

PROBING DARK ENERGY AND INFLATION WITH GRAVITATIONAL WAVES

VALERI VARDANYAN

SEPTEMBER 14, 2021

STANDARD MODEL OF THE UNIVERSE

- Inflation in the early universe
 - Solves several important issues of non-inflationary scenario
 - (Horizon problem, flatness problem)
- Quantum fluctuations explain the observed CMB anisotropies and source the LSS of the late universe
 - Simplest working scenario: single field ϕ with a flat potential Produces almost scale-invariant curvature power spectrum

PRIMORDIAL GRAVITATIONAL WAVES

 $P_h(k) = \frac{8}{M_{\rm Pl}^2} \left(\frac{H}{2\pi}\right)$

2

Vacuum GWs. Lyth bound:

$$\frac{\Delta\phi}{M_{\rm Pl}} = \mathcal{O}(1) \left(\frac{r}{0.01}\right)^{1/2}, V^{1/4} = \mathcal{O}(1) \left(\frac{r}{0.01}\right)^{1/4} 10^{16} {\rm GeV}$$

CMB B-mode polarization

STANDARD MODEL OF THE UNIVERSE

- LCDM in the late universe
- Assumes GR + cosmological constant
- Still large wiggle-room for interesting alternatives

Modified background history

(e.g. $w_0 - w_a$ extension)

Extra degrees of freedom at cosmological scales (e.g. scalartensor theories)

EUCLID collaboration, forecast

Masses in the Stellar Graveyard in Solar Masses LIGO-Virgo Black Holes **EM Black Holes EM Neutron Stars** LIGO-Virgo Neutron Stars GWTC-2 plot v1.0 LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

STANDARD SIRENS (SCHUTZ, 1986)

6

ANTICIPATED TIMELINE

Multi-messenger GW astronomy timeline 2G 3G ET/CE HL HLV HLV HLVK HLVKI BNS range (Mpc) 60 - 8060 - 100120 - 170190 190 $10^3 - 10^4$ Localization < 1%7 - 14% 12 - 21%14 - 22%65 - 73%> 60%within 20 ${\rm deg}^2$ $10^3 - 10^7 \,(\mathrm{yr}^{-1})$ $4 - 80 \, (\mathrm{yr}^{-1})$ $11 - 180 \,({\rm yr}^{-1})$ BNS detections 1 - 500 1 01 02 05 03 04 → Time 2024 2015 2018 2030

LISA

Summary from Ezquiaga, Zumalacarregui, 2018

IN THIS TALK

Part 1: Clustering of black hole binaries – cosmology without electromagnetic counterparts. Testing the GW propagation in the late universe.

$$h_{ij}'' + \left| 2 + \alpha_M(\eta) \right| \mathcal{H}h_{ij}' + k^2 h_{ij} = 0$$

Canas-Herrera, Contagian, Vardanyan, PRD 2020 Canas-Herrera, Contagian, Vardanyan, APJ 2021

Part 2: What can GWs teach us about the early universe? Tensor modes from matter sources – beyond the vacuum

$$P_h(k) = \frac{8}{M_{\rm Pl}^2} \left(\frac{H}{2\pi}\right) \longrightarrow P_h^{\rm induced}(k)$$

Cai, Jiang, Sasaki, Vardanyan, Zhou, arXiv:2105.12554

Part 3: Primordial black hole production and the associated GWs.

Sasaki, Takhistov, Vardanyan, Zhang, In prep

Part 1: Resolved GW sources

Redshift estimation

Tomographic cross-corrs: what are they good for?

Gaussian process reconstruction

for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences"

Multitude of sources

Sensitivity on non-linearities

What to expect?

The anisotropies will first be detected via the cross-correlation

Sensitive to the features in the astrophysical kernel $\mathscr{K}(z)$

 \blacktriangleright Useful for cosmology if $\ell_{\rm max} \sim 100$ is detected

The shot-noise issue

Part 2: Primordial GWs

Inducing GWs during inflation

- $\delta \chi$ massless field, controls the curvature perturbations
- $\blacktriangleright \delta \phi$ massive field, resonantly amplified, gravitationally
- coupled to $\delta \chi$

ig> Three main conditions on the effective mass of $\delta \phi$

- 1. Resonance should occur inside horizon
- 2. The resonant field should decay later

3. Shortly after horizon crossing the resonant field mass should be small

Inducing GWs during inflation

Parametric resonance $u(\tau)'' + [P - 2Q\cos(2\tau)]u(\tau) = 0$

Exponential enhancement if in the resonance band

Sources inflation

Inducing GWs during inflation

Mode functions

Non-linear source

 $\ddot{\delta\chi}_{k} + 3H\dot{\delta\chi}_{k} + \frac{k^{2}}{a^{2}}\delta\chi_{k} = \frac{\sqrt{2\epsilon_{\chi}}}{M_{\rm Pl}} \left[\ddot{\phi}\delta\phi_{k} + S_{k} \right],$

Harmonic oscillations

 $\dot{\delta\phi}_k + 3H\dot{\delta\phi}_k + \left(\frac{k^2}{a^2} + \mathcal{M}_{eff}^2\right)\delta\phi_k = 0$

 $\delta \varphi_k \equiv a^{3/2} \delta \phi_k \longrightarrow \dot{\delta \varphi}_k + \omega_k^2(t) \, \delta \varphi_k = 0$ $\omega_k^2(t) \approx \frac{k^2}{a^2} - \frac{9}{4}H^2 - \frac{\Lambda^4}{f_a^2} \cos\left(\frac{\phi}{f_a}\right)$

 $|\delta\phi_{k_*}| \propto e^{\lambda_{k_*}Ht}, \ \lambda_{k_*} = \mu_{k_*}M_{\text{Pl}}\sqrt{2\epsilon_{\phi}}/2f_a - \frac{3}{2}$

 $\mathscr{A} \equiv |\delta \phi_{k_*}| / |\delta \phi_{k_*,vac}| \gg 1$ Amplification

Casting into Matheu equation

Enhanced tensor modes

Detectability

Possible to source linearly?

Gauge fields during inflation

Gauge fields during inflation

Part 3: PBH formation

Radiation dominated epoch

$$h_{\boldsymbol{k}}^{\lambda^{\prime\prime}}(au)+2\mathcal{H}h_{\boldsymbol{k}}^{\lambda^{\prime}}(au)+k^{2}h_{\boldsymbol{k}}^{\lambda}(au)=S_{\boldsymbol{k}}^{\lambda}(au),$$

where the source term $S_k^{\lambda}(\tau)$ is given by

$$S_{k}^{\lambda}(\tau) = 2 \int \frac{d^{3}p}{(2\pi)^{3/2}} \mathbf{e}^{\lambda}(\mathbf{k}, \mathbf{p}) \left[2\Phi_{p}(\tau)\Phi_{k-p}(\tau) + \left(\Phi_{p}(\tau) + \frac{\Phi_{p}'(\tau)}{\mathcal{H}} \right) \left(\Phi_{k-p}(\tau) + \frac{\Phi_{k-p}'(\tau)}{\mathcal{H}} \right) \right]$$

Inflationary epoch

$$S_{k}^{\lambda}(\tau) = \frac{2}{M_{p}^{2}} \int \frac{d^{3}p}{(2\pi)^{3}} \mathbf{e}^{\lambda}(\mathbf{k}, \mathbf{p}) \delta\phi_{p}(\tau) \delta\phi_{k-p}(\tau) + (\phi \leftrightarrow \chi).$$

Zhou, Jiang, Cai, Sasaki, Pi, PRD 2020

PBH formation

39

Summary

1. Astrophysical black hole clustering and correlations with galaxy distribution: how to use redshift-unknown sources for cosmology? AGWB: a complementary probe. Important for interpreting possible future detection.

2. How to enhance primordial GWs: parametric resonance during inflation and induced gravitational waves. Scaledependent counter example of the Lyth bound with scalar fields.

3. PBH production and the associated GWs: both induced and through mergers.