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Highlights of era of precision cosmology 

•Determined the basic cosmological model (including measuring the 
age and composition of the Universe).

•Found strong evidence for the quantum origin of cosmic structure. 

•Measurements of cosmic microwave background (CMB) 
and supernovae Ia form cornerstones of this achievement.

•Now + future: progress will come through multiple 
complementary probes. 

•Major theoretical questions remain unanswered.



What is Dark Matter? Dark Energy?

5%

27%

68%

Dark Matter
(suspected since 1930s

known since 1970s)

Dark Energy
(suspected since 1980s

known since 1998)

Also: 
radiation (0.01%)

Visible Matter
(stars 1%,  gas 4%)
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Motivation II: small scale clustering
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21cm?

Lyman-α forest offers a 
unique window to study 

small scale clustering

Combined with CMB, it 
allows us to study:

• dark matter properties
• neutrino mass
• shape of primordial P(k)

Lyman-α Forest

Electromagnetic cosmological probes in the next decade

Cosmic Microwave Background 

Large Scale Structure 

Figure: Andreu Font-Ribera



Rubin’s Legacy Survey of Space and Time (LSST) 

• Wide (half-sky), deep (24-27 mag), fast (every ~3 days) images
• Beginning in 2024, LSST will survey the Southern sky for 10 years
• Expand space-time volume 1000 times over current surveys



LSST: survey of 18,000 sq deg 
(half the sky)

37 billion objects in space and time
30 trillion measurements

60 PB raw data (20 TB/night)

Dark matter-Dark energy Solar system inventory

“Movie of the Universe” Mapping the Milky Way

Slide adapted from Ian Shipsey
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How should we compare

Theory Data?

vs



Cosmological interpretation increasingly reliant 
on evaluating computationally-costly, non-linear 
models with many parameters.



How do we address this challenge? 
Can machine learning play a role?



Desiderata for solving cosmological modelling 
challenges with machine learning

(i) interpretability: account for why ML system reaches particular decision or prediction; 
  
(ii) explainability: map this account onto existing knowledge in relevant science domain.

•Currently challenging because of  “black box” nature of powerful ML architectures. 
6 Lukić et al.

Figure 2. A slice of the baryon density, temperature, H I number density,
and flux from the L20 N2048 simulation at z = 2.5. The slice covers the
domain of 20 x 20 h�1Mpc, with a thickness of about 100 h�1kpc (10 cells).
Note that the F line of sight is the y-axis direction, so that broadened lines
show up as vertical black streaks.

2.2 Included Physics

Besides solving for gravity and the Euler equations, we model the
chemistry of the gas as having a primordial composition with hy-
drogen and helium mass abundances of X = 0.75, and Y = 0.25,
respectively. The choice of values is in agreement with the recent
CMB observations and Big Bang nucleosynthesis (Coc, Uzan &
Vangioni 2013). The resulting reaction network includes 6 atomic
species: H I, H II, He I, He II, He III and e�, which we evolve under
the assumption of ionization equilibrium. The resulting system of
algebraic equations is:
�
Ge,H Ine +Gg,H I

�
nH I = ar,H IInenH II

�
Ge,He Ine +Gg,He I

�
nHe I =

�
ar,He II +ad,He II
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nHe I

(5)

in addition, there are three closure equations for the conservation
of charge and hydrogen and helium abundances. Radiative recom-
bination (ar,X), dielectronic recombination (ad,X), and collisional
ionization (Ge,X) rates are strongly dependent on the temperature,
which itself depends on the ionization state through the mean mass
per particle µ

T =
2
3

mp

kB
µ eint (6)

where mp is the mass of a proton, kB is the Boltzmann con-
stant, and eint is the internal thermal energy per mass of the gas.
Here we assume adiabatic index for monoatomic ideal gas. For

a gas composed of only hydrogen and helium, µ is related to
the number density of free electrons relative to hydrogen by µ =
1/ [1� (3/4)Y +(1�Y )ne/nH]. We iteratively solve the reaction
network equations together with the ideal gas equation of state,
p = 2/3reint, to determine the temperature and equilibrium dis-
tribution of species.

We compute radiative cooling as in Katz, Weinberg & Hern-
quist (1996), and assume a spatially uniform, but time-varying ul-
traviolet background (UVB) radiation field from either Faucher-
Giguère et al. (2009) or Haardt & Madau (2012). We do not follow
radiation transport through the box, nor do we explicitly account
for the effects of thermal feedback of stars, quasars, or active galac-
tic nuclei; all cells are assumed to be optically thin, and radiative
feedback is accounted for via the UVB model. In addition, we in-
clude inverse Compton cooling off the microwave background. For
the exact rates used in the Nyx code and comparison of two UV
backgrounds we refer the reader to Appendix A.

2.3 Simulated Spectra

The optical depth t for Lya photon scattering is

tn =
Z

nXsn dr (7)

where n is the frequency, nX is the number density of species X,
sn is the cross section of the interaction, and dr is the proper path
length element. For our current work, we assume a Doppler line
profile, so the resulting optical depth is

tn =
pe2

mec
f12

Z nX
DnD

exp

�
⇣

n�n0
DnD

⌘2
�

p
p

dr, (8)

where DnD = (b/c)n0 is the Doppler width with the Doppler pa-
rameter b = bthermal =

p
2kBT/mH, and f12 is the upward oscilla-

tor strength of the Lya resonance transition of frequency n0. See
Appendix B for a more detailed discussion of our optical depth cal-
culation, including the discretization of Equation (8).

We choose sightlines, or “skewers”, crossing the domain par-
allel to one of the axes of the simulation grid and piercing the cell
centers. Computationally, this is the most efficient approach. This
choice of rays avoids explicit ray-casting and any interpolation of
the cell-centered data, which introduce other numerical and peri-
odicity issues. We cover the entire N3 grid with skewers, which
provides the equivalent of N2 spectra. Although large-scale modes
along different spatial dimensions are statistically independent al-
lowing some gain in statistics from multiple viewing directions, in
this work we use a single line-of-sight axis rather than combining
together skewers using all 3 axes. The process of going from simu-
lated baryon values to flux F is illustrated in Figure 1.

3 PHYSICAL PROPERTIES OF THE LYa FOREST

Zhang et al. (1998) discuss the physical properties of the Lya forest
in hierarchical models such as CDM. The discussion in this section
can largely be considered as an update of that work.

As described above, the state of the IGM is relatively sim-
ple with a few power laws approximately tying together the spatial
distribution of baryon density, temperature, proper H I number den-
sity, and optical depth to H I Lya photon scattering. Figure 2 shows
a slice of these quantities in one of our high-resolution simulations,
except with the optical depth replaced by the transmitted flux. We

c� 2014 RAS, MNRAS 000, 1–28

1. ML-accelerated emulation 
of observations

2. high dimensional  
cosmological inference with  

ML-accelerated parts

3. AI-enabled knowledge extraction 
about cosmological structure formation



Efficient emulation of cosmological simulations

Keir Rogers
(Dunlap/Toronto)

Cora Dvorkin
(Harvard)

With: Andrew Pontzen, Simeon Bird, Andreu Font-Ribera, Licia Verde



What does the dark matter consist of?



Constraining dark matter with cosmology
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Motivation II: small scale clustering
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21cm?

Lyman-α forest offers a 
unique window to study 

small scale clustering

Combined with CMB, it 
allows us to study:

• dark matter properties
• neutrino mass
• shape of primordial P(k)

Lyman-α Forest

Figure: Andreu Font-Ribera
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Lyman-alpha forest flux:  
biased, redshift-space distorted tracer of cosmic density field

Figure: Lukić et al. (2015)

6 Lukić et al.

Figure 2. A slice of the baryon density, temperature, H I number density,
and flux from the L20 N2048 simulation at z = 2.5. The slice covers the
domain of 20 x 20 h�1Mpc, with a thickness of about 100 h�1kpc (10 cells).
Note that the F line of sight is the y-axis direction, so that broadened lines
show up as vertical black streaks.

2.2 Included Physics

Besides solving for gravity and the Euler equations, we model the
chemistry of the gas as having a primordial composition with hy-
drogen and helium mass abundances of X = 0.75, and Y = 0.25,
respectively. The choice of values is in agreement with the recent
CMB observations and Big Bang nucleosynthesis (Coc, Uzan &
Vangioni 2013). The resulting reaction network includes 6 atomic
species: H I, H II, He I, He II, He III and e�, which we evolve under
the assumption of ionization equilibrium. The resulting system of
algebraic equations is:
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in addition, there are three closure equations for the conservation
of charge and hydrogen and helium abundances. Radiative recom-
bination (ar,X), dielectronic recombination (ad,X), and collisional
ionization (Ge,X) rates are strongly dependent on the temperature,
which itself depends on the ionization state through the mean mass
per particle µ

T =
2
3

mp

kB
µ eint (6)

where mp is the mass of a proton, kB is the Boltzmann con-
stant, and eint is the internal thermal energy per mass of the gas.
Here we assume adiabatic index for monoatomic ideal gas. For

a gas composed of only hydrogen and helium, µ is related to
the number density of free electrons relative to hydrogen by µ =
1/ [1� (3/4)Y +(1�Y )ne/nH]. We iteratively solve the reaction
network equations together with the ideal gas equation of state,
p = 2/3reint, to determine the temperature and equilibrium dis-
tribution of species.

We compute radiative cooling as in Katz, Weinberg & Hern-
quist (1996), and assume a spatially uniform, but time-varying ul-
traviolet background (UVB) radiation field from either Faucher-
Giguère et al. (2009) or Haardt & Madau (2012). We do not follow
radiation transport through the box, nor do we explicitly account
for the effects of thermal feedback of stars, quasars, or active galac-
tic nuclei; all cells are assumed to be optically thin, and radiative
feedback is accounted for via the UVB model. In addition, we in-
clude inverse Compton cooling off the microwave background. For
the exact rates used in the Nyx code and comparison of two UV
backgrounds we refer the reader to Appendix A.

2.3 Simulated Spectra

The optical depth t for Lya photon scattering is

tn =
Z

nXsn dr (7)

where n is the frequency, nX is the number density of species X,
sn is the cross section of the interaction, and dr is the proper path
length element. For our current work, we assume a Doppler line
profile, so the resulting optical depth is
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where DnD = (b/c)n0 is the Doppler width with the Doppler pa-
rameter b = bthermal =

p
2kBT/mH, and f12 is the upward oscilla-

tor strength of the Lya resonance transition of frequency n0. See
Appendix B for a more detailed discussion of our optical depth cal-
culation, including the discretization of Equation (8).

We choose sightlines, or “skewers”, crossing the domain par-
allel to one of the axes of the simulation grid and piercing the cell
centers. Computationally, this is the most efficient approach. This
choice of rays avoids explicit ray-casting and any interpolation of
the cell-centered data, which introduce other numerical and peri-
odicity issues. We cover the entire N3 grid with skewers, which
provides the equivalent of N2 spectra. Although large-scale modes
along different spatial dimensions are statistically independent al-
lowing some gain in statistics from multiple viewing directions, in
this work we use a single line-of-sight axis rather than combining
together skewers using all 3 axes. The process of going from simu-
lated baryon values to flux F is illustrated in Figure 1.

3 PHYSICAL PROPERTIES OF THE LYa FOREST

Zhang et al. (1998) discuss the physical properties of the Lya forest
in hierarchical models such as CDM. The discussion in this section
can largely be considered as an update of that work.

As described above, the state of the IGM is relatively sim-
ple with a few power laws approximately tying together the spatial
distribution of baryon density, temperature, proper H I number den-
sity, and optical depth to H I Lya photon scattering. Figure 2 shows
a slice of these quantities in one of our high-resolution simulations,
except with the optical depth replaced by the transmitted flux. We
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Accurate modelling requires intensive simulations:  
~3000 CPU-hrs per parameter combination in 12-D parameter space



Gaussian process for emulating 
high-dimensional models

• Smooth interpolation scheme that gives tight constraints where there 
are training points and broad constraints where there are none 

f(x) ⇠ N (0,K(x,x0; ✓))
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Simulation output

Simulation parameters
Kernel hyperparameters 

(covariance model)

Figure: Leclercq (2018)
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Key idea: active learning via Bayesian optimisation

ROGERS & PEIRIS (PRL, PRD, 2021A,B), ROGERS, PEIRIS, PONTZEN, BIRD, VERDE & FONT-RIBERA (JCAP, 2019),  LECLERCQ (PRD, 2018)



“Canonical” 10-22 - 10-21 eV ULA dark matter strongly disfavoured

°22 °21 °20 °19 °18

CMB/
reionisation

-22

BHSR

-18

Sub-halos

-20.7

Ly-Æf (previous work)

-20.7

Ly-Æf (this work)

-19.6

Axion dark matter mass [log(eV)]

Improved bound by ~ order of magnitude

ROGERS & PEIRIS (2021A,B, PHYS. REV. LETT; PHYS. REV. D)



New Lya limits on light dark matter – proton cross section

Strongest limits to-date on velocity-independent dark matter (DM) – proton cross section σ 
for DM masses m = 10 keV to 100 GeV

ROGERS, DVORKIN & PEIRIS (2022, PHYS.REV.LETT.)



AxionDM @ Stockholm  
Detecting Axion Dark Matter In The Sky And In The Lab 

Peiris (PI) + Bonetti, Conrad, Gudmundsson, Marsh, Wilczek   



Bayesian hierarchical models with machine learning components

Justin Alsing
(OKC/Stockholm)

Boris Leistedt
(Imperial College London)

With: Joel Leja, Daniel Mortlock, Sinan Deger, Tassia Ferreira, George Efstathiou



redshift 

Spectroscopic
DESI (ground)

Photometric
LSST (ground), Euclid (space), Roman (space)

Observational frontier with galaxy surveys



Photometric catalogues require redshift estimation

Spectroscopic vs photometric samples



Animation: B. Leistedt



LSST and Dark Energy Science

After 1yr of survey

Measuring if / how dark energy evolves with time

After 10 yrs of survey

Δw0

Δw
a

cosmological 
constant

Δw0

Δw
a

Forecasts: LSST DESC Collaboration



N(z): redshift distribution inference is challenging

Figure: Myles et al (DES Collaboration 2021)

• Spectroscopic training / calibration 
samples are:

‣ not representative of photometric 
catalogues (due to brighter flux 
limits and population evolution) 

‣ heterogeneous and contain difficult-
to-model selection effects

• Introduces biases which are difficult 
to mitigate at required precision

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

redshift



• Key idea: high-dimensional Bayesian hierarchical model with machine-learned parts.

ALSING, PEIRIS, LEJA, HAHN, TOJEIRO, MORTLOCK, LEISTEDT, JOHNSON, CONROY (APJS, 2020); 
LEISTEDT, MORTLOCK AND PEIRIS (MNRAS, 2016) 

- Neural network emulation of 
FSPS population synthesis 
model, describing realistic 
galaxy populations (replace 
templates).

- Flexible NN-parameterised 
probability density models 
(e.g. normalising flows) to 
describe population prior and 
selection effects. 

Redshift distribution inference for static cosmology



Emulating stellar population synthesis (SPS) models

• SPS models (e.g. FSPS, Charlie Conroy and collaborators) are fast (<1 sec) 
but use cases require large numbers of model evaluations. 

- Stage IV galaxy survey catalog sim ∼ 1010 SPS evaluations  

- Leja et al (2019) analysis of 60,000 galaxies under 14-parameter SPS 
model cost1.5 million CPU-hrs.

• Can generate training sets of ~105 enabling neural network emulators.

SPECULATOR SPS emulator

ALSING, PEIRIS, LEJA, HAHN, TOJEIRO, MORTLOCK, LEISTEDT, JOHNSON, CONROY (APJS, 2020) 



Example: DESI Bright Galaxy Survey SEDs

•Accuracy <1% over the 8-parameter FSPS model for >99% of SEDs 

•Generating 106 SEDs takes 2s on Tesla K80 GPU (Speedup105 over 
FSPS on CPU); inference under SPS models can make use of gradients  

ALSING ET AL. (APJS, 2020) 
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Forward modelling for n(z)

n(z): integral over selection x data model x population model



n(z): integral over selection x data model x population model
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Forward modelling for n(z)

Advantages:

• Does not rely on spectroscopic redshift calibration

• Auxiliary data (spec-z, extra surveys) can be included seamlessly (extended data 
vector or extra priors for objects with extra information)

• Connects cosmology with galaxy evolution

“Turns photo-z back into an astrophysics problem” — Justin Alsing



1. GAMA (ugriZYJHKs): r < 19.65, (J-Ks) > 0.01

2. VVDS (UBVRI): I < 22.5, star-galaxy  
separation done at level of spectra

Broadband data: does it work?

Simulated galaxy population (encoding galaxy evolution calibrated to observations), combined with 
data model and selection cuts, should be able to predict redshift distribution.

Selection for GAMA survey

Validation: two spectroscopic 
surveys with straightforward selection 
cuts

ALSING ET AL. (ARXIV:2207.07673, APJS ACCEPTED) 



Baseline model n(z) bias < 0.01 before parameter inference (no data!)
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How good is the baseline model? 

ALSING ET AL. (ARXIV:2207.07673, APJS ACCEPTED) 



WEAVER ET AL (2021), LEISTEDT ET AL. (ARXIV:2207.07673, APJS ACCEPTED) 

Narrow-band data: validation with COSMOS2020

Photometric data: COSMOS2020 multiwavelength Farmer catalogue 

Population model: Prospector-alpha emulators of both fluxes and emission lines  

Data model: Optimization of zero-points per band and (broadband and emission line) hyperparameters



Narrow-band data: validation with COSMOS2020

LEISTEDT ET AL. (ARXIV:2207.07673, APJS ACCEPTED) 

Photometric data: COSMOS2020 multiwavelength Farmer catalogue 

Population model: Prospector-alpha emulators of both fluxes and emission lines  

Data model: Optimization of zero-points per band and (broadband and emission line) hyperparameters
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Next steps!

• Hierarchical inference not scalable?  

Already made progress on simulation-based inference approach — advantage of not needing to explicitly 

model selection effects parametrically, only to forward model them in a simulation.

• Is the SPS population prior good enough for deeper data?  

Improvements to population prior (star formation history and dust modelling) under way.  

• How do we validate analyses of deeper data when little spectroscopy available? 

Developing posterior predictive checks in colour/flux space (Bayesian “cross-validation”)



Knowledge extraction using deep learning

Luisa Lucie-Smith
(MPA/Garching)

With: Brian Nord, Jeyan Thiyagalingam, Davide Piras, Lillian Guo

Andrew Pontzen
(UCL)



Understanding cosmological structure formation

Large-scale structure at 
late times

Perturbations in matter density 
at early times

Movie: Pontzen et al. (2016)



Understanding cosmological structure formation

Law of gravity determines mapping
But does not give an explanation of mapping

(cf biochemistry vs biology)



•Can we reliably access rich information in cosmic web? 

•Can we understand “mesoscale” phenomena in structure formation?

•How do “universal” properties emerge?

•Can machine learning play a role in building accurate mesoscale models of complex phenomena?

“More is different”: emergent phenomena in cosmology
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Advantages:
• no featurization: CNN learns directly from “raw data”
• CNN learns which features of the raw data are relevant for halo property
• CNNs are able to effectively learn complicated highly non-linear mappings

 
Disadvantages:

• DL algorithms are “black-box” algorithms, encoding features in very high-
dimensional models.

.… … … …… … … …

3D convolutional neural network
“Raw” 3D density 

field 

Why convolutional neural networks?

How do we extract physical knowledge from a DL algorithm?

Halo property



Latent variables encode most relevant aspects of 3D 
density field about halo property

3D density field

Latent 
representation

Supervised variational encoder
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Halo property

ITEN ET AL (PHYS. REV. LETT. 2020), LUCIE-SMITH, PEIRIS, PONTZEN, NORD, PIRAS (PHYS. REV. D, 2022)

Model compression to enable “explainable” AI

New framework for knowledge extraction using AI



Navarro, Frenk, White (1996, 1997); Einasto (1965); Diemer & Kravstov (2014); Adhikari et al. (2014); More et al. (2015) 
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Existing physical models, based on empirical fitting functions,  
lack explainability

Case study: can neural networks discover the building 
blocks of dark matter halo profiles?



Designing an interpretable variational encoder for 
knowledge extraction
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3D density field 

Latent representation retains all the information 
used by model to predict density profiles 

LUCIE-SMITH, PEIRIS, PONTZEN, NORD + (2022)



Case study: can neural networks discover the building 
blocks of dark matter halo profiles?

LUCIE-SMITH, PEIRIS, PONTZEN, NORD + (2022)

Halo density profile
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Preprocessing 
the data

3D density field 
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Examples of fits created by interpretable variational encoder

LUCIE-SMITH, PEIRIS, PONTZEN, NORD + (2022)
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Desired latent representation properties for interpretability

• Interpretability can be achieved if latent space is disentangled: 
independent factors of variation in profiles captured by different latents  (“non-linear PCA”)

• Disentanglement encouraged via loss function optimised during training

• Degree of disentanglement measured using mutual information between latents

Decoder

p(z |x) = ∏L
i=1 "(μi(x), σi(x))

Inputs x

ρ(r)

ρ(r)
Encoder

r
Latent A

Latent B

Latent C

Latent D

LUCIE-SMITH, PEIRIS, PONTZEN, NORD + (2022)



Interpreting the latent space using mutual information

Explainability achieved by evaluating mutual information 
between latents and ground truth density profile 

LUCIE-SMITH, PEIRIS, PONTZEN, NORD + (2022)



What has the machine learnt?

normalisation of profile shape of outer component steepness of profile
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LUCIE-SMITH, PEIRIS, PONTZEN, NORD + (2022)



IVE re-discovers NFW parameters + additional “splashback” feature
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LUCIE-SMITH, PEIRIS, PONTZEN, NORD + (2022)



Estimating mutual information for deep-learning interpretability

Davide Piras
(UCL/Geneva)

With: Andrew Pontzen, Luisa Lucie-Smith, Lillian Guo, Brian Nord



GMM-MI: accurate MI estimation with uncertainties 

Density estimation based on Gaussian mixtures using samples from joint distribution;  
Provides uncertainty due to finite sample size using bootstrap

PIRAS, PEIRIS, PONTZEN, LUCIE-SMITH, GUO, NORD (SUBMITTED TO PRE, 2022)

Continuous example: halo profiles Categorical example: 3D Shapes

https://github.com/dpiras/GMM-MI



COSMICEXPLORER: Exploring the Cosmos with the Vera Rubin Observatory

Aims: (i) AI-boosted modelling for cosmological analysis (ii) new cross-validation methods for 
diagnosis of systematics (iii) explainable AI to develop cosmic web as robust cosmological probe.

12 postdoc positions open at the Oskar Klein Centre Stockholm (okc.albanova.se)

http://www.okc.albanova.se/about-us/news/twelve-postdoctoral-positions-at-the-oskar-klein-centre-stockholm-1.577911


Powerful methods available now to enable 
cosmology with complex, costly models.

Allows machines to take on the drudgery, 
leaving humans to focus on the physics.



COSMOPARTICLE, WWW.PENELOPEROSECOWLEY.COM

http://www.peneloperosecowley.com

