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Black holes in higher dimensions

In D = 4, Einstein equations admit a unique class of asymptotically
flat black hole solutions, parametrized by (M,Q, J), with horizon
topology S2 (No-hair Theorem). [Carter, Hawking, Mazur, Israel, Robinson]

In D = 5, new types of (asymptotically flat) BH solutions appear,

Black ring, BH with horizon topology S1 × S2, discovered in

Einstein gravity [Emparan, Reall],

N = 2 minimal supergravity [Elvang, Emparan, Mateos, Reall].

BMPV, class of supersymmetric BHs [Breckenridge, Myers, Peet, Vafa]

String/M-theory suggests us to look at gravitational systems in ten
and eleven dimensions. Exotic black hole solutions are expected.

Finding full BH solutions is difficult (based on ansatz)
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Near-horizon geometries

Reduce a space-time problem down to a spatial problem.

Non-existence of near-horizon geometries rules out the existence of
classes of black holes

Approaches:

Assume isometries

“Blackfold approach” - assume conditions on Tµν

Assume supersymmetry

Supersymmetric near-horizon geometries often experience a doubling
of preserved supersymmetries (supersymmetry enhancement).

Enhanced supersymmetry =⇒ Symmetry enhancement
symmetry of the full solution, generally at least sl(2,R).
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Higher-derivative horizons

String corrections are important for understanding quantum
corrections of BHs (small BHs, singularity resolution)

Susy enhancement when string corrections are considered?

e.g. N = 2, D = 5 sugra + higher-derivative corrections:

∃ new class of near-horizon solutions, which do not enjoy the susy
enhancement. [Gutowski, Klemm, Sabra, Sloane]

Aim of this work:

Investigate properties of D = 10 near-horizon geometries with
higher-derivative corrections.

Theory: heterotic supergravity
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Lichnerowicz Theorem



Near-Horizon Geometries

Assumption

spacetime contains an (extremal) Killing horizon, i.e. a
null-hypersurface H associated with the Killing vector V .

One can introduce a Gaussian Null Co-ordinate system {u, r, yI}, such
that V = ∂

∂u , the horizon H is located at r = 0, and the metric is

ds2 = 2drdu+ 2rhIdudy
I − r2∆dudu+ γIJdy

IdyJ

[Isenberg, Moncrief]

where ∆, hI and γIJ are analytic in r, u-independent scalar, 1-form and
metric of the 8-dim horizon spatial cross section S, which we shall
assume smooth and compact without boundary.



Near-Horizon Geometries

Assumption

spacetime contains an (extremal) Killing horizon, i.e. a
null-hypersurface H associated with the Killing vector V .

One can introduce a Gaussian Null Co-ordinate system {u, r, yI}, such
that V = ∂

∂u , the horizon H is located at r = 0, and the metric is

ds2 = 2drdu+ 2rhIdudy
I − r2∆dudu+ γIJdy

IdyJ

[Isenberg, Moncrief]

where ∆, hI and γIJ are analytic in r, u-independent scalar, 1-form and
metric of the 8-dim horizon spatial cross section S, which we shall
assume smooth and compact without boundary.



Then we perform the near-horizon limit

r → εr u→ u

ε
yI → yI ε→ 0

the metric remains invariant in form, and the near-horizon data
{∆, hI , γIJ} = {∆(y), hI(y), γIJ(y)}.

In light-cone basis:

e+ = du e− = dr + rh− 1

2
r2∆du ei = eiJdy

J

ds2 = 2e+e− + δije
iej

The near-horizon limit only exists for extremal black holes.



Heterotic Near-Horizon Geometries

The bosonic fields of heterotic supergravity are the metric g, a real scalar
dilaton field Φ, a real 3-form H, and a non-abelian 2-form field F .

They must be well-defined and regular in the near-horizon limit ε→ 0.

dilaton Φ = Φ(y)

3-form H = e+ ∧ e− ∧N + re+ ∧ Y +W

2-form A = rPe+ + B , F = dA+A ∧A

N(y), Y (y),W (y) are 1, 2, 3-forms, P(y),B(y) are scalar and 1-form.

Assume all fields, including spinors, admit a Taylor series expansion in α′

∆ = ∆[0] + α′∆[1] +O(α′2)
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Supersymmetry

We further assume that the solution is supersymmetric, i.e. there exists a
Majorana-Weyl Killing spinor ε, well defined on H, satisfying the KSE:

∇(+)
M ε ≡

(
∇M −

1

8
HMN1N2

ΓN1N2
)
ε = O(α′2) gravitino

(
ΓM∇MΦ− 1

12
HN1N2N3

ΓN1N2N3
)
ε = O(α′2) dilatino

FMNΓMN ε = O(α′) gaugino

[Bergshoeff, de Roo]

∇ is the Levi-Civita connection.

∇(+) is the connection with torsion H.

We shall integrate the gravitino KSE along the e+ and e− directions
(u, r dependence of all bosonic fields is known).
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Split the Killing spinors into positive and negative light-cone chiralities

ε = ε+ + ε− , Γ±ε± = 0

Integrating the gravitino KSE along e+ and e−

ε+ = η+ +
1

4
u(h+N)iΓ

iΓ+η− +O(α′2)

ε− = η− +
1

4
r(h−N)iΓ

iΓ−η+ +
1

8
ru(h−N)i(h+N)jΓ

iΓjη− +O(α′2)

ε must satisfy the full KSE =⇒ η± must satisfy the reduced KSE

Global analysis (maximum principle) on ∇̃2 ‖ η± ‖2 implies:

∆ = O(α′2) N = h Y = dh

Theorem (Completion of AdS classification):
No AdS2 solutions in heterotic supergravity, up to O(α′2), for which S is
smooth and compact without boundary, and all fields are smooth.
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Supersymmetry enhancement

We simplified the reduced KSE to the following minimal set of KSE:

∇̃(+)
i η± ≡

(
∇̃i −

1

8
WijkΓjk

)
η± = O(α′2)

Aη± ≡
(

Γi∇̃iΦ±
1

2
hiΓ

i − 1

12
WijkΓijk

)
η± = O(α′2)

• Zeroth order in α′:

η+ satisfies “ + ” =⇒ η− = Γ−Γihiη+ satisfies “− ”

and conversely

η− satisfies “− ” =⇒ η+ = Γ+Γihiη− satisfies “ + ”

Key ingredient: ∇̃(+)h = O(α′)
by global analysis on ∇̃2h2 (maximum principle)

• First order in α′:

Susy enhancement if ∃ at least one η
[0]
− 6= 0.

Reason: if ∃ η[0]
− 6= 0, extra eqn. + local analysis =⇒ ∇̃(+)h = O(α′2).
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Lichnerowicz Theorem

Can we make the statement:

Killing Spinors η±
1:1⇐⇒ solutions of a Dirac equation ?

(It works in D = 11 sugra, type IIA, IIB and for AdS geometries )

Proof: Define the modified connection with torsion:

∇̂i ≡ ∇̃(+)
i + κΓiA

and the modified near-horizon Dirac operator:

D ≡ ��̃∇(+) + qA

κ, q ∈ R, and ∇̃(+)η± = Aη± = O(α′2) are the KSE.

Consider the functional

I ≡
∫
S
ecΦ
(
‖ ∇̂iη± ‖2 − ‖ Dη± ‖2

)
, c ∈ R
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Manipulate I and finally assume Dη± = O(α′2).

• Zeroth order in α′:∫
S
e−2Φ ‖ ∇̂η± ‖2 +

(
1

6
κ− 8κ2

)∫
S
e−2Φ ‖ A η± ‖2 = O(α′)

(q = 1
12 , c = −2, 0 < κ < 1

48 ).

=⇒ ∇̃(+)η± = O(α′) , Aη± = O(α′)

• First order in α′:∫
S
e−2Φ

[
‖ ∇̂η± ‖2 +(

1

6
κ− 8κ2) ‖ A η± ‖2 +

α′

64

(
2 ‖ /dh η± ‖2 + ‖ /̃Fη± ‖2

)]
= O(α′2)

=⇒ ∇̃(+)η± = O(α′) , Aη± = O(α′) (again!)

and the extra conditions

F̃ijΓ
ijη± = O(α′) , dhijΓ

ijη± = O(α′)

Lichnerowicz Theorem is not enough to establish susy enh. at O(α′2).
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Conclusions

Summary

Non-existence of AdS2 heterotic backgrounds, for which S is
smooth, compact and without boundary.

Zeroth order in α′: Lichnerowicz Theorem is not needed.
Global analysis of h2 implies susy enhancement

First order in α′: global analysis (∇̃2h2 and Lichnerowicz) are
insufficient to imply susy enhancement.
The reason is our no-control on O(α′2) corrections.

Found a sufficient condition for susy enhancement.

There must exists at least one non-vanishing η
[0]
− .
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Open questions for heterotic horizons

Susy enhancement when all η
[0]
− ≡ 0 ?

Extension into the bulk:

near-horizon geometry −→ BH solutions ?

Taylor expand the horizon fields at first order in r (moduli).

Show that the moduli must satisfy an elliptic system of PDEs.

=⇒ The moduli space is finite dimensional (see Carmen Li’s talk)

What happens to the moduli space when string corrections are
considered?
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