From hyperheavenly spaces to complex and real, twisting type $[N]\otimes [N]$ spaces

Adam Chudecki*, Maciej Przanowski**

*Center of Mathematics and Physics, Lodz University of Technology; **Institute of Physics, Lodz University of Technology

September 24, 2017

Introduction

Type [N] in Lorentzian geometry Type [N] in complex geometry Hyperheavenly spaces Concluding Remarks

Introduction

Why type [N] is so interesting in General Theory of Relativity?

 \bullet Peeling Theorem and possible relation between type $\left[\mathrm{N}\right]$ and gravitational waves

$$C_{abcd} = \frac{[\mathbf{N}]}{\lambda} + \frac{[\mathbf{III}]}{\lambda^2} + \frac{[\mathbf{II}]}{\lambda^3} + \frac{[\mathbf{I}]}{\lambda^4} + O\left(\frac{1}{\lambda^5}\right)$$

Introduction

 \bullet All vacuum solutions of the type $[\mathrm{N}]$ are know except twisting class

(日)、

Introduction

Type [N] in Lorentzian geometry Type [N] in complex geometry Hyperheavenly spaces Concluding Remarks

Introduction

Why type [N] is so interesting in General Theory of Relativity?

 \bullet Peeling Theorem and possible relation between type $\left[N \right]$ and gravitational waves

$$C_{abcd} = \frac{[\mathbf{N}]}{\lambda} + \frac{[\mathbf{III}]}{\lambda^2} + \frac{[\mathbf{II}]}{\lambda^3} + \frac{[\mathbf{I}]}{\lambda^4} + O\left(\frac{1}{\lambda^5}\right)$$

Introduction

 \bullet All vacuum solutions of the type $[\mathrm{N}]$ are know except twisting class

(日)、

Introduction

Type [N] in Lorentzian geometry Type [N] in complex geometry Hyperheavenly spaces Concluding Remarks

Introduction

Why type [N] is so interesting in General Theory of Relativity?

 \bullet Peeling Theorem and possible relation between type $\left[N\right]$ and gravitational waves

$$C_{abcd} = \frac{[\mathrm{N}]}{\lambda} + \frac{[\mathrm{III}]}{\lambda^2} + \frac{[\mathrm{II}]}{\lambda^3} + \frac{[\mathrm{I}]}{\lambda^4} + O\left(\frac{1}{\lambda^5}\right)$$

Introduction

 $\bullet\,$ All vacuum solutions of the type [N] are know except twisting class

イロト 不得 とうき 不良 とう

Type [N] in Lorentzian geometry Goldberg - Sachs Theorem Different classes of the type [N] metrics

Type [N] in Lorentzian geometry

Let $C_{ABCD} = C_{(ABCD)}$ be a spinorial image of the SD part of the Weyl tensor. According to the *Penrose Theorem* it can be decomposed into product of 1-index spinors m_A , n_A , r_A and s_A which are called *undotted Penrose spinors*.

 $C_{ABCD} = m_{(A}n_Br_Cs_{D)}$

We say that the spacetime is of the type $\left[N\right]$ if

 $C_{ABCD} = m_A m_B m_C m_D$

In Lorentzian geometry dotted Penrose spinors $m_{\dot{A}} = \overline{m_A}$, so

 $C_{\dot{A}\dot{B}\dot{C}\dot{D}} = m_{\dot{A}}m_{\dot{B}}m_{\dot{C}}m_{\dot{D}} = \overline{C_{ABCD}}$

(ASD Weyl spinor is of the type [N] as well).

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Type [N] in Lorentzian geometry Goldberg - Sachs Theorem Different classes of the type [N] metrics

Type [N] in Lorentzian geometry

Let $C_{ABCD} = C_{(ABCD)}$ be a spinorial image of the SD part of the Weyl tensor. According to the *Penrose Theorem* it can be decomposed into product of 1-index spinors m_A , n_A , r_A and s_A which are called *undotted Penrose spinors*.

 $C_{ABCD} = m_{(A}n_Br_Cs_{D)}$

We say that the spacetime is of the type $\left[N\right]$ if

 $C_{ABCD} = m_A m_B m_C m_D$

In Lorentzian geometry dotted Penrose spinors $m_{\dot{A}} = \overline{m_A}$, so

 $C_{\dot{A}\dot{B}\dot{C}\dot{D}} = m_{\dot{A}}m_{\dot{B}}m_{\dot{C}}m_{\dot{D}} = \overline{C_{ABCD}}$

(ASD Weyl spinor is of the type [N] as well).

Type [N] in Lorentzian geometry Goldberg - Sachs Theorem Different classes of the type [N] metrics

Type [N] in Lorentzian geometry

Let $C_{ABCD} = C_{(ABCD)}$ be a spinorial image of the SD part of the Weyl tensor. According to the *Penrose Theorem* it can be decomposed into product of 1-index spinors m_A , n_A , r_A and s_A which are called *undotted Penrose spinors*.

$$C_{ABCD} = m_{(A}n_Br_Cs_{D)}$$

We say that the spacetime is of the type $\left[N\right]$ if

 $C_{ABCD} = m_A m_B m_C m_D$

In Lorentzian geometry dotted Penrose spinors $m_{\dot{A}} = \overline{m_A}$, so

$$C_{\dot{A}\dot{B}\dot{C}\dot{D}} = m_{\dot{A}}m_{\dot{B}}m_{\dot{C}}m_{\dot{D}} = \overline{C_{ABCD}}$$

(ASD Weyl spinor is of the type [N] as well).

Type [N] in Lorentzian geometry Goldberg - Sachs Theorem Different classes of the type [N] metrics

Congruences of the null geodesics

Consider the null and geodesic vector field K_a in affine parametrization. The optical properties of such family of the null lines in the null tetrad $(e^1, e^2 = \overline{e^1}, e^3, e^4)$ are described by three parameters

expansion:
$$\Theta := \frac{1}{2} \nabla^a K_a$$

twist: $\tau^2 := \frac{1}{2} \nabla_{[a} K_{b]} \nabla^a K^b$
shear: $\sigma \overline{\sigma} := \frac{1}{2} \nabla_{(a} K_{b)} \nabla^a K^b - \Theta^2$

Type [N] in Lorentzian geometry Goldberg - Sachs Theorem Different classes of the type [N] metrics

Congruences of the null geodesics

1

Consider the null and geodesic vector field K_a in affine parametrization. The optical properties of such family of the null lines in the null tetrad $(e^1, e^2 = \overline{e^1}, e^3, e^4)$ are described by three parameters

expansion:
$$\Theta := \frac{1}{2} \nabla^a K_a$$

twist: $\tau^2 := \frac{1}{2} \nabla_{[a} K_{b]} \nabla^a K^b$
shear: $\sigma \overline{\sigma} := \frac{1}{2} \nabla_{(a} K_{b)} \nabla^a K^b - \Theta^2$

イロト 不得 とうほう 不良 とう

Type [N] in Lorentzian geometry **Goldberg - Sachs Theorem** Different classes of the type [N] metrics

Goldberg - Sachs Theorem

Theorem (*Goldberg-Sachs Theorem*, Goldberg, Sachs, 1962)

In Einstein spaces the following statements are equivalent

- space admits a shearfree null geodesic congruence
- Weyl tensor is algebraically degenerate

(日)、

Type [N] in Lorentzian geometry Goldberg - Sachs Theorem Different classes of the type [N] metrics

Different classes of the type [N] metrics

There are 3 vacuum classes of Lorentzian type $\left[N \right]$ metrics

- Kundt class (nontwisting, nonexpanding, pp-waves as a special subclass)
- Robinson Trautman class (nontwisting, expanding)
- Twisting class. The only known explicit solution is *Houser solution* which is equipped with two symmetries (one Killing vector, one homothetic Killing vector)

Killing equations: $\nabla_{(a}K_{b)} = \chi_0 g_{ab}$ $\chi_0 = 0$ - K_a is Killing vector $\chi_0 \neq 0$ - K_a is homothetic Killing vector

イロト イポト イラト イラト

Type [N] in Lorentzian geometry Goldberg - Sachs Theorem Different classes of the type [N] metrics

Different classes of the type [N] metrics

There are 3 vacuum classes of Lorentzian type $\left[\mathrm{N}\right]$ metrics

- Kundt class (nontwisting, nonexpanding, pp-waves as a special subclass)
- Robinson Trautman class (nontwisting, expanding)
- Twisting class. The only known explicit solution is *Houser solution* which is equipped with two symmetries (one Killing vector, one homothetic Killing vector)

Killing equations: $\nabla_{(a}K_{b)} = \chi_0 g_{ab}$ $\chi_0 = 0$ - K_a is Killing vector $\chi_0 \neq 0$ - K_a is homothetic Killing vector

イロト 不得 とうほう イヨト

Type [N] in Lorentzian geometry Goldberg - Sachs Theorem Different classes of the type [N] metrics

Different classes of the type [N] metrics

There are 3 vacuum classes of Lorentzian type $\left[\mathrm{N}\right]$ metrics

- Kundt class (nontwisting, nonexpanding, pp-waves as a special subclass)
- Robinson Trautman class (nontwisting, expanding)
- Twisting class. The only known explicit solution is *Houser solution* which is equipped with two symmetries (one Killing vector, one homothetic Killing vector)

Killing equations: $\nabla_{(a}K_{b)} = \chi_0 g_{ab}$ $\chi_0 = 0$ - K_a is Killing vector $\chi_0 \neq 0$ - K_a is homothetic Killing vector

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト … ヨ

Type [N] in Lorentzian geometry Goldberg - Sachs Theorem Different classes of the type [N] metrics

Different classes of the type [N] metrics

There are 3 vacuum classes of Lorentzian type $\left[\mathrm{N}\right]$ metrics

- Kundt class (nontwisting, nonexpanding, pp-waves as a special subclass)
- Robinson Trautman class (nontwisting, expanding)
- Twisting class. The only known explicit solution is *Houser solution* which is equipped with two symmetries (one Killing vector, one homothetic Killing vector)

Killing equations: $\nabla_{(a}K_{b)} = \chi_0 g_{ab}$ $\chi_0 = 0$ - K_a is Killing vector $\chi_0 \neq 0$ - K_a is homothetic Killing vector

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Different classes of the type [N] metrics

There are 3 vacuum classes of Lorentzian type $\left[\mathrm{N}\right]$ metrics

- Kundt class (nontwisting, nonexpanding, pp-waves as a special subclass)
- Robinson Trautman class (nontwisting, expanding)
- Twisting class. The only known explicit solution is *Houser solution* which is equipped with two symmetries (one Killing vector, one homothetic Killing vector)

Killing equations: $\nabla_{(a}K_{b)} = \chi_0 g_{ab}$ $\chi_0 = 0$ - K_a is Killing vector $\chi_0 \neq 0$ - K_a is homothetic Killing vector

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Type [N] in Lorentzian geometry Goldberg - Sachs Theorem Different classes of the type [N] metrics

Why complex approach?

- In complex spaces which SD Weyl spinor is algebraically degenerate, Einstein vacuum field equations have been reduced to the single *hyperheavenly equation*
- The results are valid in 4-dimensional spaces with the neutral signature metric (++--)

Type [N] in Lorentzian geometry Goldberg - Sachs Theorem Different classes of the type [N] metrics

Why complex approach?

- In complex spaces which SD Weyl spinor is algebraically degenerate, Einstein vacuum field equations have been reduced to the single *hyperheavenly equation*
- The results are valid in 4-dimensional spaces with the neutral signature metric (+ + --)

イロト 不得 とうき 不良 とう

Type [N] in Lorentzian geometry Goldberg - Sachs Theorem Different classes of the type [N] metrics

Why complex approach?

- In complex spaces which SD Weyl spinor is algebraically degenerate, Einstein vacuum field equations have been reduced to the single *hyperheavenly equation*
- $\bullet\,$ The results are valid in 4-dimensional spaces with the neutral signature metric (++--)

Type [N] complex geometry Congruence of the null strings Generalized Goldberg - Sachs Theorem Intersection of SD and ASD congruences of the null strings

Complex counterpart of the Lorentzian type [N]

In complex geometry there is no relation between undotted and dotted Penrose spinors, so there exist spaces of the "mixed" types, like $[N] \otimes [D]$.

Theorem (*Rózga Theorem*, Rózga, 1977)

Lorentzian slice of the complex space exists only if SD and ASD Weyl spinors are of the same Petrov-Penrose types.

Lorentzian geometry: type [N]Complex geometry: type $[N] \otimes [N]$

Type [N] complex geometry Congruence of the null strings Generalized Goldberg - Sachs Theorem Intersection of SD and ASD congruences of the null strings

Complex counterpart of the Lorentzian type [N]

In complex geometry there is no relation between undotted and dotted Penrose spinors, so there exist spaces of the "mixed" types, like $[N] \otimes [D]$.

Theorem (*Rózga Theorem*, Rózga, 1977)

Lorentzian slice of the complex space exists only if SD and ASD Weyl spinors are of the same Petrov-Penrose types.

Lorentzian geometry: type [N] Complex geometry: type $[N]\otimes [N]$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Type [N] complex geometry Congruence of the null strings Generalized Goldberg - Sachs Theorem Intersection of SD and ASD congruences of the null strings

Complex counterpart of the Lorentzian type [N]

In complex geometry there is no relation between undotted and dotted Penrose spinors, so there exist spaces of the "mixed" types, like $[N]\otimes [D].$

Theorem (*Rózga Theorem*, Rózga, 1977)

Lorentzian slice of the complex space exists only if SD and ASD Weyl spinors are of the same Petrov-Penrose types.

 $\begin{array}{l} \mbox{Lorentzian geometry: type } [N] \\ \mbox{Complex geometry: type } [N] \otimes [N] \end{array}$

イロト イポト イラト イラト

Type [N] complex geometry Congruence of the null strings Generalized Goldberg - Sachs Theorem Intersection of SD and ASD congruences of the null strings

Congruence of the SD null strings

Consider 2-dimensional SD distribution $\mathcal{D} = \{m_A a_{\dot{B}}, m_A b_{\dot{B}}\}, a_{\dot{A}} b^A \neq 0.$ It is integrable in the Frobenius sense, if

$$m^A m^B \nabla_{A\dot{M}} m_B = 0 \tag{1}$$

Equations (1) are called *SD null string equations*. The integral manifolds of the distribution \mathcal{D} are 2-dimensional, holomorphic, totally null and geodesics surfaces, called *null strings*. Their family constitutes *the congruence of the SD null strings*.

Type [N] complex geometry Congruence of the null strings Generalized Goldberg - Sachs Theorem Intersection of SD and ASD congruences of the null strings

Congruence of the SD null strings

Consider 2-dimensional SD distribution $\mathcal{D} = \{m_A a_{\dot{B}}, m_A b_{\dot{B}}\}, a_{\dot{A}} b^A \neq 0.$ It is integrable in the Frobenius sense, if

$$m^A m^B \nabla_{A\dot{M}} m_B = 0 \tag{1}$$

Equations (1) are called *SD null string equations*. The integral manifolds of the distribution \mathcal{D} are 2-dimensional, holomorphic, totally null and geodesics surfaces, called *null strings*. Their family constitutes *the congruence of the SD null strings*.

Type [N] complex geometry Congruence of the null strings Generalized Goldberg - Sachs Theorem Intersection of SD and ASD congruences of the null strings

Congruence of the SD null strings

Consider 2-dimensional SD distribution $\mathcal{D} = \{m_A a_{\dot{B}}, m_A b_{\dot{B}}\}, a_{\dot{A}} b^A \neq 0.$ It is integrable in the Frobenius sense, if

$$m^A m^B \nabla_{A\dot{M}} m_B = 0 \tag{1}$$

Equations (1) are called *SD null string equations*. The integral manifolds of the distribution \mathcal{D} are 2-dimensional, holomorphic, totally null and geodesics surfaces, called *null strings*. Their family constitutes *the congruence of the SD null strings*.

Type [N] complex geometry Congruence of the null strings Generalized Goldberg - Sachs Theorem Intersection of SD and ASD congruences of the null strings

Congruence of the SD null strings

From SD null strings equations we find

$$\nabla_{A\dot{M}}m_B = m_B Z_{A\dot{M}} + \epsilon_{AB} \ M_{\dot{M}}$$

Spinor field $M_{\dot{M}}$ is called *expansion of the congruence*.

• $M_{\dot{M}} = 0$ - nonexpanding congruence.

• $M_{\dot{M}} \neq 0$ - expanding congruence.

Nonexpanding congruence = distribution \mathcal{D} is parallely propagated:

 $\nabla_V X \in \mathcal{D}$ for any vector field V and any vector field $X \in \mathcal{D}$

Spaces which admit nonexpanding congruence of SD null strings are called *Walker spaces*.

Type [N] complex geometry Congruence of the null strings Generalized Goldberg - Sachs Theorem Intersection of SD and ASD congruences of the null strings

Congruence of the SD null strings

From SD null strings equations we find

$$\nabla_{A\dot{M}}m_B = m_B Z_{A\dot{M}} + \in_{AB} M_{\dot{M}}$$

Spinor field $M_{\dot{M}}$ is called *expansion of the congruence*.

- $M_{\dot{M}} = 0$ nonexpanding congruence.
- $M_{\dot{M}} \neq 0$ expanding congruence.

Nonexpanding congruence = distribution \mathcal{D} is parallely propagated:

 $\nabla_V X \in \mathcal{D}$ for any vector field V and any vector field $X \in \mathcal{D}$

Spaces which admit nonexpanding congruence of SD null strings are called *Walker spaces*.

イロト 不得 とうき 不良 とう

Type [N] complex geometry Congruence of the null strings Generalized Goldberg - Sachs Theorem Intersection of SD and ASD congruences of the null strings

Congruence of the SD null strings

From SD null strings equations we find

$$\nabla_{A\dot{M}}m_B = m_B Z_{A\dot{M}} + \in_{AB} M_{\dot{M}}$$

Spinor field $M_{\dot{M}}$ is called *expansion of the congruence*.

- $M_{\dot{M}} = 0$ nonexpanding congruence.
- $M_{\dot{M}} \neq 0$ expanding congruence.

Nonexpanding congruence = distribution D is parallely propagated:

 $\nabla_V X \in \mathcal{D}$ for any vector field V and any vector field $X \in \mathcal{D}$

Spaces which admit nonexpanding congruence of SD null strings are called *Walker spaces*.

Type [N] complex geometry Congruence of the null strings Generalized Goldberg - Sachs Theorem Intersection of SD and ASD congruences of the null strings

Generalized Goldberg - Sachs Theorem

Theorem (*Generalized Goldberg-Sachs Theorem*, Plebański, Hacyan, 1975)

In complex Einstein spaces the following statements are equivalent

- space admits a congruence of SD null strings generated by the spinor $m^{\cal A}$
- SD Weyl spinor is algebraically degenerate and spinor m^A is a multiple Penrose spinor

$$C_{ABCD} = m_{(A}m_Bn_Cs_{D)}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Type [N] complex geometry Congruence of the null strings Generalized Goldberg - Sachs Theorem Intersection of SD and ASD congruences of the null strings

Properties of the intersection of the SD and ASD congruences of the null strings

Consider the space which admits both SD and ASD congruences of the null strings. Then

- $M_{\dot{A}}~~-~$ expansion of the SD congruence of the null strings
- M_A expansion of the ASD congruence of the null strings

Intersection of these congruences constitutes the congruence of the complex, null geodesics. It is given by the vector field $K_a \sim m_A m_{\dot{B}}$. Define *expansion* and *twist* by the formulas

$$\theta := \frac{1}{2} \nabla^a K_a \quad \sim \quad m_A M^A + m_{\dot{A}} M^{\dot{A}}$$
$$\tau^2 := \frac{1}{2} \nabla_{[a} K_{b]} \nabla^a K^b \quad \sim \quad m_A M^A - m_{\dot{A}} M^{\dot{A}}$$

Type [N] complex geometry Congruence of the null strings Generalized Goldberg - Sachs Theorem Intersection of SD and ASD congruences of the null strings

Properties of the intersection of the SD and ASD congruences of the null strings

Consider the space which admits both SD and ASD congruences of the null strings. Then

- $M_{\dot{A}}~-~{
 m expansion}$ of the SD congruence of the null strings
- M_A expansion of the ASD congruence of the null strings

Intersection of these congruences constitutes the congruence of the complex, null geodesics. It is given by the vector field $K_a \sim m_A m_{\dot{B}}$. Define *expansion* and *twist* by the formulas

$$\begin{split} \theta &:= \frac{1}{2} \nabla^a K_a \quad \sim \quad m_A M^A + m_{\dot{A}} M^{\dot{A}} \\ \tau^2 &:= \frac{1}{2} \nabla_{[a} K_{b]} \nabla^a K^b \quad \sim \quad m_A M^A - m_{\dot{A}} M^{\dot{A}} \end{split}$$

Type [N] complex geometry Congruence of the null strings Generalized Goldberg - Sachs Theorem Intersection of SD and ASD congruences of the null strings

Properties of the intersection of the SD and ASD congruences of the null strings

There are three classes of the type $\left[N\right]\otimes\left[N\right]$ spaces

- Type $[\mathbf{N}]^n \otimes [\mathbf{N}]^n$ then $\theta = \tau = 0$.
- Type $[\mathbf{N}]^n\otimes [\mathbf{N}]^e$ or $[\mathbf{N}]^e\otimes [\mathbf{N}]^n$ such spaces do not admit real Lorentzian slices.
- Type $[\mathrm{N}]^e \otimes [\mathrm{N}]^e$

Real Lorentzian spaces of the type [N] with nonzero twist are contained in complex spaces of the type $[N]^e \otimes [N]^e$ equipped with expanding SD and ASD congruences of the null strings.

Type [N] complex geometry Congruence of the null strings Generalized Goldberg - Sachs Theorem Intersection of SD and ASD congruences of the null strings

Properties of the intersection of the SD and ASD congruences of the null strings

There are three classes of the type $\left[N\right]\otimes\left[N\right]$ spaces

- Type $[N]^n \otimes [N]^n$ then $\theta = \tau = 0$.
- Type $[\mathbf{N}]^n\otimes [\mathbf{N}]^e$ or $[\mathbf{N}]^e\otimes [\mathbf{N}]^n$ such spaces do not admit real Lorentzian slices.
- Type $[N]^e \otimes [N]^e$

Real Lorentzian spaces of the type [N] with nonzero twist are contained in complex spaces of the type $[N]^e \otimes [N]^e$ equipped with expanding SD and ASD congruences of the null strings.

Type [N] complex geometry Congruence of the null strings Generalized Goldberg - Sachs Theorem Intersection of SD and ASD congruences of the null strings

Properties of the intersection of the SD and ASD congruences of the null strings

There are three classes of the type $\left[N\right]\otimes\left[N\right]$ spaces

- Type $[\mathbf{N}]^n \otimes [\mathbf{N}]^n$ then $\theta = \tau = 0$.
- Type $[\mathbf{N}]^n\otimes [\mathbf{N}]^e$ or $[\mathbf{N}]^e\otimes [\mathbf{N}]^n$ such spaces do not admit real Lorentzian slices.
- Type $[N]^e \otimes [N]^e$

Real Lorentzian spaces of the type [N] with nonzero twist are contained in complex spaces of the type $[N]^e \otimes [N]^e$ equipped with expanding SD and ASD congruences of the null strings.

Type [N] complex geometry Congruence of the null strings Generalized Goldberg - Sachs Theorem Intersection of SD and ASD congruences of the null strings

Properties of the intersection of the SD and ASD congruences of the null strings

There are three classes of the type $\left[N\right]\otimes\left[N\right]$ spaces

- Type $[\mathbf{N}]^n \otimes [\mathbf{N}]^n$ then $\theta = \tau = 0$.
- Type $[\mathbf{N}]^n\otimes [\mathbf{N}]^e$ or $[\mathbf{N}]^e\otimes [\mathbf{N}]^n$ such spaces do not admit real Lorentzian slices.
- Type $[N]^e \otimes [N]^e$

Real Lorentzian spaces of the type [N] with nonzero twist are contained in complex spaces of the type $[N]^e \otimes [N]^e$ equipped with expanding SD and ASD congruences of the null strings.

Type [N] complex geometry Congruence of the null strings Generalized Goldberg - Sachs Theorem Intersection of SD and ASD congruences of the null strings

Properties of the intersection of the SD and ASD congruences of the null strings

There are three classes of the type $\left[N\right]\otimes\left[N\right]$ spaces

- Type $[\mathbf{N}]^n \otimes [\mathbf{N}]^n$ then $\theta = \tau = 0$.
- Type $[\mathbf{N}]^n\otimes [\mathbf{N}]^e$ or $[\mathbf{N}]^e\otimes [\mathbf{N}]^n$ such spaces do not admit real Lorentzian slices.
- Type $[N]^e \otimes [N]^e$

Real Lorentzian spaces of the type [N] with nonzero twist are contained in complex spaces of the type $[N]^e\otimes [N]^e$ equipped with expanding SD and ASD congruences of the null strings.

Hyperheavenly spaces Symmetries in hyperheavenly spaces

Hyperheavenly spaces - definition

Definition

Hyperheavenly space (HH-space) is a 4-dimensional complex analytic differential manifold equipped with a holomorphic metric ds^2 which satisfies the vacuum Einstein equations and such that the self-dual part of the Weyl tensor is algebraically degenerate.

・ロト ・ 同ト ・ ヨト ・ ヨト

Hyperheavenly spaces Symmetries in hyperheavenly spaces

Hyperheavenly spaces - the metric

The metric of the Einstein type $[N]\otimes [any]$ spaces can be brought to the form [Plebański, Robinson, 1976]

$$ds^{2} = 2\phi^{-2} \{ (d\eta dw - d\phi dt) - \phi W_{\eta\eta} dt^{2} + (2W_{\eta} - 2\phi W_{\eta\phi}) dw dt + (2W_{\phi} - \phi W_{\phi\phi}) dw^{2} \}$$

where (ϕ, η, w, t) are local coordinates called *Plebański* - *Robinson* - *Finley coordinates*, function $W = W(\phi, \eta, w, t)$ is the key function, which satisfies the hyperheavenly equation

$$W_{\eta\eta}W_{\phi\phi} - W_{\eta\phi}W_{\eta\phi} + 2\phi^{-1}W_{\eta}W_{\eta\phi} - 2\phi^{-1}W_{\phi}W_{\eta\eta} + \phi^{-1}(W_{w\eta} - W_{t\phi}) = \gamma$$

 $\gamma = \gamma(w,t)$ is an arbitrary function such that $\gamma_t \neq 0$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Hyperheavenly spaces Symmetries in hyperheavenly spaces

Hyperheavenly spaces - the ASD curvature

 $C_{\dot{A}\dot{B}\dot{C}\dot{D}}$ is of the type $[{\rm N}]$ with nonzero twist, if $W_{\phi\phi\phi\phi}\neq 0,\,W_{\eta\eta\eta\eta}\neq 0$ and

$$W_{\eta\eta\eta\phi} = hW_{\eta\eta\eta\eta}$$
(2)

$$W_{\eta\eta\phi\phi} = hW_{\eta\eta\eta\phi}$$
(2)

$$W_{\eta\phi\phi\phi} = hW_{\eta\eta\phi\phi}$$
(2)

イロト イポト イヨト イヨト

where $h = h(\phi, \eta, w, t)$.

Hyperheavenly spaces Symmetries in hyperheavenly spaces

Hyperheavenly spaces - the ASD curvature

Integrability conditions of the set (2) imply

$$h_{\phi} = hh_{\eta}$$

with solution

$$\eta + \phi h = f(h, w, t)$$

where f = f(h, w, t) is an arbitrary function. It suggests coordinate transformation $\eta \rightarrow h$.

イロト 不得 とうほう 不良 とう

Hyperheavenly spaces Symmetries in hyperheavenly spaces

Hyperheavenly spaces - the ASD curvature

Integrability conditions of the set (2) imply

$$h_{\phi} = hh_{\eta}$$

with solution

$$\eta + \phi h = f(h, w, t)$$

where f = f(h, w, t) is an arbitrary function. It suggests coordinate transformation $\eta \rightarrow h$.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Hyperheavenly spaces - the key function for the types $[\mathrm{N}]\otimes[\mathrm{N}]$

The key function for the spaces $[\mathbf{N}]^e\otimes [\mathbf{N}]^e$ in coordinates (ϕ,h,w,t) is the third order polynomial in $\phi.$ It reads

$$W = -F\phi^{3} + \frac{1}{2}(R - 2hS + h^{2}\Omega)\phi^{2} + (B - Ah)\phi + C$$

where ${\boldsymbol{F}}={\boldsymbol{F}}(h,w,t)$ and ${\boldsymbol{f}}={\boldsymbol{f}}(h,w,t)$ are arbitrary functions and

Hyperheavenly spaces Symmetries in hyperheavenly spaces

Hyperheavenly equation for the types $[N] \otimes [N]$

Putting the key function into the hyperheavenly equation we obtain the following set

$$\begin{split} (R+h^2\Omega-2hS)\ddot{F}+(2S-2h\Omega)\dot{F}-h\dot{F}_t+3F_t+\dot{F}_w&=0\\ S^2-\Omega R+4A\dot{F}-2hA\ddot{F}+2B\ddot{F}-R_t+hS_t-f_t(h\ddot{F}-2\dot{F})\\ +S_w-h\Omega_w+f_w\ddot{F}&=\gamma\\ 2SA-2\Omega B-B_t+f_tS+A_w-f_w\Omega&=0 \end{split}$$

It is overdetermined system of three equations for two functions F(h, w, t) and f(h, w, t) of three variables.

イロト 不得 とうほう 不良 とう

Hyperheavenly spaces Symmetries in hyperheavenly spaces

Symmetries in hyperheavenly spaces

It has been proved [Sonnleitner A., Finley J.D. III (1982), A.C (2013)] that in hyperheavenly spaces ten Killing equations can be reduced to the single *master* equation. For the hyperheavenly spaces of the type $[N]\otimes [any]$ with $\Lambda=0$ this equation reads

$$K(W) = -(4\chi_0 + 2a_w - 3b_t)W + \alpha\phi^3 + \frac{1}{2}(\epsilon_w\phi + \epsilon_t\eta) + \beta + \frac{1}{2}(-b_{ww}\phi^2 - b_{tt}\eta^2 + (a_{ww} - 2b_{tw})\eta\phi)$$

where vector K has the form

$$K = a \frac{\partial}{\partial w} + b \frac{\partial}{\partial t} + (b_t - 2\chi_0)\phi \frac{\partial}{\partial \phi} + \left((2b_t - a_w - 2\chi_0)\eta + b_w\phi - \epsilon\right)\frac{\partial}{\partial \eta}$$

where a = a(w), b = b(w, t), $\epsilon = \epsilon(w, t)$, $\beta = \beta(w, t)$, $\alpha = \alpha(w, t)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Hyperheavenly spaces Symmetries in hyperheavenly spaces

Symmetries in hyperheavenly spaces

It has been proved [Sonnleitner A., Finley J.D. III (1982), A.C (2013)] that in hyperheavenly spaces ten Killing equations can be reduced to the single *master* equation. For the hyperheavenly spaces of the type $[N]\otimes [any]$ with $\Lambda=0$ this equation reads

$$K(W) = -(4\chi_0 + 2a_w - 3b_t)W + \alpha\phi^3 + \frac{1}{2}(\epsilon_w\phi + \epsilon_t\eta) + \beta + \frac{1}{2}\left(-b_{ww}\phi^2 - b_{tt}\eta^2 + (a_{ww} - 2b_{tw})\eta\phi\right)$$

where vector K has the form

$$K = a \frac{\partial}{\partial w} + b \frac{\partial}{\partial t} + (b_t - 2\chi_0)\phi \frac{\partial}{\partial \phi} + \left((2b_t - a_w - 2\chi_0)\eta + b_w\phi - \epsilon \right) \frac{\partial}{\partial \eta}$$

where a = a(w), b = b(w, t), $\epsilon = \epsilon(w, t)$, $\beta = \beta(w, t)$, $\alpha = \alpha(w, t)$.

Hyperheavenly spaces Symmetries in hyperheavenly spaces

Killing vector

There are two different types of the Killing vectors in hyperheavenly spaces of the type $[N]\otimes [N]$ with $\Lambda=0$

- ∂_{η} (in this case congruence of the null complex geodesics is nontwisting)
- ∂_w

Let us equip hyperheavenly space of the type $[\mathrm{N}]\otimes[\mathrm{N}]$ with symmetry

$$K^{(1)} = \frac{\partial}{\partial w}$$

then F = F(h, t), f = f(h, t) and $\gamma = \gamma(t)$.

Hyperheavenly spaces Symmetries in hyperheavenly spaces

Killing vector

There are two different types of the Killing vectors in hyperheavenly spaces of the type $[N]\otimes [N]$ with $\Lambda=0$

• ∂_{η} (in this case congruence of the null complex geodesics is nontwisting)

• ∂_w

Let us equip hyperheavenly space of the type $[\mathrm{N}]\otimes [\mathrm{N}]$ with symmetry

$$K^{(1)} = \frac{\partial}{\partial w}$$

then F = F(h, t), f = f(h, t) and $\gamma = \gamma(t)$.

イロト イポト イラト イラト

Hyperheavenly spaces Symmetries in hyperheavenly spaces

Killing vector

There are two different types of the Killing vectors in hyperheavenly spaces of the type $[N]\otimes [N]$ with $\Lambda=0$

- ∂_{η} (in this case congruence of the null complex geodesics is nontwisting)
- ∂_w

Let us equip hyperheavenly space of the type $[\mathrm{N}]\otimes [\mathrm{N}]$ with symmetry

$$K^{(1)} = \frac{\partial}{\partial w}$$

then F = F(h, t), f = f(h, t) and $\gamma = \gamma(t)$.

イロト イポト イラト イラト

Hyperheavenly spaces Symmetries in hyperheavenly spaces

Killing vector

There are two different types of the Killing vectors in hyperheavenly spaces of the type $[N]\otimes [N]$ with $\Lambda=0$

- ∂_{η} (in this case congruence of the null complex geodesics is nontwisting)
- ∂_w

Let us equip hyperheavenly space of the type $\left[N\right]\otimes\left[N\right]$ with symmetry

$$K^{(1)} = \frac{\partial}{\partial w}$$

then F = F(h,t), f = f(h,t) and $\gamma = \gamma(t)$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Hyperheavenly spaces Symmetries in hyperheavenly spaces

Homothetic Killing vector

With the symmetry given by $\partial_w,$ the homothetic Killing vector $K^{(2)}$ can be brought to the form

$$K^{(2)} = w \frac{\partial}{\partial w} + t \frac{\partial}{\partial t} + (1 - 2\chi_0)\phi \frac{\partial}{\partial \phi} + (1 - 2\chi_0)\eta \frac{\partial}{\partial \eta}$$

(日)、

Hyperheavenly spaces Symmetries in hyperheavenly spaces

Further steps

The next steps are:

- Solve the master equation for the homothetic Killing vector $K^{(2)}$
- Insert the solution into the set of field equations we obtain the set of four equations for three functions of one variable
- One of the equations is an identity, so the set of the field equations is not overdetermined anymore

Hyperheavenly spaces Symmetries in hyperheavenly spaces

Further steps

The next steps are:

- Solve the master equation for the homothetic Killing vector $K^{(2)}$
- Insert the solution into the set of field equations we obtain the set of four equations for three functions of one variable
- One of the equations is an identity, so the set of the field equations is not overdetermined anymore

Hyperheavenly spaces Symmetries in hyperheavenly spaces

Further steps

The next steps are:

- Solve the master equation for the homothetic Killing vector $K^{(2)}$
- Insert the solution into the set of field equations we obtain the set of four equations for three functions of one variable
- One of the equations is an identity, so the set of the field equations is not overdetermined anymore

Hyperheavenly spaces Symmetries in hyperheavenly spaces

Further steps

The next steps are:

- Solve the master equation for the homothetic Killing vector $K^{(2)}$
- Insert the solution into the set of field equations we obtain the set of four equations for three functions of one variable
- One of the equations is an identity, so the set of the field equations is not overdetermined anymore

・ロト ・ 同ト ・ ヨト ・ ヨト

Hyperheavenly spaces Symmetries in hyperheavenly spaces

The metric

Finally we arrive at the metric

$$\begin{split} ds^2 &= 2\phi^{-2} \bigg\{ \left(t^{1-2\chi_0} - \phi \frac{dh}{dv} \right) dv dw - h \, d\phi dw - d\phi dt \\ &- \left(\phi t^{-1} \left(\frac{dT}{dv} - \frac{1-2\chi_0}{2} \right) - \phi^2 t^{2\chi_0 - 2} \left(h \frac{d^2T}{dv^2} - \frac{d^2Z}{dv^2} \right) \right) dt^2 \\ &+ 2 \Big(t^{-2\chi_0} T - \phi h t^{-1} \left(\frac{dT}{dv} - \frac{1-2\chi_0}{2} \right) \\ &+ \frac{1}{2} \phi^2 t^{2\chi_0 - 2} \left(h^2 \frac{d^2T}{dv^2} - \frac{dP}{dv} \right) \Big) dw dt \\ &+ \Big(2 t^{-2\chi_0} Z + \phi t^{-1} \left(P - 2h \frac{dZ}{dv} \right) \\ &+ \phi^2 t^{2\chi_0 - 2} h \left(h \frac{d^2Z}{dv^2} - \frac{dP}{dv} \right) \Big) dw^2 \bigg\} \end{split}$$

where (ϕ, v, w, t) are local coordinates, T = T(v), Z = Z(v), P = P(v). Moreover, h = Z'''/T''', where $Z' \equiv \frac{dZ}{dv}$, etc.

From hyperheavenly spaces to complex and real, twisting type $[\mathbf{N}] \otimes [\mathbf{N}]$

Hyperheavenly spaces Symmetries in hyperheavenly spaces

Equations

Functions $T=T(v),\,Z=Z(v),\,P=P(v)$ have to satisfy the set of equations

$$T\frac{\mathrm{d}Z}{\mathrm{d}v} - Z\frac{\mathrm{d}T}{\mathrm{d}v} + \frac{1}{2}Z = 0 \tag{3a}$$

$$2T \frac{\mathrm{d}P}{\mathrm{d}v} - P\left(\frac{\mathrm{d}T}{\mathrm{d}v} + \frac{2\chi_0 - 3}{2}\right) - 2Z \frac{\mathrm{d}^2 Z}{\mathrm{d}v^2} + \left(\frac{\mathrm{d}Z}{\mathrm{d}v}\right)^2 = \gamma_0 \quad (3b)$$
$$\left(\frac{\mathrm{d}^3 Z}{\mathrm{d}v^3}\right)^2 = \frac{\mathrm{d}^3 T}{\mathrm{d}v^3} \frac{\mathrm{d}^2 P}{\mathrm{d}v^2} \quad (3c)$$

Solutions of the equations (3a) and (3b) are simple

$$Z(v) = \frac{1}{Q'}, \quad T(v) = \frac{1}{2}\frac{Q}{Q'}, \quad Q' \equiv \frac{dQ}{dv}$$
$$P(v) = Q^{\chi_0 - 1}Q'^{-\frac{1}{2}} \int Q^{-\chi_0} \left(3Q'^{-\frac{5}{2}}Q''^2 - 2Q'^{-\frac{3}{2}}Q''' + \gamma_0 Q'^{\frac{3}{2}}\right) dv$$

where Q = Q(v).

Hyperheavenly spaces Symmetries in hyperheavenly spaces

Equations

Equation (3c) becomes extremely complicated ODE of the fifth order

$$(4(\chi_0 - 2)(\chi_0 - 1) + \mu Q^2 Z^3) \{-2\mu^2 Z^3 Z'''' + 2\mu Z^2 Z'''(Q' Z''' + \mu' Z + \mu Z') + 2Z' Z'''(\mu Z + Q Z''')^2 - Z'''^2(\mu Z + Q Z''')(Q Z' + 2\chi_0) \}$$

$$- (Q Z' - 2\chi_0 + 4)(\mu Z + Q Z''')^3 (\mu Z^3 + \gamma_0) + 4Q\mu Z^3 Z'''(\mu Z + Q Z''')^2 = 0$$

where

$$\mu(v) := \frac{3Q''^2}{Q'} - 2Q''', \ Z(v) = \frac{1}{Q'}$$

イロト 不同 トイヨト イヨト

Concluding Remarks

Concluding Remarks

Disadvantages of our approach

- No new solutions have been found so far (most promising case is $\chi_0 = 2$)
- Houser solution has not been reconstructed so far
- No transformation which reduce the order of the final differential equation has been found so far

Concluding Remarks

Concluding Remarks

Disadvantages of our approach

- No new solutions have been found so far (most promising case is $\chi_0=2$)
- Houser solution has not been reconstructed so far
- No transformation which reduce the order of the final differential equation has been found so far

Concluding Remarks

Concluding Remarks

Disadvantages of our approach

- No new solutions have been found so far (most promising case is $\chi_0=2$)
- Houser solution has not been reconstructed so far
- No transformation which reduce the order of the final differential equation has been found so far

・ロト ・ 同ト ・ ヨト ・ ヨト

Concluding Remarks

Concluding Remarks

Disadvantages of our approach

- No new solutions have been found so far (most promising case is $\chi_0=2$)
- Houser solution has not been reconstructed so far
- No transformation which reduce the order of the final differential equation has been found so far

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Concluding Remarks

Concluding Remarks

Advantages of our approach

• Final equation is ODE and it can be written in the form

 $Q^{\prime\prime\prime\prime\prime}=G(Q,Q^{\prime},Q^{\prime\prime},Q^{\prime\prime\prime},Q^{\prime\prime\prime\prime})$

with G being the rational function. It always has solution for arbitrary initial values. It works in complex case, real Lorentzian case and real neutral case.

• We formulated the theorem which is complex counterpart of the theorem formulated by W.D. Halford (1979) and C.D. Collinson (1969, 1980)

Theorem

For any vacuum \mathcal{HH} -spaces of the type $[N] \otimes [II, D, III, N]$ with twisting congruence of null geodesics arising as intersection of SD null strings with ASD null strings there exist at most two homothetic Killing vectors. They must be noncommuting.

Concluding Remarks

Concluding Remarks

Advantages of our approach

• Final equation is ODE and it can be written in the form

$$Q^{\prime\prime\prime\prime\prime\prime}=G(Q,Q^{\prime},Q^{\prime\prime},Q^{\prime\prime\prime},Q^{\prime\prime\prime\prime})$$

with G being the rational function. It always has solution for arbitrary initial values. It works in complex case, real Lorentzian case and real neutral case.

• We formulated the theorem which is complex counterpart of the theorem formulated by W.D. Halford (1979) and C.D. Collinson (1969, 1980)

Theorem

For any vacuum \mathcal{HH} -spaces of the type $[N] \otimes [II,D,III,N]$ with twisting congruence of null geodesics arising as intersection of SD null strings with ASD null strings there exist at most two homothetic Killing vectors. They must be noncommuting.

Concluding Remarks

Advantages of our approach

• Final equation is ODE and it can be written in the form

$$Q^{\prime\prime\prime\prime\prime\prime}=G(Q,Q^{\prime},Q^{\prime\prime},Q^{\prime\prime\prime},Q^{\prime\prime\prime\prime})$$

with G being the rational function. It always has solution for arbitrary initial values. It works in complex case, real Lorentzian case and real neutral case.

• We formulated the theorem which is complex counterpart of the theorem formulated by W.D. Halford (1979) and C.D. Collinson (1969, 1980)

Theorem

For any vacuum \mathcal{HH} -spaces of the type $[N] \otimes [II, D, III, N]$ with twisting congruence of null geodesics arising as intersection of SD null strings with ASD null strings there exist at most two homothetic Killing vectors. They must be noncommuting.

Concluding Remarks

Concluding Remarks

• The form of the key function is valid for any spaces for which ASD Weyl spinor is of the type [N]. Such key function can be used in neutral geometry (for example, the problem of the Einstein, para-Hermite spaces of the type $[D]^{ee}\otimes [N]^e$)

イロト 不得 とうほう 不良 とう