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SMALL-SCALE DARK MATTER FRONTIER

• 𝝠CDM works astoundingly well over the observed range of scales.
• Have only probed DM down to ~108M⨀

✴ strong lensing only probes high surface density objects
• DM structure on (much) smaller scales will reveal information on dark matter and the early universe

Milky Way Satellites

Nadler et al. 2020

Chabanier Millea Palanque 2019

10
9

M
⊙

δ ΛCDM



𝝠CDM MICROHALOS

Lee Mitradate Trickle Zurek 2021

n ∼ 10 pc−3

M ≤ 1 Mearth

fCDM ∼ 5 × 10−4

Solar System 
visitation frequency:

~15/Gyr

R𝝻halo=103 A.U.
RSS=103 A.U.
v𝝻halo=200km/sec
tvisit~24 years

insufficient pulsar timing sensitivity
Low mass μhalos tells about particle 
mass / velocity dispersion of DM



QCD AXION MINICLUSTERS

Lee, Mitradate Trickle Zurek 2021

n ∼ 1012 pc−3
M ≤ 2 × 109 ton

fCDM ∼ 10−4

pulsar sensitivity <century

Solar System 
visitation frequency:

~1/year

RSS=10 A.U.
vgal=200km/sec
tvisit~100 days

Low mass μhalos tells about 
clustering of DM during production in 
early universe



EARLY MATTER DOMINATION MICROHALOS

Lee Mitradate Trickle Zurek 2021

n ∼ 1011 pc−3
M ≤ 10−15 M⊙ ∼ 1012 ton

fCDM ∼ 10−2

pulsar timing sensitivity if TRH<0.1GeV

TRH = 1 GeV

Solar System 
visitation frequency:

~1/decade

RSS=10 A.U.
v𝝻halo=200km/sec
tvisit~100 days

long EMD

Low mass μhalos tells about 
expansion history of early universe



EARLY MATTER DOMINATION MICROHALOS

Delos Linden2021

n ∼ 105 pc−3
M ∼ 10−9 M⊙

fCDM ∼ 10−3

pulsar timing sensitivity <century

TRH = 32 MeV
Pluto

Solar System 
visitation frequency:

~102/Gyr

RSS=10 A.U.
v𝝻halo=200km/sec
tvisit~100 days

short EMD

1600 ×



WHY EARLY MATTER DOMINATION?
An early period of matter domination leads to 
addi t iona l growth of l inear ( ) 
inhomogeneities for modes within the horizon 
during early matter domination.

Structure on small scales will collapse earlier than 
in 𝝠CDM leading to smaller denser microhalos.

Erickcek Sigurdson 2011
Barenboim Rasero 2014 

δρ/ρ ≪ 1

Motivation for this Work
During matter domination nonlinear (bound) 
i nhomogene i t i e s (ha los ) g row f a s te r 
( ) than linear growth ( ).  
Do remnants of these halos  survive leading to 
even denser microhalos?

Barenboim Blinov AS 2021 

δρ/ρ ∝ a3 δρ/ρ ∝ a



EMD SCENARIO
COSMOLOGY

• ERD early radiation domination (optional)
• radiation domination after inflation

• EMD early matter domination
• early period of non-relativistic matter domination

• LRD late radiation domination
• standard “radiation era”

• LMD late matter domination
• standard “matter era”

• EM early matter
• BSM particle, dominates density during EMD
• decays to LR w/ lifetime 𝜏 (“reheating”)

• LR late radiation
• standard photons / neutrinos

• LM late matter
• standard dark matter /baryons

z=3300

CONSTRAINTS
• LM and LR densities match observed 𝝠CDM values 
• TRH>5 MeV to preserve Big Bang Nucleosynthesis

• LRD must last for expansion factor >107

INHOMOGENEITIES
• EM and LM dynamics only gravitational 

• + EMD decay
• EM and LM cluster identically
• mEM and mLM large enough so they are not “fuzzy”
• EM/LM in gravitational bound halos before reheating

• halos are non-relativistic and sub horizon
• EMD LSS may or may not be similar to LSS during LMD 

✴ LSS = “large scale structure”
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SPHERICAL SHELL MODEL
• Assume spherical isolated halos - evolve n-shell as apposed to n-body

• each EM/LM particle will remain in it’s own shell

• isolated halos - good if most matter is in stable clustering regime at time of decay - inner part of halos - outer part 
too if steep  at non-linear scale so major mergers episodic rather than continual

• Newtonian model exhibiting relevant phenomenology

• non-relativistic halos means  is uniform and negligible time dilation for decay

• further simplification: initially circular orbits 

• shells don’t cross so  ;  

• each shell parametrized by LM mass enclosed  which is constant

P(k)

··r(t) = −
G M<(r(t), t)

r(t)2
+

L2

r(t)3
−

8πG
3

ρrad(t) r(t)

ρrad

·r(t ≪ τ) = 0

M<(r, t) = ( 1 − f
f

e−t/τ + 1) MLM f ≡ limt≪τ
ΩLM

ΩEM + ΩLM

MLM



SHELL MODEL SOLUTION
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•  is ~ over density at  

• different curves give evolution of concentric shells of same halo

δτ t = τ



HOMOLOGOUS ADIABATIC EXPANSION
• Newton-Vlasov equation

( ∂
∂t

+ v ⋅
∂

∂x
− ( ∂

∂x
Φ[x, t]) ⋅

∂
∂v ) f [x, v, t] = 0

Φ[x, t] = − G d[t]∫ d3x′� ∫ d3v
f [x′�, v, t]
|x − x′�|

d[t] = (1 − fLM) e−t/τ + fLM

• If  and  are stationary solutions for  then an approximate 
adiabatic solution for  is

feq[x, v] Φeq[x] τ → ∞
tdyn ≫ τ

f [x, v, t] ≅ feq [d[t] x,
v

d[t] ] Φ[x, t] ≅ − d[t] Φeq [d[t] x]

• since  positions grow  while velocities shrink f ≪ 1 x ∝ et/τ v ∝ e−t/τ

• N.B adiabatic exponential growth does not depend on spherical symmetry!



PEELING

• peeling happens at logarithmically different time for different shells: when 

• outer shells first then inner shells

tdyn ≈ τ
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free expansion approximation
MLM→0 ignores self gravity of matter  



NEWTON IN COSMOLOGICAL CONTEXT
In terms of the interior density ratio  the shell equation of  motion becomes 

where   ,  is the Hubble parameter and  is the density parameter for (EM+LM) matter.

Δ̄(a(t)) ≡
3MLM

4π r3 ρ̄LM(t)

a2 Δ̄′�′ � =
3
2

Ωm(a) Δ̄ (Δ̄ − 1) − (1 +
1
2

Ωm) a Δ̄′� +
4
3

(a Δ̄′�)2

Δ̄
− 3 ( L

H(a) )
2

( 2 f
9 G MLM τ2 )

4/3

( aRH

a )
4

Δ̄7/3

′� ≡
d

da
H Ωm
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•  becomes  even when .

• FYI: even in optimal case, , one 
finds that  only if .

• Early halos spread out during LRD 
contributing a small fraction of the 
mean matter density when they enter 
LMD.

Δ̄ ≪ 1 Δ̄τ ≫ 1

f = 10−7

Δ̄eq > 1 Δ̄τ > 1020



OVERLAP
Since  throughout the remnant of a halo the halo remnants must overlap by the identity:

 is a mean number of overlapping streams and  is mass weighted halo average of  .

Δ̄ ≪ 1

⟨𝒩⟩ ≥
1

⟨Δ⟩
− 1 ≫ 1

⟨𝒩⟩ ⟨Δ⟩
ρLM

ρ̄LM

RECOLLAPSE
After entering the LMD the inhomogeneous LM distribution given by the 
superposition of halos will again grow and eventually recollapse to form 
new halos not simply related to the halos which existed during EMD.



HALO REMNANTS
Semi-Universality: EDM halos evolve to remnants with 
density profiles close to top hat profiles irrespective of the initial 
halo density profile.
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EXTRAPOLATED 𝝠CDM
Up to this point we have been agnostic as to how halos formed during EMD.  Now assume they 
formed from adiabatic perturbations of 𝝠CDM extrapolated to very small scales.  In 2 cosmologies:
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• Press-Schechter theory used 
to generate distribution of 
halos during EMD.

• Final power spectrum always 
smaller than linear theory.

• The longer the period of EMD 
the greater the suppression.

• Non-linearities suppress rather 
than enhance small scale 
structure in the case that 
gravitational collapse occurs 
during EMD.



MICROHALO MASS FUNCTION
• Press-Schechter theory used to 

estimate distribution of halos 
formed during LMD from .

✴ due to multi-streaming this 
isn’t really cold dark matter 
and there are “issues” with 
Press-Schechter analysis 
which may over-estimate 
micro halo densities.

• In these two cosmologies dark 
matter microhalos with 

 will form at . 

✴ subsequent tidal interactions 
and stellar encounters will 
strip away much of the mass 
of microhalos in our Galaxy  
by today for(Delos).

P(k)

M ≲ M⊕ z > 100
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A BRIEF HISTORY OF NONLINEAR EMD HALOS



SPACE-TIME JITTER FROM
OF ULTRA-LIGHT DARK MATTER



GRAVITATIONAL EFFECTS

Tμν =
1
2
�ϕ
� 2 +�∇ϕ�2 + mϕ

2 ϕ2� ϕ
�
∇ϕ

ϕ
�
∇ϕ 1

2
�ϕ
� 2 - 1

3
�∇ϕ�2 - mϕ

2 ϕ2� I + �∇ϕ⊗∇ϕ - 1
3
�∇ϕ�2 I�

Suppose the dark matter is a real (psuedo-)scalar.  It’s 
gravitational field is given by it’s stress-energy

Unlike for massive dark matter particles for ultra light (fuzzy) dark 
matter the length scales are macroscopic and the timescales easily 
resolvable.



STANDING WAVE
Consider the standing wave
ϕ[t, x] = φ Cos[ϖ[κ] t] Cos[κ · x]
whereϖ2 =mϕ

2 + κ2, κ ≡ �κ�and using κ� = κ /κ

Tμν
ϕ =

ρ -Sκ�

-Sκ� p� κ��κ� + p⊥ �I -κ��κ��

where
ρ = 1

4
φ2 �ϖ2 + �mϕ

2 - κ2 Cos[2ϖ t]� Cos[2 κ · x]�

S = - 1
4
φ2 κ ϖ Sin[2 κ · x] Sin[2ϖ t]

p� = 1
4
φ2 �κ2 - �mϕ

2 +ϖ2 Cos[2 κ · x]� Cos[2ϖ t]�

p⊥ = 1
4
φ2 �κ2 Cos[2 κ · x] - �ϖ2 +mϕ

2 Cos[2 κ · x]� Cos[2ϖ t]�

.

The synchronous gauge linearized metric perturbation is
h = -2Φ I +∇⊗∇� +∇� + (∇�)T + h(T)

= π Gφ2
2mϕ

2+κ2

2 κ2
I -κ�⊗κ� κ2

mϕ
2+κ2

Cos[2 κ · x]

+π Gφ2 - 1
2
I +κ�⊗κ�

mϕ
2

mϕ
2+κ2

Cos[2 κ · x] Cos[2ϖ t]

where we have usedϖ[κ]2 =mϕ
2 +�κ�2.

In the non-relativistic limit, to 1st order in k
ρ � 1

4
mϕ

2 φ2 (1 + Cos[2 κ · x])

S� - 1
4
κ φ2mϕ Sin[2 κ · x] Sin[2mϕ t]

p�, p⊥ � - 1
4
mϕ

2 φ2 (1 +Cos[2 κ · x]) Cos[2mϕ t]

.

For the local dark matter density

h
�
~6×10-30 � Hz

mϕ
�
2

GW-like detectors might be 
able to see this someday.

The linearized Raychaudhuri equation for expansion is
θ
�
≅ -4π G (ρ + 3 p) = 4π G ρ (3Cos[2mϕ t] - 1).

There is the usual converging trajectories
θ[x, t] ≅ constant - 4π G ρ[x, t] (t - t0)
(time averaged) plus a high frequency component
θ
�
[x, t] ≅ 6π G ρ[x,t]

mϕ
Sin[2mϕ t]

giving an oscillating isotropic strain
h
�
[x, t] ≅ 3π G ρ[x,t]

mϕ
2 Cos[2mϕ t].

The shear is much smaller.


