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Problem

To solve vacuum Einstein equations

dd—1)

d
Ruv[g]_Kﬁguv:(), k=0,+1,—-1, A=k TR

in the form of a perturbation of some known exact solution gy, i.e.

guv = &uv+ Sgyv

Once we expand

O8uv = Z (i)hﬂv gl

1<i

we describe linear (i = 1) and nonlinear (i > 1) gravitational waves
(examples: 1. asymptotically AdS time-periodic solutions, 2. what is the end-state of a generic perturbation of a Schwarzschild black hole?, ...
Remark: we assume some symmetry of g, allowing for harmonic analysis in
this symmetry subspace - it defines the modes (and polarizations) of linear
gravitational waves; this talk: perturbations of Schwarzschild type (Kottler)
solutions (spherical symmetry).

)
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PHYSICAL REVIEW VOLUME 108, NUMBER 4 NOVEMBER 15, 1957

Stability of a Schwarzschild Singularity
TuvLLio REGGE, [stiluto di Fisica della Universitd di Torino, Torino, Italy
AND
Joun A. WHEELER, Palmer Physical Laboratory, Princeton University, Princeton, New Jersey
(Received July 15, 1957)

It is shown that a Schwarzschild singularity, spherically symmetrical and endowed with mass, will
undergo small vibrations about the spherical form and will therefore remain stable if subjected to a small

nonspherical perturbation,

VoLums 24, NUMBER 13 PHYSICAL REVIEW LETTERS 30 MArcH 1970

EFFECTIVE POTENTIAL FOR EVEN-PARITY
REGGE-WHEELER GRAVITATIONAL PERTURBATION EQUATIONS*
Frank J. Zerilli

Physics Department, University of North Carolina, Chapel Hill, North Carolina 27514
(Received 29 January 1970)

The Schrédinger-type equation for odd-parity perturbations on a background geometry
has been extended to the even-parity perturbations. This should greatly simplify the
analysis for calculations of gravitational radiation from stars and from objects falling

into black holes.
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PHYSICAL REVIEW D, VOLUME 61, 044006

Gauge invariant formalism for second order perturbations of Schwarzschild spacetimes

Alcides Garat* and Richard H. Price
Department of Physics, University of Utah, Salt Lake City, Utah 841 12
(Received 1 September 1999; published 24 January 2000)

The ““close limit,”” a method based on perturbations of Schwarzschild spacetime, has proved to be a very
useful tool for finding approximate solutions to models of black hole collisions. Calculations carried out with
second order perturbation theory have been shown to give the limits of applicability of the method without the
need for comparison with numerical relativity results. Those second order calculations have been carried out in
a fixed coordinate gauge, a method that entails conceptual and computational difficulties. Here we demonstrate
a gauge invariant approach to such calculations. For a specific set of models (requiring head on collisions and
quadrupole dominance of both the first and second order perturbations), we give a self-contained gauge
invariant formalism. Specifically, we give (i) wave equations and sow for first and second order gauge
invariant wave functions, (i) the prescription for finding Cauchy data for those equations from initial values of
the first and second fundamental forms on an initial hypersurface, and (iii) the formula for computing the
eravitational wave power from the evolved first and second order wave functions.

PHYSICAL REVIEW D 74, 044039 (2006)

Second- and higher-order perturbations of a spherical spacetime

David Brizuela, José M. Martin-Garcia, and Guillermo A. Mena Marugan

Instituto de Estructura de la Materia, CSIC, Serrano 121-123, 28006 Madrid, Spain
(Received 5 May 2006; published 30 August 2006)

The Gerlach and Sengupta (GS) formalism of coordinate-invariant, first-order, spherical and non-
spherical perturbations around an arbitrary spherical spacetime is generalized to higher orders, focusing
on second-order perturbation theory. The GS harmonics are generalized to an arbitrary number of indices
on the unit sphere and a formula is given for their products. The formalism is optimized for its
implementation in a computer-algebra system, something that becomes essential in practice given the
size and complexity of the equations. All evolution equations for the second-order perturbations, as well
as the conservation equations for the energy-momentum tensor at this perturbation order, are given in
covariant form, in Regge-Wheeler gauge.



Outcome

In3+41:

@ The problem of solving the system of 10 coupled linear inhomogeneous
PDEs of mixed (hyperbolic and elliptic) type resulting from perturbation
expansion of the Einstein equation is reduced, at each perturbation order,
to solving only 2 scalar wave (hyperbolic) equations for two master
scalar variables and some linear algebra

Ind+ 1, d > 4: there exist three (instead of two) master scalar variables
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Perturbations in vacuum - general setup

Consider R,y — k-4 guy =0 with k =0,+1,—1 and A = Kd(j[zl).
Let guv = guv +guv

Now in Einstein equations 0R,y — K[%Sgw =0 expand 6g,v = Zie"hﬁz,
itself and get the hierarchy of perturbative Einstein equations (expression for
ORy contains all powers of §g,v):

ALk, = S%,

Thus, we trade nonlinearities of Einstein equations for an infinite system of
linear inhomogeneous equations (the sources Sﬁ)\, constructed from metric
perturbations hg)v, with j < 7). To solve it one needs:

@ a general solution of a principal (homogeneous) part

@ a particular solution of inhomogeneous part
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Spherical symmetry & Regge-Wheeler decomposition ('57)

transformation of tensor components under rotations

1 _
rotations -transformation of angular variables preserving () = ( 0 Qin(; 0 ) s (€qp) =sin® ( (1) 01 ))

I I '

Spm = Yyu(6.9), parity (—1) (polar(or scalar or even) perturbation)
1 ¢
(Vlm) = (S[m);a , parity (—1)[ (polar(or scalar or even) perturbation)
a
2 _ P ] (1 i ;
Vim = €Y (Stm),, parity (—1)""" (axial(or vector or odd) perturbation)
a
1
T[m) = (Stm)qyp, Parity (—1 )[ (polar(or scalar or even) perturbation)
ab
2
T[,,,) . = YabSem» Parity (—l)[ (polar(or scalar or even) perturbation)
al
3 :
(T;m) , = E(a(fd(sm);d;bp parity (—1)“*! (axial(or vector or odd) perturbation)
a
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General approach to gravitational perturbations

@ At each perturbation order there exist two (for each gravitational mode)
masters scalar variables satisfying inhomogeneous linear wave
equations with uniquely defined potentials, i.e. there are only two
polarization states in gravitational waves (cf. [Regge&Wheeler, 57], [Zerilli,
70] at linear order)

© At each order gauge invariant components of metric perturbations (like
Regge-Wheeler gauge invariant variables) are uniquely given in terms of
master scalar variables and their derivatives (and some source functions
at nonlinear orders) (cf. [Mukohyama, 00] at linear order, [Brizuela et al., 09]
at second order)

© These relations can be inverted for scalar master variables to be given in
terms of RW type gauge invariant variables to provide the initial data and
scalar sources for the scalar wave equations for master scalar variables
(cf. [Moncrief, 74] at linear order, [Garat&Price, 00], [Brizuela et al., 09] at
second order)



A few general remarks
(i (i) _ gl

@ Identities for the sources Sy, comming from V (Alﬁmv — éuV) =0.
They are crucial for the consistency at higher orders

© Gauge issues can become a nuisance [Bruni et al., 97] - we do not use
fully gauge invariant approach to higher orders of perturbation expansion
(cf. [Garat&Price, 00], [Brizuela et al., 09]).
Gauge invariance in RW sense seems sufficient:

= x4 CH 6guv — ag,uv +$§glIV+ﬁ(C2)

© We use multipole expansion. At nonlinear orders of perturbation
expansion the £ = 0, 1 parts need special treatment

© We limit ourselves to axial symmetry (stepping beyond axial symmetry is
a technical, not a conceptual issue). Then we can limit ourselves to polar
perturbations only (including axial perturbations to the scheme is
straightforward)

© We illustrate our approach on concrete examples in given coordinate
systems

© Including matter - postponed to the future work
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Polar perturbations at axial symmetry (on concrete example)
Schwarzschild in static coordinates:

1
ds* = —A(r)di* + A0 )drz +r7dQs, A=1—«kr?/[*—2M/r
r
the sources SS)V and perturbative
Einstein equations Eﬂ)v expanded into
multipoles:

i) - '
hop = i i i ; (i) o)
aB hg(; hgg h(eza : hy' (t,r,0) = ;hé 4 (t,7)Py(cos 0)
0 0 0 h ; i
°e hz(e)(t7r79) :Zhé,)g(t,r)aePg(cose)
)4

RW gauge: only hé l)t, h§ Zr, hg’?r, hgi = (h%e +h%¢/ sin26> /2 non zero,

or out of seven polar metric components four RW gauge invariant functions
0t 1 can o constuten (1, =11, +23¢() - A )

here Ce(’;)(t, r), Q("r)(t, r), Cg(’g(t, r) define the j-th order polar gauge vector
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ff’lf (, r>’fl’(i’)r([7 r),j;l,')r(t, r) andfﬂ(t,r) are Regge-Wheeler (gauge invariant)
variables

G (1,7). €(1,7). £13(17) define the j-th order polar gauge vector
=y (Q@PE(COS 8), 5/ Pu(cos ), £ dpPy(cos6), 0>

and the corresponding gauge transformation x* — x* + st(i>“

Zsihg)v — Zeihg)v + sj,iﬂgg)guv +0(e1).

1<i 1<i

At each order: 0

(i _
ALk S;W

Luv —

@ in polar sector: seven equations for four RW gauge invariant variables

@ in axial sector: three equations for two RW gauge invariant variables
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4

A (i
e+ [(7+*)9r+f*9~] Yoir,
!’
AL Ohy = [AA(I’AH(’A)

A2A3 4A23r — ]%,, Ker >3,+3rr](},_

2A+rA") +2A (2rA! + (0= 1)(0+2 A A L _ )
[( = Etr;A — (7*7)9”5‘9"] ('fwf(zmaﬁ 3”)(%,,.,

A Al
AL g,y = 73,(/}‘/ 1+ Kﬂ - 7) o — ,9”] i, ++ ('}‘m

i 2rA + (0 +1 ) A o ’
ALOhy = [_er%a,] Uyt [(2A+3’AI+%>+rA3,:| o,

A
2 r2 N
—1)(£+2) —r(4A+rA")d — rPAdy + Xa" (% N —"3:‘(’_]/} .

. 2A+A/2_2 A’2+2£_1 142)A A N
AL(I)/1“,:|:( rA") (7432A ( ) )+(7 ) *l;rr %l! {

a,,] R
(2A+rA")2 —4A AN 1
[472 7ar+28n

8.k g = [ (A +40,) Vi =43, =3 ]
i 24+ 1A ;). 1.6, 1 e 1 24+ rA!
ALhg g = e @, — Ear('ffr - ﬂa’(% itz (* A +9r) ¥y

ALOhy ( @, —ali), '_r) )
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General approach to gravitational perturbations (2)

@ At each order there is only one scalar gravitational degree of freedom
(for polar/axial perturbations, and for a given multipole /) satisfying
(in)homogeneous linear wave equation with a potential (to be determined)

ol (t,r)

O (1,r) o= r (<04 Vi) === = 3 (1)

Q@ RW variablesfﬂ,]?Fi?,,,f;i)r,]‘é(z, are given as linear combinations of CIDY)
and its derivatives (+ source functions at nonlinear orders):

£ = Bol) + cod) + Do, @ + Ed,d\ + Fo, ) + ol (1,r), (@)

f/,‘(?r:”'—i_ﬁél (tvr)v ft:ltr:'”—i_yél)(tar)
© Satisfying (perturbative) Einstein equations fixes the potential V; and the
coefficient functions in the equations above uniquely (!)
© The relations (2) can be inverted for @gi). There is a unique (!) way
compatible with the ADM initial problem formulation. This also gives the
source Sgi) in (1) uniquely (!)
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Perturbations of spherically symmetric spaces,
A=1+xr*/[>—2M/r (an easy way to the Zerilli equation)
master wave equation:

50! a,,cp ~40,9)) "5, + < + V;) o) = 3
potential (the celebrated Zerilli potential in the Schwarzschild case):

/ I A\ n2 2 2
K“fly—éﬁ%l4 ) AA =2) UA)+%(€;D
r ~— 2> PPQRA—rA —((L+1))

—6M /r

Vi =

and RW variables in terms of the master scalar variable (and source functions
at nonlinear orders):

(i) (L+1) 2A—rA' =2 (i)
i =43,9]) r< 2 A A )" o+ (1)

f[<lr): — .. ‘+ﬁ£(i)(l‘, r)
fo=41" )
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Perturbations of spherically symmetric spaces,
A=1+xkr?/(>—-2M/r

i i A i
(0 = at,cp Aa,,q>g)—A’a,cI>§)+< +V> 3\ =3

The master variable in terms of RW potentials - the unique form compatible
with the ADM initial problem formulation:

(i) (i)
(i) 2r (i) Af/ o rarfk +
o) =" |£"424
C+) (f“++ (+1)—2A+rA!

The sources Séi) source at higher orders can be read off accordingly
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To fix the source functions aéi), Bm and yl(i

combinations of the sources S%v and their first derivatives. Fixing

3 x 7 x 3 = 63 function coefficients of these linear combinations is a technical
task. It turns out that 54 functions (out of 63) are fixed in terms of 9 free
functions. Moreover, in the resulting expressions, coefficients of these 9 free
functions are identically zero due to the identities for the sources, thus the final
expressions are uniquely defined:

) we write them down as linear

24 (7 (a's(), - as), ) +25)))

0+ 1) (0(01 1) —2A+ rA))

; 1 o Ll4+1)=2A+rA ()
[32() =1 (r&,aé( ) _ 7 o,

ol! —

G _ Ty @, 2

W= R0 S

16/18



|dentities for the sources S,S’z, - crucial for the consistency of

higher orders of perturbation expansion

Taking the background divergence of perturbation Einstein equations

V(A —Sh,) =0

gives (three/one) identities in (polar/axial sectors) for the sources Sﬁz,

(")
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Final conclusions

@ The hard part of perturbative Einstein equations (PDEs) can be
reduced to only one scalar wave equation (for each polarization
mode) and some linear algebra (!)

@ Crucial ingredients:

» gauge invariance - implemented iteratively, thus Regge-Wheeler definitions
of gauge invariants are sufficient

» ansatzes for the form of solution (for RW gauge invariants and source
functions (particular solutions of linear inhomogeneous system))

> identities for the sources (inhomogeneous terms) in perturbative Einstein
equations

@ Although the scheme is conceptually simple its actual realization was
rather unthinkable in pre- computer algebra era

@ Now, it is time for practical applications (apart from AdS perturbation that
motivated this approach) in the context of black holes stability, nonlinear
gravitational waves and nonlinear quasinormal modes couplings, after
introducing matter to the scheme also hopefully extreme-mass inspirals,
accretion, cosmological perturbations, etc.
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