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Type [N] in Lorentzian geometry

Let CABCD = C(ABCD) be a spinorial image of the SD part of the Weyl
tensor. According to the Penrose Theorem it can be decomposed into
product of 1-index spinors mA, nA, rA and sA which are called undotted
Penrose spinors.

CABCD = m(AnBrCsD)

We say that the spacetime is of the type [N] if

CABCD = mAmBmCmD

In Lorentzian geometry dotted Penrose spinors mȦ = mA, so

CȦḂĊḊ = mȦmḂmĊmḊ = CABCD

(ASD Weyl spinor is of the type [N] as well).
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Congruences of the null geodesics

Consider the null and geodesic vector field Ka in affine parametrization.
The optical properties of such family of the null lines in the null tetrad
(e1, e2 = e1, e3, e4) are described by three parameters

expansion: Θ :=
1

2
∇aKa

twist: τ2 :=
1

2
∇[aKb]∇aKb

shear: σσ :=
1

2
∇(aKb)∇aKb −Θ2
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Goldberg - Sachs Theorem

Theorem (Goldberg-Sachs Theorem, Goldberg, Sachs, 1962)

In Einstein spaces the following statements are equivalent

space admits a shearfree null geodesic congruence

Weyl tensor is algebraically degenerate
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Different classes of the type [N] metrics

There are 3 vacuum classes of Lorentzian type [N] metrics

Kundt class (nontwisting, nonexpanding, pp-waves as a special
subclass)

Robinson - Trautman class (nontwisting, expanding)

Twisting class. The only known explicit solution is Houser solution
which is equipped with two symmetries (one Killing vector, one
homothetic Killing vector)

Killing equations: ∇(aKb) = χ0gab
χ0 = 0 - Ka is Killing vector
χ0 6= 0 - Ka is homothetic Killing vector
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Why complex approach?

In complex spaces which SD Weyl spinor is algebraically degenerate,
Einstein vacuum field equations have been reduced to the single
hyperheavenly equation

The results are valid in 4-dimensional spaces with the neutral
signature metric (+ +−−)
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Complex counterpart of the Lorentzian type [N]

In complex geometry there is no relation between undotted and dotted
Penrose spinors, so there exist spaces of the ”mixed” types, like [N]⊗ [D].

Theorem (Rózga Theorem, Rózga, 1977)

Lorentzian slice of the complex space exists only if SD and ASD Weyl
spinors are of the same Petrov-Penrose types.

Lorentzian geometry: type [N]
Complex geometry: type [N]⊗ [N]

Adam Chudecki*, Maciej Przanowski** From hyperheavenly spaces to complex and real, twisting type [N] ⊗ [N] spaces



Introduction
Type [N] in Lorentzian geometry

Type [N] in complex geometry
Hyperheavenly spaces

Concluding Remarks

Type [N] complex geometry
Congruence of the null strings
Generalized Goldberg - Sachs Theorem
Intersection of SD and ASD congruences of the null strings

Complex counterpart of the Lorentzian type [N]

In complex geometry there is no relation between undotted and dotted
Penrose spinors, so there exist spaces of the ”mixed” types, like [N]⊗ [D].
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Congruence of the SD null strings

Consider 2-dimensional SD distribution D = {mAaḂ ,mAbḂ}, aȦbȦ 6= 0.
It is integrable in the Frobenius sense, if

mAmB∇AṀmB = 0 (1)

Equations (1) are called SD null string equations. The integral manifolds
of the distribution D are 2-dimensional, holomorphic, totally null and
geodesics surfaces, called null strings. Their family constitutes the
congruence of the SD null strings.
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It is integrable in the Frobenius sense, if
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Congruence of the SD null strings

From SD null strings equations we find

∇AṀmB = mBZAṀ+ ∈AB MṀ

Spinor field MṀ is called expansion of the congruence.

MṀ = 0 - nonexpanding congruence.

MṀ 6= 0 - expanding congruence.

Nonexpanding congruence = distribution D is parallely propagated:

∇VX ∈ D for any vector field V and any vector field X ∈ D

Spaces which admit nonexpanding congruence of SD null strings are
called Walker spaces.
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∇AṀmB = mBZAṀ+ ∈AB MṀ
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Generalized Goldberg - Sachs Theorem

Theorem (Generalized Goldberg-Sachs Theorem, Plebański, Hacyan,
1975)

In complex Einstein spaces the following statements are equivalent

space admits a congruence of SD null strings generated by the
spinor mA

SD Weyl spinor is algebraically degenerate and spinor mA is a
multiple Penrose spinor

CABCD = m(AmBnCsD)
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Properties of the intersection of the SD and ASD
congruences of the null strings

Consider the space which admits both SD and ASD congruences of the
null strings. Then

MȦ − expansion of the SD congruence of the null strings

MA − expansion of the ASD congruence of the null strings

Intersection of these congruences constitutes the congruence of the
complex, null geodesics. It is given by the vector field Ka ∼ mAmḂ .
Define expansion and twist by the formulas

θ :=
1

2
∇aKa ∼ mAM

A +mȦM
Ȧ

τ2 :=
1

2
∇[aKb]∇aKb ∼ mAM

A −mȦM
Ȧ
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Properties of the intersection of the SD and ASD
congruences of the null strings

There are three classes of the type [N]⊗ [N] spaces

Type [N]n ⊗ [N]n - then θ = τ = 0.

Type [N]n ⊗ [N]e or [N]e ⊗ [N]n - such spaces do not admit real
Lorentzian slices.

Type [N]e ⊗ [N]e

Real Lorentzian spaces of the type [N] with nonzero twist are contained
in complex spaces of the type [N]e ⊗ [N]e equipped with expanding SD
and ASD congruences of the null strings.
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Hyperheavenly spaces - definition

Definition

Hyperheavenly space (HH-space) is a 4-dimensional complex analytic
differential manifold equipped with a holomorphic metric ds2 which
satisfies the vacuum Einstein equations and such that the self-dual part
of the Weyl tensor is algebraically degenerate.
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Hyperheavenly spaces - the metric

The metric of the Einstein type [N]⊗ [any] spaces can be brought to the
form [Plebański, Robinson, 1976]

ds2 = 2φ−2
{

(dηdw − dφdt)− φWηη dt
2

+(2Wη − 2φWηφ) dwdt+ (2Wφ − φWφφ) dw2
}

where (φ, η, w, t) are local coordinates called Plebański - Robinson -
Finley coordinates, function W = W (φ, η, w, t) is the key function, which
satisfies the hyperheavenly equation

WηηWφφ −WηφWηφ + 2φ−1WηWηφ − 2φ−1WφWηη

+φ−1(Wwη −Wtφ) = γ

γ = γ(w, t) is an arbitrary function such that γt 6= 0.

Adam Chudecki*, Maciej Przanowski** From hyperheavenly spaces to complex and real, twisting type [N] ⊗ [N] spaces



Introduction
Type [N] in Lorentzian geometry

Type [N] in complex geometry
Hyperheavenly spaces

Concluding Remarks

Hyperheavenly spaces
Symmetries in hyperheavenly spaces

Hyperheavenly spaces - the ASD curvature

CȦḂĊḊ is of the type [N] with nonzero twist, if Wφφφφ 6= 0, Wηηηη 6= 0
and

Wηηηφ = hWηηηη (2)

Wηηφφ = hWηηηφ

Wηφφφ = hWηηφφ

Wφφφφ = hWηφφφ

where h = h(φ, η, w, t).
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Hyperheavenly spaces - the ASD curvature

Integrability conditions of the set (2) imply

hφ = hhη

with solution
η + φh = f(h,w, t)

where f = f(h,w, t) is an arbitrary function.
It suggests coordinate transformation η → h.
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Hyperheavenly spaces - the key function for the types
[N]⊗ [N]

The key function for the spaces [N]e ⊗ [N]e in coordinates (φ, h,w, t) is
the third order polynomial in φ. It reads

W = −Fφ3 +
1

2
(R− 2hS + h2Ω)φ2 + (B −Ah)φ+ C

where F = F (h,w, t) and f = f(h,w, t) are arbitrary functions and

Ω :=

∫
ḟ

...
Fdh, S :=

∫
ḟ(h

...
F − F̈ )dh, R :=

∫
ḟ(h2

...
F − 2hF̈ + 2Ḟ )dh

A :=

∫
ḟ

∫
ḟ

...
Fdhdh, B :=

∫
ḟ

∫
ḟ(h

...
F − F̈ )dhdh

C :=

∫
ḟ

∫
ḟ

∫
ḟ

...
Fdhdhdh, ḟ ≡ df

dh
, etc.
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Hyperheavenly equation for the types [N]⊗ [N]

Putting the key function into the hyperheavenly equation we obtain the
following set

(R+ h2Ω− 2hS)F̈ + (2S − 2hΩ)Ḟ − hḞt + 3Ft + Ḟw = 0

S2 − ΩR+ 4AḞ − 2hAF̈ + 2BF̈ −Rt + hSt − ft(hF̈ − 2Ḟ )

+Sw − hΩw + fwF̈ = γ

2SA− 2ΩB −Bt + ftS +Aw − fwΩ = 0

It is overdetermined system of three equations for two functions
F (h,w, t) and f(h,w, t) of three variables.
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Symmetries in hyperheavenly spaces

It has been proved [Sonnleitner A., Finley J.D. III (1982), A.C (2013)] that in
hyperheavenly spaces ten Killing equations can be reduced to the single master
equation. For the hyperheavenly spaces of the type [N] ⊗ [any] with Λ = 0 this
equation reads

K(W ) = −(4χ0 + 2aw − 3bt)W + αφ3 +
1

2
(εwφ+ εtη) + β

+
1

2

(
− bwwφ

2 − bttη
2 + (aww − 2btw)ηφ

)
where vector K has the form

K = a
∂

∂w
+ b

∂

∂t
+ (bt − 2χ0)φ

∂

∂φ

+
(

(2bt − aw − 2χ0)η + bwφ− ε
) ∂

∂η

where a = a(w), b = b(w, t), ε = ε(w, t), β = β(w, t), α = α(w, t).
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Killing vector

There are two different types of the Killing vectors in hyperheavenly
spaces of the type [N]⊗ [N] with Λ = 0

∂η (in this case congruence of the null complex geodesics is
nontwisting)

∂w

Let us equip hyperheavenly space of the type [N]⊗ [N] with symmetry

K(1) =
∂

∂w

then F = F (h, t), f = f(h, t) and γ = γ(t).
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Homothetic Killing vector

With the symmetry given by ∂w, the homothetic Killing vector K(2) can
be brought to the form

K(2) = w
∂

∂w
+ t

∂

∂t
+ (1− 2χ0)φ

∂

∂φ
+ (1− 2χ0)η

∂

∂η
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Further steps

The next steps are:

Solve the master equation for the homothetic Killing vector K(2)

Insert the solution into the set of field equations - we obtain the set
of four equations for three functions of one variable

One of the equations is an identity, so the set of the field equations
is not overdetermined anymore
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The metric

Finally we arrive at the metric

ds2 = 2φ−2

{(
t1−2χ0 − φ

dh

dv

)
dvdw − h dφdw − dφdt

−
(
φt−1

(
dT

dv
− 1 − 2χ0

2

)
− φ2t2χ0−2

(
h

d2T

dv2
− d2Z

dv2

))
dt2

+2

(
t−2χ0T − φht−1

(
dT

dv
− 1 − 2χ0

2

)
+

1

2
φ2t2χ0−2

(
h2 d2T

dv2
− dP

dv

))
dwdt

+

(
2t−2χ0Z + φt−1

(
P − 2h

dZ

dv

)
+φ2t2χ0−2h

(
h

d2Z

dv2
− dP

dv

))
dw2

}
where (φ, v, w, t) are local coordinates, T = T (v), Z = Z(v), P = P (v).
Moreover, h = Z′′′/T ′′′, where Z′ ≡ dZ

dv
, etc.
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Equations

Functions T = T (v), Z = Z(v), P = P (v) have to satisfy the set of
equations

T
dZ

dv
− Z dT

dv
+

1

2
Z = 0 (3a)

2T
dP

dv
− P

(
dT

dv
+

2χ0 − 3

2

)
− 2Z

d2Z

dv2
+

(
dZ

dv

)2

= γ0 (3b)(
d3Z

dv3

)2

=
d3T

dv3
d2P

dv2
(3c)

Solutions of the equations (3a) and (3b) are simple

Z(v) =
1

Q′
, T (v) =

1

2

Q

Q′
, Q′ ≡ dQ

dv

P (v) = Qχ0−1Q′−
1
2

∫
Q−χ0

(
3Q′−

5
2Q′′2 − 2Q′−

3
2Q′′′ + γ0Q

′ 32
)

dv

where Q = Q(v).
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Equations

Equation (3c) becomes extremely complicated ODE of the fifth order(
4(χ0 − 2)(χ0 − 1) + µQ2Z3) {−2µ2Z3Z′′′′ + 2µZ2Z′′′(Q′Z′′′ + µ′Z + µZ′)

+2Z′Z′′′(µZ +QZ′′′)2 − Z′′′2(µZ +QZ′′′)(QZ′ + 2χ0)
}

−(QZ′ − 2χ0 + 4)(µZ +QZ′′′)3
(
µZ3 + γ0

)
+ 4QµZ3Z′′′(µZ +QZ′′′)2 = 0

where

µ(v) :=
3Q′′2

Q′
− 2Q′′′, Z(v) =

1

Q′
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Disadvantages of our approach

No new solutions have been found so far (most promising case is
χ0 = 2)

Houser solution has not been reconstructed so far

No transformation which reduce the order of the final differential
equation has been found so far
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Advantages of our approach

Final equation is ODE and it can be written in the form

Q′′′′′ = G(Q,Q′, Q′′, Q′′′, Q′′′′)

with G being the rational function. It always has solution for
arbitrary initial values. It works in complex case, real Lorentzian case
and real neutral case.

We formulated the theorem which is complex counterpart of the
theorem formulated by W.D. Halford (1979) and C.D. Collinson
(1969, 1980)

Theorem

For any vacuum HH-spaces of the type [N]⊗ [II,D,III,N] with twisting
congruence of null geodesics arising as intersection of SD null strings
with ASD null strings there exist at most two homothetic Killing vectors.
They must be noncommuting.
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The form of the key function is valid for any spaces for which ASD
Weyl spinor is of the type [N]. Such key function can be used in
neutral geometry (for example, the problem of the Einstein,
para-Hermite spaces of the type [D]ee ⊗ [N]e)
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