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Introduction

Why type [N] is so interesting in General Theory of Relativity?

@ Peeling Theorem and possible relation between type [N] and
gravitational waves

_ N [ mp 1
Cabcd—T-FV-i-F-i-F-FO(E)

@ All vacuum solutions of the type [N] are know except twisting class
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Let Capcp = Capcp) be a spinorial image of the SD part of the Weyl
tensor. According to the Penrose Theorem it can be decomposed into
product of 1-index spinors ma, na, ra and s4 which are called undotted
Penrose spinors.

CaBcp = MANBTCSD)

Adam Chudecki*, Maciej Przanowski** From hypert ly spaces to lex and real, twisting type [N] ® [N]



Introduction
Type [N] in Lorentzian geometry Type [N] in Lorentzian geometry
Type [N] in complex geometry Goldberg - Sachs Theorem
Different classes of the type [N] metrics

Let Capcp = Capcp) be a spinorial image of the SD part of the Weyl
tensor. According to the Penrose Theorem it can be decomposed into
product of 1-index spinors ma, na, ra and s4 which are called undotted
Penrose spinors.

CaBcp = MANBTCSD)

We say that the spacetime is of the type [N] if

Capcp = mampmemp
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Type [N] in Lorentzian ge

Let Capcp = Capcp) be a spinorial image of the SD part of the Weyl
tensor. According to the Penrose Theorem it can be decomposed into
product of 1-index spinors ma, na, ra and s4 which are called undotted
Penrose spinors.

CaBcp = MANBTCSD)

We say that the spacetime is of the type [N] if

Capcp = mampmemp

In Lorentzian geometry dotted Penrose spinors m ; = T a, SO
y A
Cipep = mampmemy = Capep

(ASD Weyl spinor is of the type [N] as well).
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Congruences of the null

Consider the null and geodesic vector field K, in affine parametrization.
The optical properties of such family of the null lines in the null tetrad

(e!,e? = el €3, et) are described by three parameters
. 1
expansion: © := §V“Ka

1
twist: 72 = §V[aKb]VaKb

shear: oo = %V(GKZ,) VoK — 02
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Goldberg - Sachs Theo

Theorem (Goldberg-Sachs Theorem, Goldberg, Sachs, 1962)

In Einstein spaces the following statements are equivalent
@ space admits a shearfree null geodesic congruence

o Weyl tensor is algebraically degenerate

Adam Chudecki*, Maciej Przanowski** From hypert ly spaces to lex and real, twisting type [N] ® [N]



Introduction
Type [N] in Lorentzian geometry Type [N] in Lorentzian geometry
Type [N] in ¢ etry Goldberg - Sachs Theorem
H Different classes of the type [N] metrics

Different classes of t

There are 3 vacuum classes of Lorentzian type [N] metrics
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Different classes of th

There are 3 vacuum classes of Lorentzian type [N] metrics

@ Kundt class (nontwisting, nonexpanding, pp-waves as a special
subclass)
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Different classes of the

There are 3 vacuum classes of Lorentzian type [N] metrics

@ Kundt class (nontwisting, nonexpanding, pp-waves as a special
subclass)

@ Robinson - Trautman class (nontwisting, expanding)
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Different classes of the ty

There are 3 vacuum classes of Lorentzian type [N] metrics
@ Kundt class (nontwisting, nonexpanding, pp-waves as a special
subclass)
@ Robinson - Trautman class (nontwisting, expanding)

o Twisting class. The only known explicit solution is Houser solution
which is equipped with two symmetries (one Killing vector, one
homothetic Killing vector)
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Different classes of the typ

There are 3 vacuum classes of Lorentzian type [N] metrics
@ Kundt class (nontwisting, nonexpanding, pp-waves as a special
subclass)
@ Robinson - Trautman class (nontwisting, expanding)
o Twisting class. The only known explicit solution is Houser solution

which is equipped with two symmetries (one Killing vector, one
homothetic Killing vector)

Killing equations: V(,Kjp) = X0gab
xo = 0 - K, is Killing vector
Xo # 0 - K, is homothetic Killing vector
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@ In complex spaces which SD Weyl spinor is algebraically degenerate,
Einstein vacuum field equations have been reduced to the single

hyperheavenly equation
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@ In complex spaces which SD Weyl spinor is algebraically degenerate,
Einstein vacuum field equations have been reduced to the single
hyperheavenly equation

@ The results are valid in 4-dimensional spaces with the neutral

signature metric (+ + ——)
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Congruence of the null strings

Generalized Goldberg - Sachs Theorem

Intersection of SD and ASD congruences of the null strings

Complex counterpart of

In complex geometry there is no relation between undotted and dotted
Penrose spinors, so there exist spaces of the "mixed” types, like [N] ® [D].
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Complex counterpart of

In complex geometry there is no relation between undotted and dotted
Penrose spinors, so there exist spaces of the "mixed” types, like [N] ® [D].

Theorem (Rdzga Theorem, Rézga, 1977)

Lorentzian slice of the complex space exists only if SD and ASD Weyl
spinors are of the same Petrov-Penrose types.
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Type [N] complex geometry

Congruence of the null strings

Generalized Goldberg - Sachs Theorem

Intersection of SD and ASD congruences of the null strings

Complex counterpart of

In complex geometry there is no relation between undotted and dotted
Penrose spinors, so there exist spaces of the "mixed” types, like [N] ® [D].

Theorem (Rdzga Theorem, Rézga, 1977)

Lorentzian slice of the complex space exists only if SD and ASD Weyl
spinors are of the same Petrov-Penrose types.

Lorentzian geometry: type [N]
Complex geometry: type [N] ® [N]
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Congruence of the null strings

Generalized Goldberg - Sachs Theorem

Intersection of SD and ASD congruences of the null strings

Congruence of the SD

Consider 2-dimensional SD distribution D = {m 4a;, maby}, a;b* # 0.
It is integrable in the Frobenius sense, if

mAmPV ;ymp =0 (1)
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Congruence of the null strings

Generalized Goldberg - Sachs Theorem

Intersection of SD and ASD congruences of the null strings

Congruence of the SD nu

Consider 2-dimensional SD distribution D = {m 4a;, maby}, a;b* # 0.
It is integrable in the Frobenius sense, if

mAmPV ymp =0 (1)
Equations (1) are called SD null string equations. The integral manifolds
of the distribution D are 2-dimensional, holomorphic, totally null and
geodesics surfaces, called null strings. Their family constitutes the
congruence of the SD null strings.

Adam Chudecki*, Maciej Przanowski** From hypert ly spaces to lex and real, twisting type [N] ® [N]



Introduction

Type [N] in Lorentzian geometry

Type [N] in complex geometry
H

Type [N] complex geometry

Congruence of the null strings

Generalized Goldberg - Sachs Theorem

Intersection of SD and ASD congruences of the null strings

Congruence of the SD

From SD null strings equations we find
VAMmB = mBZAM-l- €AB MM

Spinor field M), is called expansion of the congruence.
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Generalized Goldberg - Sachs Theorem

Intersection of SD and ASD congruences of the null strings

Congruence of the SD

From SD null strings equations we find
VAMmB = mBZAM-l- €AB MM

Spinor field M), is called expansion of the congruence.
e M,; = 0 - nonexpanding congruence.
o My, # 0 - expanding congruence.
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Congruence of the null strings

Generalized Goldberg - Sachs Theorem

Intersection of SD and ASD congruences of the null strings

Congruence of the SD nu

From SD null strings equations we find
VAMmB = mBZAM-l- €AB MM

Spinor field M), is called expansion of the congruence.
e M,; = 0 - nonexpanding congruence.
o My, # 0 - expanding congruence.

Nonexpanding congruence = distribution D is parallely propagated:
Vv X € D for any vector field V' and any vector field X € D

Spaces which admit nonexpanding congruence of SD null strings are
called Walker spaces.
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Type [N] complex geometry

Congruence of the null strings

Generalized Goldberg - Sachs Theorem

Intersection of SD and ASD congruences of the null strings

Generalized Goldberg -

Theorem (Generalized Goldberg-Sachs Theorem, Plebariski, Hacyan,

1975)

In complex Einstein spaces the following statements are equivalent

@ space admits a congruence of SD null strings generated by the
spinor m*

o SD Weyl spinor is algebraically degenerate and spinor m* is a

multiple Penrose spinor

Capcp = mampncsp)
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Congruence of the null strings

Generalized Goldberg - Sachs Theorem

Intersection of SD and ASD congruences of the null strings

Properties of the inter
congruences of the nul

Consider the space which admits both SD and ASD congruences of the
null strings. Then

M, — expansion of the SD congruence of the null strings

M4 — expansion of the ASD congruence of the null strings
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Properties of the intersec
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Type [N] complex geometry

Congruence of the null strings

Generalized Goldberg - Sachs Theorem

Intersection of SD and ASD congruences of the null strings

Consider the space which admits both SD and ASD congruences of the
null strings. Then

M, — expansion of the SD congruence of the null strings

M4 — expansion of the ASD congruence of the null strings

Intersection of these congruences constitutes the congruence of the
complex, null geodesics. It is given by the vector field K, ~ mam.
Define expansion and twist by the formulas

1 .

0 := 5vaKa ~ maMA +m M4

1 .

= VK VKT~ ma M —m A
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There are three classes of the type [N] ® [N] spaces
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Congruence of the null strings
Generalized Goldberg - Sachs Theorem
Intersection of SD and ASD congruences of the null strings

Properties of the inte
congruences of the n

There are three classes of the type [N] ® [N] spaces
e Type [N]” ® [N]” - then § = 7 = 0.
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Congruence of the null strings

Generalized Goldberg - Sachs Theorem

Intersection of SD and ASD congruences of the null strings

Properties of the inter
congruences of the nul

There are three classes of the type [N] ® [N] spaces
e Type [N]” ® [N]” - then § = 7 = 0.

e Type [N]™ ® [N]°¢ or [N]® ® [N]™ - such spaces do not admit real
Lorentzian slices.
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Congruence of the null strings

Generalized Goldberg - Sachs Theorem

Intersection of SD and ASD congruences of the null strings

Type [N] in Lorentzian geometry
Type [N] in complex geometry
ces

Properties of the inters
congruences of the nul

There are three classes of the type [N] ® [N] spaces
e Type [N]” ® [N]” - then § = 7 = 0.

e Type [N]™ ® [N]°¢ or [N]® ® [N]™ - such spaces do not admit real
Lorentzian slices.

e Type [N]¢ ® [N]©
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Congruence of the null strings

Generalized Goldberg - Sachs Theorem

Intersection of SD and ASD congruences of the null strings

Properties of the interse
congruences of the null

There are three classes of the type [N] ® [N] spaces

e Type [N]” ® [N]™ - then § =7 =0.

e Type [N]™ ® [N]°¢ or [N]® ® [N]™ - such spaces do not admit real

Lorentzian slices.

o Type [N]*® [N]®
Real Lorentzian spaces of the type [N] with nonzero twist are contained
in complex spaces of the type [N]¢ ® [N]¢ equipped with expanding SD
and ASD congruences of the null strings.
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Hyperheavenly spaces -

Definition

Hyperheavenly space (HH-space) is a 4-dimensional complex analytic
differential manifold equipped with a holomorphic metric ds?> which
satisfies the vacuum Einstein equations and such that the self-dual part
of the Weyl tensor is algebraically degenerate.
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Hyperheavenly spaces
Symmetries in hyperheavenly spaces

Hyperheavenly spaces - th

The metric of the Einstein type [N] ® [any] spaces can be brought to the
form [Plebanski, Robinson, 1976]

ds*> = 2¢7*{(dndw — dedt) — ¢ W, dt?
+(2W,) — 20 W) dwdt + (2Wy — ¢ W) dw?}

where (¢, m,w,t) are local coordinates called Plebariski - Robinson -
Finley coordinates, function W = W (¢, n,w,t) is the key function, which
satisfies the hyperheavenly equation

WoaWes — WaWag + 207 W, Wy — 207 W W,
+¢_1(an - Wt¢)) =7

v = v(w,t) is an arbitrary function such that ~; # 0.
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Hyperheavenly spaces

Cipsep is of the type [N] with nonzero twist, if Wygag # 0, Wipny # 0
and

Wanne = hWannn (2)
Wines = hWnnn¢

Wasss = hWines
Wosos = hMWiese

where h = h(¢,n,w,t).
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Hyperheavenly spaces

Integrability conditions of the set (2) imply
hg = hh,

with solution

where f = f(h,w,t) is an arbitrary function.
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Hyperheavenly spaces

Integrability conditions of the set (2) imply
hg = hh,

with solution

where f = f(h,w,t) is an arbitrary function.
It suggests coordinate transformation 1 — h.

Adam Chudecki*, Maciej Przanowski** From hypert ly spaces to lex and real, twisting type [N] ® [N]



Type [N] in Lor

Type [N] in c Hyperheavenly spaces

Symmetries in hyperheavenly spaces

Hyperheavenly spaces -
[N] ® [N]

The key function for the spaces [N]¢ ® [N]¢ in coordinates (¢, h, w,t) is
the third order polynomial in ¢. It reads

W =—F¢3 + %(R —2hS + h2Q)$? + (B — Ah)p + C
where F = F(h,w,t) and f = f(h,w,t) are arbitrary functions and
Q= /f'F'dh, S = /f(h'F' — F)dh, R:= /f(hzﬁ' — 2hF + 2F)dh
A= /f' /f"F'dhdh, B:= /f /f(h'F' — F)dhdh
C:= /f /f /f'F‘dhdhdh, f= %, etc.
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Hyperheavenly spaces
Symmetries in hyperheavenly spaces

Hyperheavenly equation

Putting the key function into the hyperheavenly equation we obtain the
following set

(R+ h%Q — 2hS)F + (28 — 2hQ)EF — hF, + 3F, + F,, = 0

5% — QR+ 4AF — 2hAF + 2BF — R, + hS; — fi(hF — 2F)
+Suw — hQuy + ful =~

2SA —20B — By + f1S + Ay — fu2 =0

It is overdetermined system of three equations for two functions
F(h,w,t) and f(h,w,t) of three variables.
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Hyperheavenly spaces
Symmetries in hyperheavenly spaces

Symmetries in hyperhea

It has been proved [Sonnleitner A., Finley J.D. 11l (1982), A.C (2013)] that in
hyperheavenly spaces ten Killing equations can be reduced to the single master
equation. For the hyperheavenly spaces of the type [N] ® [any] with A = 0 this
equation reads
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Hyperheavenly spaces
Symmetries in hyperheavenly spaces

Symmetries in hyperheave

It has been proved [Sonnleitner A., Finley J.D. 11l (1982), A.C (2013)] that in
hyperheavenly spaces ten Killing equations can be reduced to the single master
equation. For the hyperheavenly spaces of the type [N] ® [any] with A = 0 this
equation reads

1
KW) = —(4x0 4 2aw — 3b)W + a¢® + 5(ewqb +em)+ B
1
+5 ( - bww¢2 - bttn2 + (aww - thw)n¢>
where vector K has the form
9] o}
K = a%-Fba-F(b 2X0)¢6¢

9]
—|—((th — aw — 2x0)1 + bw — e) o

where a = a(w), b = b(w, t), € = e(w, t), B = B(w,t), a« = a(w,t).
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Killing vector

There are two different types of the Killing vectors in hyperheavenly
spaces of the type [N] ® [N] with A =0
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Symmetries in hyperheavenly spaces

Killing vector

There are two different types of the Killing vectors in hyperheavenly
spaces of the type [N] ® [N] with A =0

@ 0, (in this case congruence of the null complex geodesics is
nontwisting)
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Symmetries in hyperheavenly spaces

Killing vector

There are two different types of the Killing vectors in hyperheavenly
spaces of the type [N] ® [N] with A =0

@ 0, (in this case congruence of the null complex geodesics is
nontwisting)

@ Oy
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Hyperheavenly spaces
Symmetries in hyperheavenly spaces

Killing vector

There are two different types of the Killing vectors in hyperheavenly
spaces of the type [N] ® [N] with A =0

@ 0, (in this case congruence of the null complex geodesics is
nontwisting)

@ Oy
Let us equip hyperheavenly space of the type [N] ® [N] with symmetry
0
KO = =
ow

then F = F(h,t), f = f(h,t) and v = ~(¢).
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Symmetries in hyperheavenly spaces

Homothetic Killing ve

With the symmetry given by d,,, the homothetic Killing vector K®) can
be brought to the form

(2) — _é _é _ -
K w 0 +t ; +(1- 2Xo)¢ 5 + (1 —2x0)n an
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Further steps

The next steps are:
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Further steps

The next steps are:

@ Solve the master equation for the homothetic Killing vector K(2)
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Further steps

The next steps are:

Hyperheavenly spaces
Symmetries in hyperheavenly spaces

@ Solve the master equation for the homothetic Killing vector K(2)

@ Insert the solution into the set of field equations - we obtain the set
of four equations for three functions of one variable
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Further steps

The next steps are:
o Solve the master equation for the homothetic Killing vector K ()

@ Insert the solution into the set of field equations - we obtain the set
of four equations for three functions of one variable

@ One of the equations is an identity, so the set of the field equations
is not overdetermined anymore
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The metric

Finally we arrive at the metric

ds? = 2¢—2{ (t1_2X° - ¢>jh> dvdw — hdgdw — dedt

v

-1 dT 1-— 2X() 2,2v0—2 d2T dZZ 2
‘(4” <E‘T ot g T2 ) )

_ 1 (dT  1-—2x0
2( 70T — pht™ [ == —
+< ¢ (dv 2 )

1 pyemn (2d°T _ dP
+50% Wy gy ) )dwd

+ <2t_2X°Z + ot ! <P — 2hi—Z>
v

2
2,2x0—2 LZ . 7df 2
+¢°t h <h 02 v) >dw }

where (¢, v, w,t) are local coordinates, T'=T'(v), Z = Z(v), P = P(v).
Moreover, h = Z""" /T"", where Z' = ‘;f, etc.
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Equations

Functions T'=T(v), Z = Z(v), P = P(v) have to satisfy the set of

equations
dz dr 1
A ey
dv dv + 2 0 (32)
dP AT 2x0—3 &z (dz\*
d#z\* T dp
@) T @F at (3¢)
Solutions of the equations (3a) and (3b) are simple
_ 1 _1Q ,_d@Q
20)=g . T =55, @=5

Pv) = Q@3 / Q™ (391" — 20 1Q" +90Q' ) dv

where Q = Q(v).
o Gy ety Feees (o et e teslh Gl G (1) 6 (191
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Equations

Equation (3c) becomes extremely complicated ODE of the fifth order

(4(X0 _ 2)(X0 _ 1) + /LQQZS) {—2,LLZZSZ//” + 2,LLZ2Z///(Q/ZW + N/Z + NZ/)
+2Z/Z/”(/_LZ + QZIII)2 _ Z”Iz(/,LZ + QZIII)(QZI + 2X0)}
—(QZ = 2x0 + 1) (nZ + QZ")* (uZ® +~0) +4QuZ°Z" (uZ + QZ")* = 0

where
1
— 2Q”,7 Z(’U) = @

3Q//2

p(v) : 0
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Disadvantages of our approach
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Concluding Remark

Disadvantages of our approach

@ No new solutions have been found so far (most promising case is
Xo =2)
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Disadvantages of our approach
@ No new solutions have been found so far (most promising case is
Xo = 2)
@ Houser solution has not been reconstructed so far
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Disadvantages of our approach
@ No new solutions have been found so far (most promising case is
Xo = 2)
@ Houser solution has not been reconstructed so far
@ No transformation which reduce the order of the final differential
equation has been found so far
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Advantages of our approach

Adam Chudecki*, Maciej Przanowski** From hypert ly spaces to lex and real, twisting type [N] ® [N]



Type [N] in Lorentzian
Type [N] in complex y Concluding Remarks
Hyper y sp:
Concluding Remarks

Concluding Remarks

Advantages of our approach
o Final equation is ODE and it can be written in the form

Ql/l// — G(Q, QI7 QII7 Q/l/7 QIIII)

with G being the rational function. It always has solution for
arbitrary initial values. It works in complex case, real Lorentzian case
and real neutral case.
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Advantages of our approach
o Final equation is ODE and it can be written in the form

Ql/l// — G(Q, QI7 QII7 Q/N7 Q/l//)

with G being the rational function. It always has solution for
arbitrary initial values. It works in complex case, real Lorentzian case
and real neutral case.

o We formulated the theorem which is complex counterpart of the
theorem formulated by W.D. Halford (1979) and C.D. Collinson
(1969, 1980)

For any vacuum HH-spaces of the type [N| ® [II,D,III,N] with twisting
congruence of null geodesics arising as intersection of SD null strings
with ASD null strings there exist at most two homothetic Killing vectors.
They must be noncommuting.
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@ The form of the key function is valid for any spaces for which ASD
Weyl spinor is of the type [N]. Such key function can be used in
neutral geometry (for example, the problem of the Einstein,
para-Hermite spaces of the type [D]*¢ ® [N]¢)
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