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Lovelock theory

The Einstein-Gauss-Bonnet (second order in curvature) theory:

L = −2Λ + R +
α

2
(RµνλσR

µνλσ − 4RµνR
µν + R2),

where α is a coupling constant.
Ghost-free generalization:
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m

1
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δµ1ν1...µmνm
λ1σ1...λmσm

R λ1σ1
µ1ν1
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Motivation: AdS/CFT

Quark-gluon plasma is formed due to high-energy
collisions of heavy ions (such as lead or gold nuclei) in
RHIC or LHC when quarks deconfine.

Quantum chromodynamics does not describe quark-gluon
plasma, because it is not perturbative in the regime of
strong coupling g .

AdS/CFT correspondence: large g in quantum field
theory corresponds to the weak-field regime of gravity in
AdS.
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AdS/CFT dictionary

Quantum system Gravity

D dimensions (D + 1) dimensions

strong coupling (λ = g 2N) weak coupling (λ = R4

l4s
)

equilibration and thermalization formation of a stable
black hole event horizon

temperature of plasma Hawking temperature of the
black hole

poles of the retarded
Green function

quasinormal modes

time-scale for
perturbation relaxation

the least damped
(dominant) mode
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AdS/CFT

Kovtun, Son, and Starinets, PRL 94 (2005) 111601
showed that the AdS/CFT correspondence predicts that

η

s
≈ ~

4πkB
,

where η is the shear viscosity, s is volume density of
entropy. In this approach, instead of SU(3) group, SU(N)
Yang-Mills theory is used in the limit N →∞.

In 2008 experiments on RHIC this universal ration was
confirmed with good accuracy!

CFT is not a real quantum chromodynamics (although
works at large coupling).
At weak coupling we have perturbative theory.
What happens at intermediate coupling?
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AdS/CFT and Lovelock gravity

M. Brigante, R. Myers et.al, PRD 77 (2008) 126006
showed that the Gauss-Bonnet correction violates the
ratio and suggested the (D = 5) Einstein-Gauss-Bonnet
black brane background as a candidate for the model for
quantum fluids

η

s
=

1

4π
(1− 4λGB)

(
λGB =

α2

L2
= −α2Λ

6

)
.

Higher curvature corrections to the Einstein action, such
as Gauss-Bonnet or Lovelock may represent corrections to
the results when ’t Hooft coupling is large:
S. Waeber, et. al, JHEP 1511 (2015) 087;
S. Grozdanov, et. al, JHEP 1607 (2016) 151;
T. Andrade, et. al, JHEP 1702 (2017) 016.
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Spherically symmetric black holes

ds2 = −(1− r 2 ψ(r))dt2 +
dr 2

1− r 2 ψ(r)
+ r 2 dΩ2

n

where dΩ2
n is a (n = D − 2)-dimensional sphere, and

µ

rn+1
= − Λ

(n + 1)
+

n

2

(
ψ + α2

(n − 1)(n − 2)

2
ψ2

+α3
(n − 1)(n − 2)(n − 3)(n − 4)

3
ψ3 . . .

)
≡ W (ψ),

where µ is a constant, proportional to mass.
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Problems

1 Nonphysical branches.
Example for the Gauss-Bonnet theory
(α̃ = α2(n − 1)(n − 2)/2):

ψ(r) =
4
(

µ
rn+1 + Λ

n+1

)
n ±

√
n2 + 8α̃n

(
µ

rn+1 + Λ
n+1

) .
2 Parametric space.

µ >
n (−2α̃)(n−1)/2

4

(
1 +

8α̃Λ

n(n + 1)

)
(α̃ < 0),

In the AdS space α̃ has an upper bound,
e.g. λGB ≤ 1/4.

3 Stability.
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Solutions in Lovelock gravity

For the physically relevant configurations we observe that ψ is
a monotonic function of r outside the black hole, spanning

ψH ≥ ψ(r) ≥ ψA,

where ψH = r−2
H (rH is the event horizon radius),

ψH = 0 for black branes;
ψA = r−2

C for de Sitter (rC is the cosmological horizon),
ψA = 0 for the asymptotically flat space,
ψA < 0 in AdS.

With the allowed values for ψ, through analysis of polynomials
of ψ, we obtain:

1 ψ(r) and all the derivatives with arbitrary precision;

2 test if the set of parameters is allowed;

3 test for the eikonal instability.
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Example of parametric space bounds

α̃ ≡ α2
(n − 1)(n − 2)

2
, β̃ ≡ α3

(n − 1)(n − 2)(n − 3)(n − 4)

3
.

rH >



0, α̃ ≥ 0, β̃ ≥ 0;√√
α̃2 − 3β̃ − α̃, α̃ ≥ 0, β̃ < 0;

0, α̃ < 0, β̃ >
α̃2

3
;√√√√√−α̃

1 +

√
1− 3β̃

α̃2

, α̃ < 0, β̃ ≤ α̃2

3
.

and in AdS (for β̃ ≤ α̃2/3) α̃ +

√
α̃2 − 3β̃ ≤ R2,

where R is the AdS radius.
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Eikonal instability of Lovelock black holes

Eikonal instability: the perturbations for large multipole
number ` are more unstable. Hence summation over
multipoles is divergent.

In the parametric region of the eikonal instability the
perturbation equations become nonhyperbolic
H. Reall, N. Tanahashi, B. Way, CQG 31 (2014) 205005.

For the eikonal instability it is sufficient that the
dominant in ` term of the corresponding effective
potential has a negative gap
T. Takahashi, J. Soda, Prog. Theor. Phys. 124 (2010) 711.

These terms are proportional to a polynomials in φ.
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Effective potentials

Classification according to the irreducible representations of
the rotation group on (D − 2)-sphere (hydrodynamic analogy):

Tensor type (scalar channel):

Vt(r) =
`2f (r)T ′′(r)

(n − 2)rT ′(r)
+O(`),

Vector type (shear channel):

Vv (r) =
`2f (r)T ′(r)

(n − 1)rT (r)
+O(`),

Scalar type (sound channel):

Vs(r) =
`2f (r)(2T ′(r)2 − T (r)T ′′(r))

nrT ′(r)T (r)
+O(`),

where T (r) = rn−1dW /dψ = nrn−1(1/2 + α̃ψ(r)).
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Regions of eikonal instability for AdS black holes
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Parametric regions of the eikonal instability for tensor-type
perturbations (red) and scalar-type perturbations (cyan) of
Einstein-Gauss-Bonnet-AdS black holes for
D = 5 (left) and D = 6 (right).
For D = 5 AdS black holes are stable for
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H

2
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2√
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√

2r 2
H

.

Alexander Zhidenko Linear perturbations of Lovelock black holes



Eikonal instability of black branes (rH →∞)
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D = 7 (left) and D = 8 (right): The excluded parametric
region is black, vector-type (ghost) instability – yellow,
scalar-type instability – blue, tensor-type instability – magenta,
scalar-type and tensor-type instability – green.
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Results

1 We obtained a comprehensive method for accurate
finding of the parametric space and region of eikonal
instability for spherically symmetric black holes in the
Lovelock theory of gravity.

2 For the valid parameters we can find numerically the
metric, its derivatives, and all the effective potentials with
arbitrary precision.

3 Black holes with well-posed initial value problem
exist/can be formed in AdS only when the parameters
α2, α3 . . . are sufficiently small.
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Quasinormal spectrum for the Gauss-Bonnet case

4 The obtained quasinormal spectrum consists from the two
essentially different types of modes: perturbative and
non-perturbative in the Gauss-Bonnet coupling α.

5 The sound and hydrodynamic modes of the perturbative
branch can be expressed as linear corrections in α to the
damping rates of their Schwazrschild-AdS limits:
ω ≈ Re(ωSAdS)+Im(ωSAdS)(1−α·((D+1)(D−4)/2R2))i .

6 The non-perturbative branch of modes consists of purely
imaginary modes, whose damping rates unboundedly
increase when α goes to zero. The instability is “driven”
by these purely imaginary modes.

7 We find only eikonal instability for AdS black holes in the
Gauss-Bonnet theory while for dS (and flat) there is also
a “normal” instability.
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Open questions

1 Stability (non-eikonal) and quasinormal ringing of
spherically symmetric black holes in the Lovelock theory.

2 Causality violation in the Lovelock theory.
In the D = 5 Gauss-Bonnet theory causality is violated for
the AdS black branes, which have no eikonal instability:
M. Brigante, et. al PRL 100 (2008) 191601.

3 Black hole formation in the Lovelock theory.
In the D = 5 Gauss-Bonnet theory in AdS there is a low
bound for mass, for which black hole formation is possible.
Nils Deppe, et. al JHEP 1610 (2016) 087.
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