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Problem
To solve vacuum Einstein equations

Rµν [g]−κ
d
l 2 gµν = 0, κ = 0,+1,−1, Λ = κ

d(d−1)
2l 2 ,

in the form of a perturbation of some known exact solution ḡµν , i.e.

gµν = ḡµν +δgµν

Once we expand
δgµν = ∑

1≤i

(i)hµν ε
i

we describe linear (i = 1) and nonlinear (i > 1) gravitational waves
(examples: 1. asymptotically AdS time-periodic solutions, 2. what is the end-state of a generic perturbation of a Schwarzschild black hole?, ...)

Remark: we assume some symmetry of ḡµν allowing for harmonic analysis in
this symmetry subspace - it defines the modes (and polarizations) of linear
gravitational waves; this talk: perturbations of Schwarzschild type (Kottler)
solutions (spherical symmetry).

2 / 18



3 / 18



4 / 18



Outcome

In 3+1:

The problem of solving the system of 10 coupled linear inhomogeneous
PDEs of mixed (hyperbolic and elliptic) type resulting from perturbation
expansion of the Einstein equation is reduced, at each perturbation order,
to solving only 2 scalar wave (hyperbolic) equations for two master
scalar variables and some linear algebra

In d+1, d ≥ 4: there exist three (instead of two) master scalar variables
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Perturbations in vacuum - general setup

Consider Rµν −κ
d
l 2 gµν = 0 with κ = 0,+1,−1 and Λ = κ

d(d−1)
2l 2 .

Let gµν = ḡµν +δgµν

Now in Einstein equations δRµν −κ
d
l 2 δgµν = 0 expand δgµν = ∑i ε ih(i)µν

itself and get the hierarchy of perturbative Einstein equations (expression for
δRµν contains all powers of δgµν ):

∆Lh(i)µν = S(i)µν

Thus, we trade nonlinearities of Einstein equations for an infinite system of
linear inhomogeneous equations (the sources S(i)µν constructed from metric

perturbations h(j)µν , with j < i). To solve it one needs:
1 a general solution of a principal (homogeneous) part
2 a particular solution of inhomogeneous part
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Spherical symmetry & Regge-Wheeler decomposition (’57)
transformation of tensor components under rotations
rotations -transformation of angular variables preserving (γab) =

(
1 0
0 sin2 θ

)
, (εab) = sinθ

(
0 −1
1 0

)
)

Tαβ =



S S V

S S V

V V T



S`m = Y`m(θ ,φ), parity (−1)` (polar(or scalar or even) perturbation)(
1
V`m

)
a

= (S`m);a , parity (−1)` (polar(or scalar or even) perturbation)(
2
V`m

)
a

= εabγ
bc (S`m);c , parity (−1)`+1 (axial(or vector or odd) perturbation)(

1
T`m

)
ab

= (S`m);a;b , parity (−1)` (polar(or scalar or even) perturbation)(
2
T`m

)
ab

= γabS`m , parity (−1)` (polar(or scalar or even) perturbation)(
3
T`m

)
ab

= ε(acγ
cd (S`m);d;b) , parity (−1)`+1 (axial(or vector or odd) perturbation)
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General approach to gravitational perturbations

1 At each perturbation order there exist two (for each gravitational mode)
masters scalar variables satisfying inhomogeneous linear wave
equations with uniquely defined potentials, i.e. there are only two
polarization states in gravitational waves (cf. [Regge&Wheeler, 57], [Zerilli,
70] at linear order)

2 At each order gauge invariant components of metric perturbations (like
Regge-Wheeler gauge invariant variables) are uniquely given in terms of
master scalar variables and their derivatives (and some source functions
at nonlinear orders) (cf. [Mukohyama, 00] at linear order, [Brizuela et al., 09]
at second order)

3 These relations can be inverted for scalar master variables to be given in
terms of RW type gauge invariant variables to provide the initial data and
scalar sources for the scalar wave equations for master scalar variables
(cf. [Moncrief, 74] at linear order, [Garat&Price, 00], [Brizuela et al., 09] at
second order)
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A few general remarks
1 Identities for the sources S(i)µν comming from ∇̄

(
∆Lh(i)` µν

−S(i)` µν

)
= 0.

They are crucial for the consistency at higher orders
2 Gauge issues can become a nuisance [Bruni et al., 97] - we do not use

fully gauge invariant approach to higher orders of perturbation expansion
(cf. [Garat&Price, 00], [Brizuela et al., 09]).
Gauge invariance in RW sense seems sufficient:

xµ → xµ +ζ
µ , δgµν → δgµν +Lζ ḡµν +O

(
ζ

2)
3 We use multipole expansion. At nonlinear orders of perturbation

expansion the `= 0,1 parts need special treatment
4 We limit ourselves to axial symmetry (stepping beyond axial symmetry is

a technical, not a conceptual issue). Then we can limit ourselves to polar
perturbations only (including axial perturbations to the scheme is
straightforward)

5 We illustrate our approach on concrete examples in given coordinate
systems

6 Including matter - postponed to the future work
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Polar perturbations at axial symmetry (on concrete example)
Schwarzschild in static coordinates:

ds2 =−A(r)dt2 +
1

A(r)
dr2 + r2dΩ

2
2 , A = 1−κr2/l 2−2M/r

h(i)
αβ

=


h(i)tt h(i)tr h(i)tθ 0
h(i)tr h(i)rr h(i)rθ

0
h(i)tθ h(i)rθ

h(i)
θθ

0
0 0 0 h(i)

φφ

 ,

the sources S(i)µν and perturbative

Einstein equations E(i)
µν expanded into

multipoles:

h(i)tt (t,r,θ) = ∑
`

h(i)` tt(t,r)P`(cosθ)

h(i)tθ (t,r,θ) = ∑
`

h(i)` tθ (t,r)∂θ P`(cosθ)

RW gauge: only h(i)` tt, h(i)` rr, h(i)` tr, h(i)`+ =
(

h(i)` θθ
+h(i)` φφ

/ sin2
θ

)
/2 non zero,

or out of seven polar metric components four RW gauge invariant functions

f (i)` tt , f (i)` rr, f (i)` tr, f (i)`+ can be constructed
(

h(i)` tt = f (i)` tt +2∂tζ
(i)
` t −AA′ ζ (i)

` r

)
here ζ

(j)
` t (t,r), ζ

(j)
` r (t,r), ζ

(j)
` θ
(t,r) define the j-th order polar gauge vector
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f (i)` tt(t,r), f (i)` rr(t,r), f (i)` tr(t,r) and f (i)`+(t,r) are Regge-Wheeler (gauge invariant)
variables

ζ
(j)
` t (t,r), ζ

(j)
` r (t,r), ζ

(j)
` θ
(t,r) define the j-th order polar gauge vector

ζ
(j)
α = ∑`

(
ζ
(j)
` t P`(cosθ), ζ

(j)
` r P`(cosθ), ζ

(j)
` θ

∂θ P`(cosθ), 0
)

and the corresponding gauge transformation xµ −→ xµ + ε jζ (j)µ

∑
1≤i

ε
i h(i)µν →∑

1≤i
ε

i h(i)µν + ε
jL

ζ (j) ḡµν +O
(
ε

j+1) .
At each order:

∆Lh(i)` µν
= S(i)` µν

in polar sector: seven equations for four RW gauge invariant variables

in axial sector: three equations for two RW gauge invariant variables
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∆L
(i)h` tt =

[
(2A+ rA′)2−2(rA′)2 +2(`−1)(`+2)A

4r2A
+

(
A′

4
− A

r

)
∂r −

A
2

∂rr

]
(i)f` tt +

[
AA′

2
A∂r −∂tt

]
(i)f`+

−A

[
(2A+ rA′)2−4A

4r2 +
AA′

4
∂r +

1
2

∂tt

]
(i)f` rr +

[(
A′

2
+

2A
r

)
∂t +A∂tr

]
(i)f` tr ,

∆L
(i)h` rr =

[
4A(1−A)+(rA′)2

4r2A3 − A′

4A2 ∂r +
1

2A
∂rr

]
(i)f` tt −

[(
A′

2A
+

2
r

)
∂r +∂rr

]
(i)f`+

+

[
(2A+ rA′)2 +2A

(
2rA′+(`−1)(`+2)

)
4r2A

+

(
A′

4
+

A
r

)
∂r +

1
2A

∂tt

]
(i)f` rr −

(
A′

2A2 ∂t +
1
A

∂tr

)
(i)f` tr ,

∆L
(i)h` tr =

A
r

∂t
(i)f` 11 +

[(
A′

2A
− 1

r

)
∂t −∂tr

]
(i)f`++

`(`+1)
2r2

(i)f` tr ,

∆L
(i)h`+ =

[
− 2rA′+ `(`+1)

4A
+

r
2

∂r

]
(i)f` tt +

A
2

[(
2A+3rA′+

`(`+1)
2

)
+ rA∂r

]
(i)f` rr

+
1
2

[
(`−1)(`+2)− r(4A+ rA′)∂r − r2A∂rr +

r2

A
∂tt

]
(i)f`+− r∂t

(i)f` tr ,

∆L
(i)h` tθ =

1
2

[(
A′+A∂r

) (i)f` tr −A∂t
(i)f` rr −∂t

(i)f`+
]
,

∆L
(i)h` rθ =

2A+ rA′

4r
(i)f` rr −

1
2

∂r
(i)f`+−

1
2A

∂t
(i)f` tr +

1
2A

(
− 2A+ rA′

2rA
+∂r

)
(i)f` tt ,

∆L
(i)h`− =

1
4

(
1
A

(i)f` tt −A (i)f` rr

)
.
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General approach to gravitational perturbations (2)
1 At each order there is only one scalar gravitational degree of freedom

(for polar/axial perturbations, and for a given multipole `) satisfying
(in)homogeneous linear wave equation with a potential (to be determined)

�̃`Φ
(i)
` (t,r) := r

(
−�̄+V`

)Φ
(i)
` (t,r)

r
= S̃(i)` (1)

2 RW variables f (i)`+, f (i)` rr, f (i)` tr, f (i)` rr are given as linear combinations of Φ
(i)
`

and its derivatives (+ source functions at nonlinear orders):

f (i)`+ = BΦ
(i)
` +C∂tΦ

(i)
` +D∂rΦ

(i)
` +E∂trΦ

(i)
` +F∂rrΦ

(i)
` +α

(i)
` (t,r) , (2)

f (i)` rr = · · ·+β
(i)
` (t,r) , f (i)` tr = · · ·+ γ

(i)
` (t,r)

3 Satisfying (perturbative) Einstein equations fixes the potential V` and the
coefficient functions in the equations above uniquely (!)

4 The relations (2) can be inverted for Φ
(i)
` . There is a unique (!) way

compatible with the ADM initial problem formulation. This also gives the
source S̃(i)` in (1) uniquely (!)
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Perturbations of spherically symmetric spaces,
A = 1+κr2/l 2−2M/r (an easy way to the Zerilli equation)
master wave equation:

�̃`Φ
(i)
` :=

1
A

∂ttΦ
(i)
` −A∂rrΦ

(i)
` −A′ ∂rΦ

(i)
` +

(
A′

r
+V`

)
Φ

(i)
` = S̃(i)`

potential (the celebrated Zerilli potential in the Schwarzschild case):

V` =
`(`+1)

r2 − A′

r
+
(
2A− rA′−2

)︸ ︷︷ ︸
−6M/r

2A(rA′−2)− (rA′)2 + `2(`+1)2

r2 (2A− rA′− `(`+1))2

and RW variables in terms of the master scalar variable (and source functions
at nonlinear orders):

f (i)`+ = A∂rΦ
(i)
` +

1
r

(
`(`+1)

2
− 2A− rA′−2

2A− rA′− `(`+1)
A
)

∂tΦ
(i)
` +α

(i)
` (t,r)

f (i)` rr = · · ·+β
(i)
` (t,r)

f (i)` tr = · · ·+ γ
(i)
` (t,r)
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Perturbations of spherically symmetric spaces,
A = 1+κr2/l 2−2M/r

�̃`Φ
(i)
` :=

1
A

∂ttΦ
(i)
` −A∂rrΦ

(i)
` −A′ ∂rΦ

(i)
` +

(
A′

r
+V`

)
Φ

(i)
` = S̃(i)`

The master variable in terms of RW potentials - the unique form compatible
with the ADM initial problem formulation:

Φ
(i)
` =

2r
`(`+1)

(
f (i)`++2A

Af (i)` rr− r∂rf
(i)
`+

`(`+1)−2A+ rA′

)

The sources S̃(i)` source at higher orders can be read off accordingly
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To fix the source functions α
(i)
` , β

(i)
` and γ

(i)
` we write them down as linear

combinations of the sources S(i)` µν
and their first derivatives. Fixing

3×7×3 = 63 function coefficients of these linear combinations is a technical
task. It turns out that 54 functions (out of 63) are fixed in terms of 9 free
functions. Moreover, in the resulting expressions, coefficients of these 9 free
functions are identically zero due to the identities for the sources, thus the final
expressions are uniquely defined:

α
(i)
` =−

2A
(

r2
(

A−1S(i)` tt−AS(i)` rr

)
+2S(i)`+

)
`(`+1)(`(`+1)−2A+ rA′)

β
(i)
` =

1
A

(
r∂rα

(i)
` −

`(`+1)−2A+ rA′

2A
α
(i)
`

)

γ
(i)
` =

r
A

∂tα
(i)
` +

2r2

`(`+1)
S(i)` tr
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Identities for the sources S(i)µν - crucial for the consistency of
higher orders of perturbation expansion

Taking the background divergence of perturbation Einstein equations

∇̄

(
∆Lh(i)` µν

−S(i)` µν

)
= 0

gives (three/one) identities in (polar/axial sectors) for the sources S(i)µν (!)
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Final conclusions
The hard part of perturbative Einstein equations (PDEs) can be
reduced to only one scalar wave equation (for each polarization
mode) and some linear algebra (!)
Crucial ingredients:
I gauge invariance - implemented iteratively, thus Regge-Wheeler definitions

of gauge invariants are sufficient
I ansatzes for the form of solution (for RW gauge invariants and source

functions (particular solutions of linear inhomogeneous system))
I identities for the sources (inhomogeneous terms) in perturbative Einstein

equations

Although the scheme is conceptually simple its actual realization was
rather unthinkable in pre- computer algebra era

Now, it is time for practical applications (apart from AdS perturbation that
motivated this approach) in the context of black holes stability, nonlinear
gravitational waves and nonlinear quasinormal modes couplings, after
introducing matter to the scheme also hopefully extreme-mass inspirals,
accretion, cosmological perturbations, etc.
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