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« ACDM works astoundingly well over the observed range of scales.

 Have only probed DM down to ~108Mg

* strong lensing only probes high surface density objects

* DM structure on (much) smaller scales will reveal information on dark matter and the early universe



BCDM MICRORACSS
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QCD AXION MINICLUSTERS
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EARLY MAT TER DOMINATION MICROHALOS
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EARLY MAT TER

DOMINATION MICROHALQOS
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WHY EARLY MAT TER DOMINATION?

An early period of matter domination leads to Power Spectrum At
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even denser microhalos!
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EMD SCENARIO

COSMOLOGY

« ERD cearly radiation domination (optional)

* radiation domination after inflation

« EMD early matter domination

» early period of non-relativistic matter domination
« LRD late radiation domination

« standard “radiation era”

« LMD late matter domination

« standard “matter era”

« EM early matter

« BSM particle, dominates density during EMD
» decays to LR w/ lifetime 7 (“reheating”)

« LR late radiation

» standard photons / neutrinos

« LM late matter

» standard dark matter /baryons
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« LM and LR densities match observed ACDM values INHOMOGENEITIES

* Tre>5 MeV to preserve Big Bang Nucleosynthesis

« LRD must last for expansion factor >107

« EM and LM dynamics only gravitational
s IEMBEccea

« EM and LM cluster identically

« mem and mm large enough so they are not “fuzzy”

- EM/LM in gravitational bound halos before reheating
« halos are non-relativistic and sub horizon

- EMD LSS may or may not be similar to LSS during LMD
* LSS ="large scale structure”



BEEIERICAL SHELL MO SS

 Assume spherical isolated halos - evolve n-shell as apposed to n-body

 each EM/LM particle will remain in it's own shell

* isolated halos - good Iif most matter is in stable clustering regime at time of decay - inner part of halos - outer part
too if steep P(k) at non-linear scale so major mergers episodic rather than continual

« Newtonian model exhibiting relevant phenomenology

GM_(r(t),r) L?> 8aG
_I_ ==
r(f)> r@3 3

() = — Praa() 7(2)

» non-relativistic halos means p,.4 Is uniform and negligible time dilation for decay

- further simplification: initially circular orbits 7(t < 7) = 0

Qv
Qpyp + Qv

s
. shells don't cross so M _(r,t) = (Tf AL 1> My f =lim, .

» each shell parametrized by LM mass enclosed Mj y; which is constant



SHELL MODEL SOLUTION
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HOMOLOGOUS ADIABATIC EXPANSION

* Newton-Vlasov equation

i+v-i—<i<b[x t]>°i JIXv,10=0
B o ) v

f [X’, Vv, t]

| x — x|

dt] = (1 = fim) e +fim

D[x, 1] = — Gd[t] [d3x’ Jd3v

g Iffeq[x, v] and (I)eq[x] are stationary solutions for ¢ — oo then an approximate

adiabatic solution for f3,, >> 7 is

-
fIx,v, 1] = . _d[r] X, rEl D[x, 1] = — d[1] D, |d[1] x|

» since f < 1 positions grow X e’" while velocities shrink v o e ="

* N.B adiabatic exponential growth does not depend on spherical symmetry!



PEELING
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» peeling happens at logarithmically different time for diferent shells: when #4,, & 7

« outer shells first then inner shells



NEVY TON IN COSMOLOGICAL COINTHES.

= M
In terms of the interior density ratio A(a(?)) = _LM the shell equation of motion becomes
47 13 pr (1)
e e 1 B T ) 4/3 4
O AR -1 =(1+-0_ Tt e i RH Y\ 373
9 2 3 A H(Cl) 9 GMLM T2 a

e
where = i . H is the Hubble parameter and €2 _ is the density parameter for (EM+LM) matter.
a

. A becomes < 1 even when AT > 1. 10°

» FYl:even in optimal case, f = 10~7, one
finds that A, > 1 only if A, > 107, 1000

» Early halos spread out during LRD A
contributing a small fraction of the

mean matter density when they enter
LMD.




OVERLAP

Since A < 1 throughout the remnant of a halo the halo remnants must overlap by the identity:

1
</V>ZE_1>>1

(W) is a mean number of overlapping streams and (A) is mass weighted halo average of'?L—M |
P1LM

BECOLLAFSE

After entering the LMD the inhomogeneous LM distribution given by the
superposition of halos will again grow and eventually recollapse to form
new halos not simply related to the halos which existed during EMD.



HALO REMNANTS

Semi-Universality:. EDM halos evolve to remnants with
density profiles close to top hat profiles irrespective of the inrtial
halo density profile.

Plummer profile
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EXTRAPOLATED ACDM

Up to this point we have been agnostic as to how halos formed during EMD. Now assume they
formed from adiabatic perturbations of ACDM extrapolated to very small scales. In 2 cosmologies:

Press-Schechter theory used
to generate distribution of
halos during EMD.

Final power spectrum always
smaller than linear theory.

The longer the period of EMD
the greater the suppression.

Non-linearities suppress rather
than enhance small scale
structure In the case that
gravitational collapse occurs

during EMD.
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MICROHALO MASS FUNCTION

Typical Microhalos Forming at z

* Press-Schechter theory used to
estimate distribution of halos
formed during LMD from P(k). 108 f

* due to multi-streaming this .
isn’'t really cold dark matter
and there are “Issues’ with
Press-Schechter analysis
which may over-estimate
micro halo densities.

100

* In these two cosmologies dark
matter microhalos with 01t
M S Mg will form at z > 100. '
* subsequent tidal interactions
and stellar encounters will 1074
strip away much of the mass r
of microhalos in our Galaxy -
by today for(Delos). 107
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A BRIEF HISTORY OF NONLINEAR EMD HALOS

e stable clustering: individual halo retain constant physical size during EMD, a < 0.3 agy. Self
gravity dominates and EM has not yet undergone significant decay.

e adiabatic expansion: individual halos grow exponentially in physical size retaining their
profile during the EMD/LRD transition, 0.3agy < a < 10agry, while a significant fraction of
EM has decayed but self gravity still dominates.

e peeling: successive outer layers of the halo end adiabatic expansion and begin free expansion
soon after LRD begins, 2agy < a < 10agy. The longer orbital timescale of outer layers become
comparable to the expansion time invalidating the adiabatic approximation.

e free expansion: individual halos grow logarithmically in comoving size during LRD, 2ary <

a S Geq. Nearly all EMD has decayed and self-gravity is unimportant. The remnant LM moves
ballistically in a radiation dominated universe.

e halo overlap: the ballistically expanding halo remnants will overlap with neighboring halos
during LRD, 2agrn S a < aeq. Rapid expansion evacuates the LM from the initial halo position
but this is mostly filled in by LM from neighboring expanding halos.

e recollapse: the inhomogeneous LM distribution created by the superposition of overlapping
halo remnants will recollapse to form new structures during LMD, a 2 a.q, when self gravity of
the LM dominates over the LR.
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BRAVI IATTONAL EFFECTS

Suppose the dar
oravitational fielc
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(psuedo-)scalar. It's

ress-energy
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M -2 1VeIP- m? ¢?)1+(VoR V-1 Vo2 )

Unlike for massive dark matter particles for ultra light (fuzzy) dark
matter the length scales are macroscopic and the timescales easily

resolvable.



STANDING

Consider the standing wave
¢[t, x] = ¢ Cos[w[k] t] Cos[k - x]

where w? = m,* + k%, k= | k| and using kK = K/ K

Jo) -SK )

=
Y\ -Sk p k®k+p, (I-K®K)

where
p=1 q)z (@ +(my* - k* Cos[2 w t]) Cos[2 k - X])

= igo K o Sin[2 k - x] Sin[2 o t]
p = i @ (k* - (my* + w* Cos[2 k - x]) Cos[2 w t])
p, = }1 @* (k* Cos[2 k - x] - (@* + m,* Cos[2 k - x]) Cos[2 w t])

The synchronous gauge linearized metric perturbation is
h=-201+VQVP +VV+(VV) +hD

2m¢ +K
2 K2

I-KQK )Cos[ZK-x]

m¢ +K

=116 ¢ (

2

m¢2+K

+7TG§02(—%I+I?®K )COS[ZK X] Cos[2 w t]

where we have used @[k]* = my* + | K | °.

WAVE

In the non-relativistic limit, to 1st orderin k

0 - i my* @ (1 + Cos[2 k - x])

So —i K ¢* mg Sin[2 k - x] Sin[2 m t]

Dys Po = —i My> @ (1 + Cos[2 k - x]) Cos[2 m t]

The linearized Raychaudhuri equation for expansion is

——47TG(p+3p) 411G p(3Cos[2m,t]-1).

| There is the usual converging trajectories

O[x, t] = constant -4 71 G p[x, t] (t - t,)
(time averaged) plus a high frequency component

A . Gp[Xxt] :
O[x,t]=z67T s Sin[2m,, t]

giving an oscillating isotropic strain

hix,t]=3 7 %;‘2’“ Cos[2 m t].

The shear is much smaller.
For the local dark matter density

GW-like detectors might be
able to see this someday.
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