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Waves from Binary Black Holes
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GW150914: GR Is Pretty Good!

@ No PN inspiral - all NR
(Or mOdels) Hanford, Washington (H1) Livingston, Louisiana (L1)

@ Residuals ~ noise. GR o5/ T , ]
violations < 4% sl i ' i

@ Consistency:

Strain (1072%)
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Quasi-normal modes: No Hair?

@ Stationary BH described only by
M and J (Kerr)

@ “A black hole has no hair”

@ Not necessarily true in alternative
theories

(Ruffini & Wheeler 1971)
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@ Stationary BH described only by
M and J (Kerr)

@ “A black hole has no hair”

@ Not necessarily true in alternative
theories

(Ruffini & Wheeler 1971)

@ Measure 2 least-damped QNMs
@ Check M, J fromw and t
@ Low SNR: next-gen LIGO, LISA

Dreyer et al (2004)




Kerr Perturbations
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Overtones

o0
Modes:  fym =Y Cpmae !
n=0

w=w+iw=w—i/T

h ~ cos(wt)e™ ¢/

@ n = overtone index

@ No-hair: wimn = Oimn(My,ay)

@ n sorts by decreasing damping times

@ Increasingn — lower frequency

@ overtones often ignored (“subdominant”)



Ringdown Waveform Modeling

@ Buoannano, Cook, Pretorius (2007): equal mass BBH
- (2,2,0) + 3 overtones good even before peak of W,
- t(\Il4,peak) ~ t(hpeak) +10M
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Ringdown Waveform Modeling

@ Buoannano, Cook, Pretorius (2007): equal mass BBH
- (2,2,0) + 3 overtones good even before peak of W,
= 1(Wa peak) ~ (pea) + 10M
@ EOB ringdown modeled with QNMs including overtones
@ Matching to inspiral-merger: sometimes pseudo-QNMs

@ Community: QNMs good for modeling, but # still
non-linear at #,c.x



Observing the Rlngdown
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@ IMR: NR —

QNM frequency (Hz)

(Mg, xr) — w220

@ Single damped sinusoid model
@ Sensitive to start time

@ Discrepancy: non-linearities?
@ When does ringdown start?
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LVC 1602.03841



Ringdown Start Time

At what point do QNMs provide the correct description?
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Ringdown Start Time

At what point do QNMs provide the correct description?
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At tyeak (Or even before) by including overtones!

(Giesler, Isi, Scheel, Teukolsky 2020)
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Least-squares — Caon, (M}F.a}7) — won

100

|
Zmmmm

1071F

10724

Il
O U LN O

=20 —10 0 10 20 30 40 &0
tO - tp(:ak [M]

T

<xaxya»==L x(Oy @) dt

0

(55, h95)

M=1-
VOS5 SE) (12, D)




Non-Linearities are Small!

Overtones — linear description
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h{R = SXS:BBH:0305



Overtone Decomposition
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@ Fundamental not dominant until ~ 10M (GW150914: ~ 3ms)
@ Early part dominated by overtones, not non-linearities!
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Damped sinusoids are overcomplete
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Are We Just Overfitting?

Damped sinusoids are overcomplete
Completeness = red herring!
- QNMs — an asymptotic expansion (“Any” wave eqn)
Fitting # expansion in c.o.s.
Instability of QNMs? (Pseudospectra . ..)

- arXiv:i2111.05415 (“Elephant and Flea”)
- Observationally irrelevant (arXiv:2205.08547)

@ Math is an experimental science!

® ©



Consider small deviations from true (w, 7):

Woon(My, xr) = Waon(My, xr)(14+68), n>0
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Robustness

Tested on 80 waveforms:
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Recovered (M, x): median € ~ 1073



Real Data: GW150914

Mass and spin with QNMs at # = fpeax:
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Testing the No-Hair Theorem with GW150914
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@ Bayes factor for no-hair vs.
floating (f,t) = 1.75

® SNR ~ 24
~ 14 in ringdown
~ 8 in LSC analysis



Testing the No-Hair Theorem with GW150914

@ fo21(My, xr)(1 +6f1)
t221(My, x7)(1 + 871)

@ §f1 =010 20%
] (871 to 100%)

: @ Bayes factor for no-hair vs.
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Cotesta et al arXiv:2201.00822 is wrong (Isi & Farr, Finch & Moore arXiv:2205.07809)



The Area Theorem

@ Total horizon area of BHs cannot decrease

A=8rM?*(1+ /1 - y2), x=J/M?

@ Get M’s and y’s for initial and final BHs:
Analyze inspiral and ringdown separately

@ Premerger: Use NRSur7dq4 templates (PN as t — —o0)
Postmerger: Fit overtone model



Trickiness

@ P.E.: Match computed in freq space
@ Gibbs — taperint,thenuse f — mixing or loss of SN

@ Compute in r-domain!
- Covariance = Toeplitz matrix, @ (N ?) inversion
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Results for GW150914

@ Exclude AA < 0 with

97% prob (N =1)
95% prob (N = 0)

@ Areath OKto = 20
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Summary

@ Ringdown begins at peak strain (maybe earlier)

@ Overtones dominate early ringdown

. o . are seemingly
@ Non-linearities in the ringdown surprisingly small

@ Overtones enable a first test of the no-hair theorem
@ Similarly, first test of area theorem





