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Event Horizons In Relativity

* (Global structure of some spacetimes lead to event
horizons

* |n classical GR, local observers experience “no
drama” at horizon

Singularity

Black hole
interior

Penrose time

Penrose space



Black Hole Thermodynamics

» Black Holes have temperature: T = —

2T
Horizon Area |

4G

* Black Holes have entropy: S =

e st & 2nd laws of thermodynamics:

dE = TdS + QdJ + ®dQ =2 >0

Bardeen, Carter, Hawking (1973), Bekenstein (1973), Hawking (1975), Unruh (1976)
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Story of Black Hole Evaporation

® ASS u m e Se m i_C | aSS i Cal The Great Black Hole Information Escape

As black holes radiate, information appears to be lost. But this can be avoided if the “entanglement entropy” of the radiation rises then falls.

Recent calculations have shown how this happens via a “quantum extremal surface” that appears just inside the black hole’s event horizon.

[}
e V a p O r a‘t | O n Everything inside of this surface is suddenly not part of the black hole. Exactly how this happens, and what it all means, is still an enormous mystery.

1 Black holes radiate 2 As the number of A quantum extremal 4 The innermost particles As the black hole

by forming entangled entangled particle surface appears just are no longer part of radiates the last of
particle pairs. One pairs grows, so does inside the horizon, making the black hole. Their its energy, the total
particle flies out, the entanglement the black hole into entanglement no longer entanglement entropy
the other in. entropy. something like a shell counts toward the entropy. drops to zero

 |nvent rules to match
the story!

Quantum
Black hole tang extremal
event adiatior surface
horizon

e Jestable predictions?

e What do we learn
about Quantum
Pennington, Almheiri, et al., Marolf & Maxfield, ...

G raV|ty? (Image courtesy of Quanta magazine)
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What is wrong with the story”

* Information paradox: unitary black hole
evaporation, not consistent with [ocal
physics+smooth horizon (Hawking ... AMPS 2013)

- Quantum Tunnelling: exp(-Se)x exp(entropy) ~ 1
— collapsing stars tunnel to a generic Quantum
Gravity state at O(7) probability (vathur 2008)

- Dark Energy: equilibrium with stellar BH's =

scale of dark energy+no horizon
(Presocd-Weinstein, NA, Balogh 2009, Hergott & NA, in prep.) = il




Firewall Paradox

The following assumptions are inconsistent
1. Unitarity of guantum mechanics
2. Equivalence principle, or “no drama”

3. Quantum field theory beyond a Planck length away
from the horizon

4. Dimension of the Hilbert space of a black hole being
exp(A/4)

Almheiri, Marolf, Polchinski & Sully 2012 (AMPS), Mathur 2008
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Echoes from the Abyss!

Cardoso, et al. 16
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Universal Reflectivity of
Quantum Horizons

* Three independent arguments for R = exp ( hieo )
Boltzmann reflectivity: KTy

(1) Fluctuation-Dissipation Theorem

(2) Thermodynamic Detailed Balance

(3) CP-symmetry

- Echoes are stimulated Hawking
Radiation

Oshita, Wang & NA 2020
Wang, Oshita, & NA 2020




Spontaneous emission/ Hawking radiation

Spontaneous emission/ Hawking radiation

Stimulated emission/ Echoes Stimulated emission/ Echoes

Incident radiation Incident radiation




CP-symmetry (RP3 geon)

Black hole microstates vs the additivity conjectures
Patrick Hayden' and Geoff Penington,?

1Stanford Institute for Theoretical Physics, Stanford University, Stanford CA 94305 USA
2Center for Theoretical Physics,, University of California, Berkeley, CA 94720 USA

M December 16, 2020
/7

/7 Abstract

‘ We argue that one of the following statements must be true: (a) extensive violations of
/ quantum information theory’s additivity conjectures exist or (b) there exists a set of ‘disentan-

, ’ gled’ black hole microstates that can account for the entire Bekenstein-Hawking entropy, up to

N at most a subleading O(1) correction. Possibility (a) would be a significant result in quantum

> communication theory, demonstrating that entanglement can enhance the ability to transmit

\ information much more than has currently been established. Option (b) would provide new

» insight into the microphysics of black holes. In particular, the disentangled microstates would

\ have to have nontrivial structure at or outside the black hole horizon, assuming the validity of
S the quantum extremal surface prescription for calculating entanglement entropy in AdS/CFT.

Figure 3: Penrose diagram for a Z, quotient of the two-sided black hole, an example of a spacetime
with the correct properties to be an disentangled microstate.
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Electromagnetic Albedo of
Quantum Black Holes (w/ Wan Zhen Chua)

» Reflection off virtual electron-positron pairs
near horizon — Boltzmann Albedo for photons

* No quantum gravity needed!
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Black Holes as Fast Scramblers
of Quantum Information

[Submitted on 15 Aug 2008]

Fast Scramblers

Yasuhiro Sekino, Leonard Susskind

We consider the problem of how fast a quantum system can scramble (thermalize) information, given that the interactions are between
bounded clusters of degrees of freedom; pairwise interactions would be an example. Based on previous work, we conjecture:

1) The most rapid scramblers take a time logarithmic in the number of degrees of freedom.

2) Matrix quantum mechanics (systems whose degrees of freedom are n by n matrices) saturate the bound.

3) Black holes are the fastest scramblers in nature.
The conjectures are based on two sources, one from quantum information theory, and the other from the study of black holes in String

Theory.
Comments: 19 pages, 1 figure
Subjects: High Energy Physics - Theory (hep-th); Quantum Physics (quant-ph)

Journal reference: JHEP 0810:065,2008
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Scrambling Time=Echo Time!

Quantum nature of black holes: fast scrambling versus
echoes

Krishan Saraswat > & Niayesh Afshordi

Journal of High Energy Physics 2020, Article number: 136 (2020) | Cite this article

34 Accesses | Metrics

ABSTRACT

Two seemingly distinct notions regarding black holes have captured the imagination of
theoretical physicists over the past decade: first, black holes are conjectured to be fast
scramblers of information, a notion that is further supported through connections to

quantum chaos and decay of mutual information via AdS/CFT holography. Second, black

hole information paradox has motivated exotic quantum structure near horizons of black
holes (e.g., gravastars, fuzzballs, or firewalls) that may manifest themselves through delayed
gravitational wave echoes in the aftermath of black hole formation or mergers, and are
potentially observable by LIGO/Virgo observatories. By studying various limits of charged
AdS/Schwarzschild black holes we show that, if properly defined, the two seemingly distinct
phenomena happen on an identical timescale of log(Radius)/(;r x Temperature). We further
comment on the physical interpretation of this coincidence and the corresponding

holographic interpretation of black hole echoes.
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Towards a Holographic

Understanding of Echoes

e From Boundary Out-of-time-order correlators (Saraswat & NA 2020)
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e From Spectral form-factor of random matrices (Saraswat & NA, in
prep) Averaged Spectral Form Factor for Gamma Distribution NNS (B = 0, dim(H) = 1000)

August 29, 2018
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Black Holes and Random Matrices hoto} q=50

1/dim( H)
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Understanding of Echoes

e From Boundary Out-of-time-order correlators (Saraswat & NA 2020)
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[hep-th] 7 Apr 2010

Echoes in Kerr/CFT

(w/ Ramit Dey)

e modular identification of 1+1 CFT also
leads to Boltzmann echoes, a /a
*Hidden Conformal Symmetry of the

Kerr Black Hole”

Hidden Conformal Symmetry
of the Kerr Black Hole

Alejandra Castro®, Alexander Maloney® and Andrew Strominger!

¢ Physics Department, McGill University, Montreal, CA
T Center for the Fundamental Laws of Nature, Harvard University, Cambridge, MA, USA
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A wider look at the gravitational-wave transients from GWTC-1 using an unmodeled
reconstruction method

F. Salemi,! E. Milotti,2 G. A. Prodi,>* G. Vedovato,’ arXIV 1 90509260

C. Lazzaro,® S. Tiwari,” S. Vinciguerra,!

M. Drago,%® and S. Klimenko?

! Albert- Einstein-Institut, Max-Planck-Institut fiir Gravitationsphysik, D-30167 Hannover, Germany
2 Dipartimento di Fisica, Universita di Trieste and INFN Sezione di Trieste, Via Valerio, 2, 1-34127 Trieste, Italy
3 Universita di Trento, Dipartimento di Fisica, 1-38123 Povo, Trento, Italy
4INFN, Trento Institute for Fundamental Physics and Applications, 1-38123 Povo, Trento, Italy
SINFN, Sezione di Padova, I-35131 Padova, Italy
6 Gran Sasso Science Institute, Via F. Crispi 7, I-67100, L’Aquila, Italy
" Physik-Institut, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
8INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi, Italy
® University of Florida, Gainesville, FL 32611, USA
(Dated: June 4, 2019)

In this paper, we investigate the morphology of the events from the GWTC-1 catalog of compact
binary coalescences as reconstructed by a method based on coherent excess power: we use an open-
source version of the coherent WaveBurst (cWB) analysis pipeline, which does not make use of
waveform models. The coherent response of the LIGO-Virgo network of detectors is estimated by
using loose bounds on the duration and bandwidth of the signal. This pipeline version reproduces the
same results that are reported for cWB in recent publications by the LIGO and Virgo collaborations.
In particular, the sky localization and waveform reconstruction are in a good agreement with those
produced by methods which exploit the detailed theoretical knowledge of the expected waveform
for compact binary coalescences. However, in some cases cWB also detects features in excess in
well-localized regions of the time-frequency plane. Here we focus on such deviations and present
the methods devised to assess their significance. Out of the eleven events reported in the GWTC-1,
in two cases — GW151012 and GW151226 — cWB detects an excess of coherent energy after the
merger (At ~ 0.2 s and ~ 0.1 s, respectively) with p-values that call for further investigations
(0.004 and 0.03, respectively), though they are not sufficient to exclude noise fluctuations. We
discuss the morphological properties and plausible interpretations of these features. We believe
that the methodology described in the paper shall be useful in future searches for compact binary
coalescences.
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Predictions in Abedi, Dykaar, NA 2017

0.2925 £ 0.00916 I = GW150914

Atecho.1(sec) = { 0.101340.01152 I = GW151226 arXiv:1612.00266

0.1778 +0.02789 I = LVT151012
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Not quite black holes at LIGO

Bob Holdom*

Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7

Phys. Rev. D 101, 064063 (2020)

 Echo Time delay

e consistent across events

e p-values

At M, 1+(1 -y
7 = 41log() (5" ) (1+2).
2.01
IS ; 1 I
: | 1
1.5
1.0;
<t O <t Q <t @\ (@)} (@)} e} o
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(@)] (@ — © (co] o O~ co) c0) o0
0.51 © — o = o — o = o o
o
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0.0
GW150914 0.008 GW151226 0.014
GW170104 0.33 GW170814 0.098
GW170608 0.038 GW170809 0.081
GW151012 0.0016 GW170823 0.026
GW170818 0.0094 GW170729 0.0010 & 0.0006




But not everyone finds
echoes!

Tests of General Relativity with Binary Black Holes from the second LIGO-Virgo
Gravitational-Wave Transient Catalog

The LIGO Scientific Collaboration and the Virgo Collaboration
(compiled 29 October 2020)

TABLE X. Results of search for GW echoes. A positive value of
the log Bayes factor log,, Bpm' indicates a preference for the IMRE
model over the IMR model, while a negative value of the log Bayes
factor suggests instead a preference for the IMR model over the IMRE

model.

Event log,o BIMRE | Event log,o BaR™
GW150914 -0.57 GW170809 -0.22
GW151226 -0.08 GW170814 -0.49
GW170104 -0.53 GW170818 -0.62
GW170608 -0.44 GW170823 -0.34
GW190408-181802 -0.93 GW190706-222641 -0.10
GW190412 -1.30 GW190707.093326 0.08
GW190421.213856 -0.11 GW190708_232457 -0.87
GW190503.185404 -0.36 GW190720.000836 -0.45
GW190512.180714 -0.56 GW190727.060333 0.01
GW190513.205428 -0.03 GW190728.064510 0.01
GW190517.055101 0.16 GW190828.063405 0.10
GWI190519-153544 -0.10 GW190828_-065509 -0.01
GW190521 -1.82 GW190910-112807 -0.22
GW190521.074359 -0.72 GW190915_235702 0.17
GW190602_175927 0.13 GW190924 021846 -0.03
GW190630_185205 0.08
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Positive Evidence (p-value =
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Abedi, Dykaar, NA 2017

Conklin, Holdom, & Ren
2018

Westerweck, et al. 2018
Nielsen, et al. 2019
Uchikata, et al. 2019
Uchikata, et al. 2019
Salemi, et al. 2019

Abedi & NA 2019
Gill, Nathanail, Rezolla

Different methods,
Different events!
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Tsang, et al. 2019 BayesWave 01+02 AEE SuE el el

(9 free parameters)

... and many more since Jan. 2020
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Into the future:
Quantum Black Hole Seismology

Quantum Black Hole Seismology I: Echoes, Ergospheres, and Spectra

Naritaka Oshita, Daichi Tsuna, Niayesh Afshordi _
arXiv:2001.11642, PRD

Quantum Black Hole Seismology II: Applications to Astrophysical Black Holes

Naritaka Oshita, Daichi Tsuna, Niayesh Afshordi
arXiv:2004.06276, PRD



Seismology vs Spectroscopy

- Exploring the Earth

-~

Using Seismology HYDROGEN ATOMS

-

e
S ——.
e,
—
-

What'’s inside the Black Hole What'’s outside the Black Hole
(replaces event horizon ~2M) (near the photon ring ~3M)



What Black Hole
Seismology teaches us 1/3

o Reflectivity law of the
quantum horizons

e Which harmonics are
excited

e Quantum Horizon
Temperature
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constant reflectivity model,

+ z'5wa11> Boltzmann reflectivity model,
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What Black Hole
eismology teaches us 2/3

exotic compact object]
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What Black Hole
Seismology teaches us 2/3

* Exotic Compact Object vs Modified Dispersion Relation

w = mf); -
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What Black Hole
Seismology teaches us 2/3

* Exotic Compact Object vs Modified Dispersion Relation
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What Black Hole
Seismology teaches us 3/3

e Phase of Reflection

Owall + OBH = T — 2xomSly

Owall + OBH = —2xomSly

10 50 100 500 1000 5000 104
Hz Oshita, Tsuna, & NA 2020



Seismology for the GW170817
remnant: Theory vs Data

Oshita, Tsuna, & NA 2020
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remnant: Theory vs Data

Oshita, Tsuna, & NA 2020
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Time delay (ms))

Bayesian approach to BH seismolo
(Petra Duff & NA, in prep)

 Echoes after GW170817, Bayes factor of ~10

 (Geometric time-delay = Observed time delay
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Failed Supernova Echoes?

 GR Ringdown frequency for fewxMe BH is beyond LIGO sensitivity

e But echo harmonics have much lower frequencies

 We may only see their echoes

Failed Supernovae: Not All Massive
Stars Go Out With a Bang

Detectability of Failed SNe for
maximum stable horizon temperature

=
o
o

horizon distance (kpc)

Oshita, Tsuna, & NA 2020
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Conclusions

Much of the fair tales about (what lies within) black holes has
no empirical evidence

Logarithmically delayed echoes are physical probes of
quantum black hole microstructure

Tantalizing though controversial hints for echoes in LIGO

Black Hole Seismology: a systematic way to probe quantum
structure of black holes

Don’t ask what echoes can do for you, ask what you can do
for echoes!



Bonus Slides!



Echo-Diversity: How Initial
conditions Impact seismology

e Upcoming work with Luis Longo and Cecilia Chirenti

* Solving for GW radiation of an inspiralling point
mass into a Quantum Black Hole

n=1/50,a=0.67M,a=1

Hawking Temperature

o o o
©o o o
5 & B
N W W
o o o

mplitude of first echo

frequengy

<L : 0.172"

. 0.05 0.10 0._1 5 0.20
time mass ratio




Has LIGO already seen one
on Jan. 14, 20207?!

GraceDB — Gravitational-Wave Candidate Event Database

HOME | PUBLICALERTS | SEARCH | LATEST | DOCUMENTATION | LOGIN

Superevent Info

UTC ~
Superevent FAR FAR Submission
ID Category Labels (H2) (yr- 1) t_start t 0 t_end time Links
EM_READY ADVOK 2020-01-
EM_Selected 1 per 14
SKYMAP_READY DQOK 1.226e- 25.838 02:11:12
S$200114f Production = GCN_PRELIM_SENT 09 years 1263002916.225766  1263002916.239300 1263002916.252885 UTC Data
Preferred Event Info
GPS Time| ~ UTC|
Group Pipeline Search Instruments Event time Submission time
Burst CWB IMBH H1,L1,V1 1263002916.2393 2020-01-14 02:12:26 UTC

~ Superevent Log Messages

w Sky Localization

Mollweide projection of cWB.fits.gz cWB.png.
Submitted by LIGO/Virgo EM Follow-Up on Jan
14, 2020 02:13:42 UTC

Mollweide projection of cWB.fits.gz cWB.png.
Submitted by LIGO/Virgo EM Follow-Up on Jan
14, 2020 02:18:50 UTC




Independent confirmation by
AE] group (in spite of their title =)

Event [21] |original 16s (32s)
GW150914 | 0.11 | 0.199 (0.238)
LVT151012| - | 0.056 (0.063)
GW151226| - 0.414 (0.476)
GW170104 | - 0.725

(1,2) i 0.004

(1,3) i 0.159

(1,2,3) [0.011] 0.020 (0.032)

(1,34) | - | 0.199 (0.072)

(1,2,3,4) | - | 0.044 (0.032)

e 30 “detection” w/ 1st & 2nd
events

 None in the 3rd & 4th
A. (un)lucky coincidence?

B. Echoes are more complex?

Low significance of evidence for black hole echoes in gravitational wave data

Julian Westerweck,!>2:* Alex B. Nielsen,»?:T Ofek Fischer-Birnholtz,! 23+
Miriam Cabero,»? Collin Capano,*? Thomas Dent,!*? Badri

Krishnan,»?2 Grant Meadors,»%® and Alexander H. Nitz!>2

! Maz-Planck-Institut fir Gravitationsphysik, D-30167 Hannover, Germany arxlv ‘] 7‘] 2 09966

2 Leibniz Universitdt Hannover, D-30167 Hannover, Germany
3 Rochester Institute of Technology, Rochester, NY 14623, USA

4 Maz-Planck-Institut fir Gravitationsphysik, D-14476 Potsdam-Golm, Germany
® 02Grav, School of Physics & Astronomy, Monash University, Clayton 3800, Victoria, Australia



0.003 |-
0.002 —

0.001 |-

-0.001 -

Randy Conklin, Bob Holdom & Jing Ren 2018

Another independent search for echoes

* Search strategies: using window functions to find the preferred time delay of

echoes from the correlation of two LIGO detectors

- GWI151226 time window

0.004 |-

h method

0.0787s

-0.5;

1.5/
10}

0.5

GWI

R

70104

(red and blue curves are for data after and before merger)

frequency
” window method

0.201s

* Tentative signal peaks for GW151226, GW170104, GW 170608, GW 170814, GW 170817

* p-values ~ 0.2%-0.8%

e consistent w/ GUT or “Inflation’” scales

Koax ~ Fp1/C ~ 10762 Fp; = 1013%2 GeV[ B

Oshita & NA 2019
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Binary Neutron Star merger

* Echoes within 1 sec after GW170817 merger @ f= 72 Hz

* p-value =1.6x10-°, 4.20 tentative detection, high-spin BH remnant

103

| Search result m Search background —|
20 30 40 4.50
14
100 E L
] A
. ] S
107+ A y
01 2 T
g ] .
G% 1072 3 §
= ]
. 5
—1 8 10-3 =
g
=
Z 107
—2 1075
3x10% 4 x10% 5x 103 6x103°  7x10%
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Echoes are louder for more

300

||||I|II

Frequency (Hz)
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, |
= 7.7m sec| | |

[15] F. Salemi, E. I\/ﬁlot‘ti‘, G. A. Prodi, G. Vedovato,
S. Vinciguerra, M. Drago,
and S. Klimenko, Phys. Rev. D100, 042003 (2019),

C. Lazzaro, S. Tiwari,

arXiv:1905.09260 [gr-qc].
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Falled Searches

Authors possible caveat

S TS G RO B ADA template O “Infinite” prior

Nielsen, et al. 2019 ADA+Bayes 150914 mass-ratio dependence

Uchikata, et al. 2019 ADA, hi-pass O1, O2 no low-frequencies
Salemi, et al. 2019 coherent 01, 02 ** mass-ratio dependence,
WaveBurst only 1st echo

Lo, et al. 2019 ADA+Bayes O “Infinite” prior

needs very loud echoes

Tsang, et al. 2019 BayesWave 01+02 (9 free parameters)




Independent Evidence for
Echoes in O2

Event |Uchikata et al. [11]
GW170104 0.071
GW170608 0.079
GW170729 0.567
GW170814 0.024
GW170818 0.929
GW170823 0.055

Total 0.039

TABLE III: P-values for O2 events [11|. The results
show O2 events have same small p-values as O1.

[11] N. Uchikata, H. Nakano, T. Narikawa, N. Sago,
H. Tagoshi, and T. Tanaka, Phys. Rev. D100, 062006
(2019), arXiv:1906.00838 [gr-qc]|.
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