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Foreword
I Theory of classical spinning particles is one of evergreens in

theoretical physics
I Classical point-like object with certain internal degrees of

freedom related to angular momentum; its kinematics and
dynamics

I It is a purely theoretical construct, like the classical point particle
itself (very useful though), → some arbitrariness

I Large number of interesting models of this kind: vector, tensor,
spinor, Grassmann, ... internal d.o.f. – see a review by A.
Frydryszak1, or ask Professor J. Lukierski

I Axiomatic Lagrangian definition, or a limiting case of another
theory. In the latter case, we usually obtain eqs. of motion first,
Lagrangian is secondary, if there is one at all

I The paper by M. Mathisson is an exception: no Lagrangian, and
no limit. Instead, a dimensional transfiguration

1In From Field Theory to Quantum Groups, B. Jancewicz, J. Sobczyk (Eds.). World
Scientific, 1996



Myron Mathisson (1897-1940)

Figure 1: Myron Mathisson (1897–1940)
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(from Acta Physica Polonica B)

Born and educated in Warsaw

1930: PhD (Cz. Białobrzeski, UW)

1932: Habilitation (UW)

1936/37: at the Kazan University

1937/1939: in Cracow

1939-1940: in Cambridge (England)

12 published papers; the last one
posthumously in 1941

“This work was found in an unfinished
state among the papers left by Dr Myron
Mathisson, who died on 13 September
1940. I have edited it and have added
a summary. .... [P.A.M. Dirac.]”



Myron Mathisson
More information in:

1. Acta Phys. Polon. B. Proceedings Supplement, 1, 1-228 (2008)

Contains 17 articles presented at the International Conference
Devoted to Myron Mathisson: His Life, Work, and Influence on
Current Research (Warsaw, 2007). In particular:
T. Sauer and A. Trautman, Myron Mathisson: What Little We Know of
His Life,
W. G. Dixon, Mathisson’s New Mechanics: Its Aims and Realisation

2. Books and articles on the history of theoretical physics in Cracow
by Bronisław Średniawa (1917-2014), student and collaborator of Jan
Weyssenhoff, and later professor of theoretical physics at the
Jagiellonian University

* * *
The original paper of 1937 has been republished as the Golden Oldie:
New Mechanics of Material Systems,
Gen. Relativ. Gravit. 42, 1011-1048 (2010) (in English)



New Mechanics of Material Systems
Minkowski space-time M

Timelike line L in M: Xα(s), Ẋ 2 = 1, ˙≡ d/ds

Local coordinates (s, ~z) in M around L: xµ = Xα(s) + zµ, Ẋz = 0

An isolated piece of matter represented by smooth
energy-momentum tensor Tαβ , ∂βTαβ = 0. Tαβ vanishes outside
certain tube of finite width surrounding L.

Smooth functions pαβ(x) on M∫
d4x Tαβ(x) pαβ(x) =

∫
ds d3z

√
g T

′αβ(s, ~z) p
′

αβ(s, ~z),

p
′
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′

αβ(s,0) + z i ∂ip
′
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1
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z izk ∂2
ik p

′

αβ(s,0) . . . ,∫
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′αβ(s)p
′
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+ m̃
′αβi (s)∂ip

′

αβ(s,0) + m̃
′αβik (s)∂2

ik p
′

αβ(s,0) + . . .
]



New Mechanics of Material Systems

∂i |~z=0 → ∇i |~z=0 by adding and subtracting appropriate terms

Returning to the Cartesian coordinates xµ∫
M

d4x Tαβ(x) pαβ(x) =

∫
L

ds
[
mαβ(s) pαβ(X (s))

(?)

+mαβµ(s) ∂µpαβ(X (s)) + mαβµν(s) ∂µ∂νpαβ(X (s)) + . . .
]

The moments mαβµν...(s) are symmetric in α β as well as in µ ν . . .,
and orthogonal to Ẋ (s) in µ, ν, . . . , i.e., mαβµν...(s) Ẋµ(s) = 0, etc.

Weak equivalence:

Tαβ(x) on M ⇐⇒ {mαβ(s), mαβµ(s), mαβµν(s), . . .} on L
↗

the skeleton of the matter

This equivalence can be called the dimensional transfiguration



New Mechanics of Material Systems
Take pαβ(x) = ∂βqα(x). Integrate by parts and use ∂βTαβ = 0 on the
l.h.s. of formula (?). The constraint on the skeleton ensues:

0 =

∫
L

ds
[
mαβ(s) ∂βqα(X (s)) + mαβµ(s) ∂µ∂βqα(X (s))

+ mαβµν(s) ∂µ∂ν∂βqα(X (s)) + . . .
]

for arbitrary smooth functions qα(x). Mathisson called it
‘the variational equation of relativistic dynamics’ (today qα → δqα)

The pole-dipole case:

0 =

∫
L

ds
[
mαβ(s) ∂βqα(X (s)) + mαβµ(s) ∂µ∂βqα(X (s))

]
Use the decompositions

mαβ = m ẊαẊβ + MαẊβ + MβẊα +∗mαβ ,

mαβµ = nµ ẊαẊβ + nαµẊβ + nβµẊα +∗mαβµ,

where all M,n,∗m are orthogonal to Ẋ in all indices



New Mechanics of Material Systems
Mathisson assumed that nµ = 0. Next, he showed that

∗mαµ = 0, ∗mαβµ = 0, nαµ = −nµα, Mα = ṅαµẊµ, ṁ = 0

(well, I would not say the proof is straightforward). Finally,

mẌµ = 2nµν
...
X ν , ṅµν = (Ẋµnνα − Ẋ νnµα) Ẍα

↖
the Mathisson equations in the pole-dipole case

The proper time derivatives appear because Ẋµ∂µ = d/ds

I In the modern notation 2nµν → Sµν (the spin tensor)
I Note the derivative of the third order
I Mathisson also considered: the quadrupole term, coupling to

external gravitational and electromagnetic fields, and physical
interpretation of the first two moments

I The approach was significantly improved in a series of papers by
W. G. Dixon around 1970



Jan Weyssenhoff (1889-1972)
Cracow, 1911

(by courtesy of Dr. Hab. Piotr Dobosz)

Born in Warsaw, educated in Cracow
1914-1919: at the University of Zurich
1916: PhD Applications of quantum theory

to rotating objects and the theory
of paramagnetism

1921: Habilitation in Cracow
1921-1935: at the University of Vilnius
since 1935: at the Jagiellonian U. in Cracow

Vilnius, 1926

(from the Library of Nicolaus Copernicus University, Toruń)

Several textbooks, including
The Art of Playing Soccer
(Lviv, 1926. 408pp, 78 figures)
recommended for schools

During the war, secret seminar on
relativistic spin particles (A. Bielecki,
A. Raabe, B. Średniawa). Lecturer at
the Underground University



Antoni Raabe (1915-1942)

Born and educated in Warsaw

1938: MSc in physics (UW)

1938-39: volunteer at Department of Theoretical Physics, Jagiellonian
University, Cracow. Worked with Mathisson and Weyssenhoff

1940-41: assistant at the University of Lviv. Moved there with
J. Weyssenhoff

1941-42: back in Cracow with J. Weyssenhoff

In summer 1942 captured by Germans in a man-hunt in Cracow.
Died in Auschwitz on September 7th, 1942

Coauthor of 3 papers (with J. Weyssenhoff): Nature (1946) – 1,
Acta Physica Polonica (1947) – 2, including the renowned
Relativistic Dynamics of Spin-Fluids and Spin-Particles
(Acta Physica Polonica 9, 7-18 (1947))



Relativistic Dynamics of Spin-Fluids
and Spin-Particles

Relativistic fluid in Minkowski space-time

Tµν(~x , t) = pµ(~x , t) uν(~x , t), uνuν = 1

(energy-momentum tensor does not have to be symmetric!)
Four conserved currents:

∂νTµν = 0, i.e., ∂0(pµu0) + ∂i (pµui ) = 0

Abbreviations: Duf (~x , t) ≡ ∂µ(fuµ), duf (~x , t) ≡ uµ∂µf .
Thus Dupµ = 0; Duf = 0 means that the current fu is conserved.
(In the paper there is Dτ , dτ , I have changed the notation for pedagogical
reasons.)

Consider the currents of components of angular momentum, that is
take for f the six functions xµpν − xνpµ. These currents are not
conserved, Du(xµpν − xνpµ) = uµpν − uνpµ (unless we assume that
p||u). This motivates us to endow the fluid with continuous ‘spin
charge’ density sµν(~x , t) such that

Dusµν = uνpµ − uµpν , sµν = −sνµ, sµνuν = 0



Relativistic Dynamics of Spin-Fluids
and Spin-Particles

In consequence, pµ = muµ + duuν sνµ, where m(~x , t) ≡ pνuν .
m(~x , t) is conserved: Dum = 0

Now comes a step which can be tricky for those who are not familiar
with hydrodynamics (including me): the derivation of evolution
equations for the charges and for the velocity of a finite drop that
travels with the fluid. This amounts to a kind of integration. Define

Pµ =

∫
dV pµ, Sµν =

∫
dV sµν , M =

∫
dV m,

and assume that the drop is so small that the velocity u can be
regarded as constant in it. It turns out that

∫
dV Dusµν = dSµν/ds,

etc., where s is the proper time along the trajectory of the drop.
The evolution equations have the form

Mu̇µ = üνSµν , Ṡµν = (Sνρuµ − Sµρuν)u̇ρ.

Ṁ = 0, and the momentum of the drop is Pµ = Muµ + u̇νSνµ.



Classical spinning particles in Cracow
after 1947

(by courtesy of Dr. B. Średniawa)

Until 1964: J. Weyssenhoff, B. Średniawa,
Z. Borelowski

solving Mathisson’s equations; classical point
particles with various internal d. o. f.

1979-1988: H. Arodź, K. Golec-Biernat

classical point particle with spin and color;
Ehrenfest type classical limit for the Dirac
equation with Yang-Mills or electromagnetic
field

2008-2012: A. Staruszkiewicz, Ł. Bratek

‘the fundamental relativistic rotator’



Classical spinning particles in Cracow
after 1947

H. A., Th. W. Ruijgrok, On Classical Limit of the Dirac Equation with
an External Electromagnetic Field. Part I. Proper-Time Evolution,
Lorentz Covariant Expectation Values and Classical Equations of
Motion, Acta Phys. Polon. B 19, 99-140 (1988)

Problem with Lorentz covariance in Ehrenfest’s approach to classical
limit: in general, the standard expectation values do not have clear
transformation law because d3x is not a scalar

1. Reformulation of the Dirac quantum mechanics

γµ
(

∂

∂xµ
+ ieAµ

)
ψ + im ψ = 0 → Γµ

(
∂

∂sµ
+ ieBα

)
ψ + im ψ = 0

in the coordinates (sα) = (s, ~z). We take s for the evolution
parameter. It is Lorentz invariant

Lorentz invariant scalar product and covariant expectation values

(ψ|χ) =

∫
d3z
√

g ψΓ0χ, Xµ(s) = (ψ|x̂µψ), etc.



Classical spinning particles in Cracow
after 1947

i∂sψ = Ĥ(s)ψ,
d
ds

(ψ|χ) = 0

(but Ĥ(s) is not Hermitian with respect to the scalar product)

2. Transformation to the instant rest frame using Lorentz boost

s = sR , z i = hi
k (s)zk

R , (ψR |χR) =

∫
d3zR ψ

†
R(s, ~zR)χR(s, ~zR),

i∂sψR = ĤR(s)ψR , ĤR(s)† = ĤR(s)

3. The consistency conditions
ψ(s, ~z): a wave packet (solution of the Dirac equation) centered on
the line Xµ(s), i.e., such that for all s

(ψ|ẑ iψ) = 0.Then

0 = −i
d
ds

(ψR |ẑ i
RψR) = (ψR |[ĤR , ẑ i

R]ψR), 0 = (ψR |[ĤR , [ĤR , ẑ i
R]]ψR), . . .

The commutators do not vanish. In consequence, we obtain nontrivial
conditions on the expectation values of observables, and on Xµ(s).



Classical spinning particles in Cracow
after 1947

Explicit form of ψ(s, ~z) is not needed!

4. The classical equations of motion
The Foldy-Wouthuysen representation to the order m−2, and all
terms quadratic and higher in Fµν neglected. In the case g0 = 2:

mẌµ = eFµνẊ ν +
e

2m
ενλσαẊλ(δβµ − ẊβẊµ)WσFαν

,β

+
e

2m
(δσµ − ẊσẊµ)Fνσ,ρCρν +

e
2m

ẊρẊνF νσ
,ρ Cµσ

dWλ

ds
= −ẊλẌµWµ+

e
m

(δλµ− ẊλẊµ)FµνWν +
e
m

(δλµ− ẊλẊµ)Fµσ,ρZσρ

+
1
m

(ẌλPν
ν + ẌνPνλ) +

e
m2 (. . .)

Wσ – the spin 4-vector – is related to (|Σ̂i
R), WµẊµ ≡ 0.

Cρν(s) ∼ (|π̂R
k ẑ i

R + ẑ i
R π̂

R
k ), Zρσ(s) ∼ (|Σ̂k ẑ i

R), Pνλ(s) ∼ (|Σ̂k π̂R
i ),

where π̂R
k = i ∂

∂zk
R
− eBR

k , are classical dynamical variables too



Summary

1. Mathisson’s paper New Mechanics of Material Systems offers the
extremely interesting possibility of dimensional transfiguration of
dynamical systems. I think it has not been explored to a satisfactory
degree yet, especially beyond the theory of spinning matter. Also this
aspect of that renowed paper should be emphasized, not only the
derivation of equations of motion for the spinning particle.

2. The quantum mechanical expectation values can be regarded as a
kind of moments. There is infinite number of them, because, in
general, various degrees of freedom of the quantum particle are
entangled: the expectation values of products of operators do not
factorize. Are these moments related with the moments introduced in
the way Mathisson did?

THAN
K YOU!
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