80 waveforms:



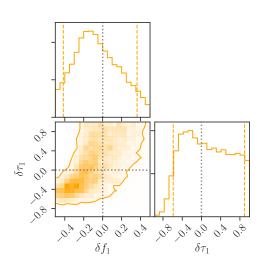
Recovered (M, χ) : median $\epsilon \sim 10^{-3}$

Real Data: GW150914

Mass and spin with QNMs at $t = t_{peak}$:

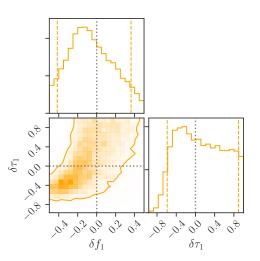


Testing the No-Hair Theorem with GW150914



- $f_{221}(M_f, \chi_f)(1 + \delta f_1)$ $\tau_{221}(M_f, \chi_f)(1 + \delta \tau_1)$
- $\delta f_1 = 0$ to 20% $(\delta \tau_1 \text{ to 100\%})$
- Bayes factor for no-hair vs. floating $(f, \tau) = 1.75$
 - SNR ≈ 24 ≈ 14 in ringdown ≈ 8 in LSC analysis

Testing the No-Hair Theorem with GW150914



- $f_{221}(M_f, \chi_f)(1 + \delta f_1)$ $\tau_{221}(M_f, \chi_f)(1 + \delta \tau_1)$
- $\delta f_1 = 0$ to 20% ($\delta \tau_1$ to 100%)
- Bayes factor for no-hair vs. floating $(f, \tau) = 1.75$
 - SNR ≈ 24 ≈ 14 in ringdown ≈ 8 in LSC analysis

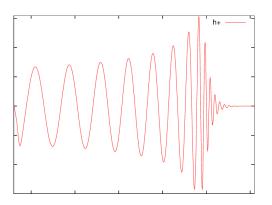
The Area Theorem

Total horizon area of BHs cannot decrease

$$A = 8\pi M^2 (1 + \sqrt{1 - \chi^2}), \qquad \chi = J/M^2$$

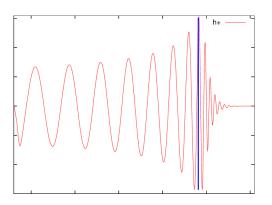
- Get M's and χ 's for initial and final BHs: Split h at t_{peak} Analyze inspiral and ringdown separately
- Premerger: Use NRSur7dq4 templates (PN as $t \to -\infty$) Postmerger: Fit overtone model

Trickiness



- P.E.: Match computed in freq space
- ullet Gibbs o taper in t, then use f o mixing or loss of SN
- Compute in t-domain!
 - Covariance = Toeplitz matrix, $O(N^2)$ inversion

Trickiness

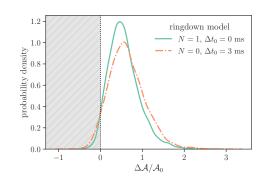


- P.E.: Match computed in freq space
- ullet Gibbs o taper in t, then use f o mixing or loss of SN
- Compute in t-domain!
 - Covariance = Toeplitz matrix, $O(N^2)$ inversion

Results for GW150914

• Exclude $\Delta A < 0$ with 97% prob (N = 1) 95% prob (N = 0)

• Area th OK to $\gtrsim 2\sigma$



- Ringdown begins at peak strain (maybe earlier)
- Overtones dominate early ringdown
- Non-linearities in the ringdown surprisingly small

- Ringdown begins at peak strain (maybe earlier)
- Overtones dominate early ringdown

are seeminglyNon-linearities in the ringdown surprisingly small

- Ringdown begins at peak strain (maybe earlier)
- Overtones dominate early ringdown

- are seeminglyNon-linearities in the ringdown surprisingly small
- Overtones enable a first test of the no-hair theorem

- Ringdown begins at peak strain (maybe earlier)
- Overtones dominate early ringdown

- are seeminglyNon-linearities in the ringdown surprisingly small
- Overtones enable a first test of the no-hair theorem
- Similarly, first test of area theorem