String corrected Near-Horizon Geometries

Andrea Fontanella

University of Surrey

JHEP **1610** (2016) 121 [arXiv:1605.05635 [hep-th]], with J. B. Gutowski and G. Papadopoulos

The 4th Conference of the Polish Society on Relativity

• In D=4, Einstein equations admit a unique class of asymptotically flat black hole solutions, parametrized by (M,Q,J), with horizon topology S^2 (No-hair Theorem). [Carter, Hawking, Mazur, Israel, Robinson]

- In D=4, Einstein equations admit a unique class of asymptotically flat black hole solutions, parametrized by (M,Q,J), with horizon topology S^2 (No-hair Theorem). [Carter, Hawking, Mazur, Israel, Robinson]
- ullet In D=5, new types of (asymptotically flat) BH solutions appear,

Black ring, BH with horizon topology $S^1 \times S^2$, discovered in

- Einstein gravity [Emparan, Reall],
- $\mathcal{N}=2$ minimal supergravity [Elvang, Emparan, Mateos, Reall].

BMPV, class of supersymmetric BHs [Breckenridge, Myers, Peet, Vafa]

- In D=4, Einstein equations admit a unique class of asymptotically flat black hole solutions, parametrized by (M,Q,J), with horizon topology S^2 (No-hair Theorem). [Carter, Hawking, Mazur, Israel, Robinson]
- ullet In D=5, new types of (asymptotically flat) BH solutions appear,

Black ring, BH with horizon topology $S^1 \times S^2$, discovered in

- Einstein gravity [Emparan, Reall],
- ullet $\mathcal{N}=2$ minimal supergravity [Elvang, Emparan, Mateos, Reall].

BMPV, class of supersymmetric BHs [Breckenridge, Myers, Peet, Vafa]

 String/M-theory suggests us to look at gravitational systems in ten and eleven dimensions. Exotic black hole solutions are expected.

- In D=4, Einstein equations admit a unique class of asymptotically flat black hole solutions, parametrized by (M,Q,J), with horizon topology S^2 (No-hair Theorem). [Carter, Hawking, Mazur, Israel, Robinson]
- ullet In D=5, new types of (asymptotically flat) BH solutions appear,

Black ring, BH with horizon topology $S^1 \times S^2$, discovered in

- Einstein gravity [Emparan, Reall],
- ullet $\mathcal{N}=2$ minimal supergravity [Elvang, Emparan, Mateos, Reall].

BMPV, class of supersymmetric BHs [Breckenridge, Myers, Peet, Vafa]

- String/M-theory suggests us to look at gravitational systems in ten and eleven dimensions. Exotic black hole solutions are expected.
- Finding full BH solutions is difficult (based on ansatz)

• Reduce a space-time problem down to a spatial problem.

- Reduce a space-time problem down to a spatial problem.
- Non-existence of near-horizon geometries rules out the existence of classes of black holes

- Reduce a space-time problem down to a spatial problem.
- Non-existence of near-horizon geometries rules out the existence of classes of black holes
- Approaches:
 - Assume isometries
 - \bullet "Blackfold approach" assume conditions on $T^{\mu\nu}$
 - Assume supersymmetry

- Reduce a space-time problem down to a spatial problem.
- Non-existence of near-horizon geometries rules out the existence of classes of black holes
- Approaches:
 - Assume isometries
 - ullet "Blackfold approach" assume conditions on $T^{\mu
 u}$
 - Assume supersymmetry
- Supersymmetric near-horizon geometries often experience a doubling of preserved supersymmetries (supersymmetry enhancement).

- Reduce a space-time problem down to a spatial problem.
- Non-existence of near-horizon geometries rules out the existence of classes of black holes
- Approaches:
 - Assume isometries
 - "Blackfold approach" assume conditions on $T^{\mu
 u}$
 - Assume supersymmetry
- Supersymmetric near-horizon geometries often experience a doubling of preserved supersymmetries (supersymmetry enhancement).
- Enhanced supersymmetry \Longrightarrow Symmetry enhancement symmetry of the full solution, generally at least $\mathfrak{sl}(2,\mathbb{R})$.

Higher-derivative horizons

 String corrections are important for understanding quantum corrections of BHs (small BHs, singularity resolution)

Higher-derivative horizons

- String corrections are important for understanding quantum corrections of BHs (small BHs, singularity resolution)
- Susy enhancement when string corrections are considered?
- ullet e.g. $\mathcal{N}=2, D=5$ sugra + higher-derivative corrections:

∃ new class of near-horizon solutions, which do not enjoy the susy enhancement. [Gutowski, Klemm, Sabra, Sloane]

Higher-derivative horizons

- String corrections are important for understanding quantum corrections of BHs (small BHs, singularity resolution)
- Susy enhancement when string corrections are considered?
- e.g. $\mathcal{N}=2, D=5$ sugra + higher-derivative corrections: \exists new class of near-horizon solutions, which do not enjoy the susy enhancement. [Gutowski, Klemm, Sabra, Sloane]

Aim of this work:

- Investigate properties of D=10 near-horizon geometries with higher-derivative corrections.
- Theory: heterotic supergravity

Outline

- Near-Horizon Geometries
- Heterotic Near-Horizon Geometries
- Supersymmetry enhancement?
- Lichnerowicz Theorem

Assumption

• spacetime contains an (extremal) Killing horizon, i.e. a null-hypersurface ${\cal H}$ associated with the Killing vector V.

Assumption

ullet spacetime contains an (extremal) Killing horizon, i.e. a null-hypersurface ${\cal H}$ associated with the Killing vector V.

One can introduce a Gaussian Null Co-ordinate system $\{u,r,y^I\}$, such that $V=\frac{\partial}{\partial u}$, the horizon $\mathcal H$ is located at r=0, and the metric is

$$ds^2 = 2drdu + 2rh_I dudy^I - r^2 \Delta dudu + \gamma_{IJ} dy^I dy^J$$

[Isenberg, Moncrief]

where Δ , h_I and γ_{IJ} are analytic in r,u-independent scalar, 1-form and metric of the 8-dim horizon spatial cross section \mathcal{S} , which we shall assume **smooth** and **compact without boundary**.

Then we perform the near-horizon limit

$$r \to \varepsilon r$$
 $u \to \frac{u}{\varepsilon}$ $y^I \to y^I$ $\varepsilon \to 0$

the metric remains invariant in form, and the near-horizon data $\{\Delta,h_I,\gamma_{IJ}\}=\{\Delta(y),h_I(y),\gamma_{IJ}(y)\}.$

In light-cone basis:

$$\mathbf{e}^+ = du$$
 $\mathbf{e}^- = dr + rh - \frac{1}{2}r^2\Delta du$ $\mathbf{e}^i = e^i{}_J dy^J$

$$ds^2 = 2\mathbf{e}^+\mathbf{e}^- + \delta_{ij}\mathbf{e}^i\mathbf{e}^j$$

The near-horizon limit only exists for extremal black holes.

Heterotic Near-Horizon Geometries

The bosonic fields of heterotic supergravity are the metric g, a real scalar dilaton field Φ , a real 3-form H, and a non-abelian 2-form field F.

They must be well-defined and regular in the near-horizon limit $\varepsilon \to 0$.

Heterotic Near-Horizon Geometries

The bosonic fields of heterotic supergravity are the metric g, a real scalar dilaton field Φ , a real 3-form H, and a non-abelian 2-form field F.

They must be well-defined and regular in the near-horizon limit $\varepsilon \to 0$.

dilaton
$$\Phi=\Phi(y)$$
 3-form
$$H=\mathbf{e}^+\wedge\mathbf{e}^-\wedge N+r\mathbf{e}^+\wedge Y+W$$
 2-form
$$A=r\mathcal{P}\mathbf{e}^++\mathcal{B}\;,\qquad F=dA+A\wedge A$$

N(y), Y(y), W(y) are 1, 2, 3-forms, $\mathcal{P}(y), \mathcal{B}(y)$ are scalar and 1-form.

Heterotic Near-Horizon Geometries

The bosonic fields of heterotic supergravity are the metric g, a real scalar dilaton field Φ , a real 3-form H, and a non-abelian 2-form field F.

They must be well-defined and regular in the near-horizon limit $\varepsilon \to 0$.

dilaton
$$\Phi=\Phi(y)$$
 3-form
$$H=\mathbf{e}^+\wedge\mathbf{e}^-\wedge N+r\mathbf{e}^+\wedge Y+W$$
 2-form
$$A=r\mathcal{P}\mathbf{e}^++\mathcal{B}\ ,\qquad F=dA+A\wedge A$$

N(y), Y(y), W(y) are 1, 2, 3-forms, $\mathcal{P}(y), \mathcal{B}(y)$ are scalar and 1-form.

Assume all fields, including spinors, admit a Taylor series expansion in lpha'

$$\Delta = \Delta^{[0]} + \alpha' \Delta^{[1]} + \mathcal{O}(\alpha'^2)$$

Supersymmetry

We further assume that the solution is *supersymmetric*, i.e. there exists a Majorana-Weyl Killing spinor ϵ , well defined on \mathcal{H} , satisfying the KSE:

 ∇ is the Levi-Civita connection.

 $\nabla^{(+)}$ is the connection with torsion H.

Supersymmetry

We further assume that the solution is *supersymmetric*, i.e. there exists a Majorana-Weyl Killing spinor ϵ , well defined on \mathcal{H} , satisfying the KSE:

 ∇ is the Levi-Civita connection.

 $\nabla^{(+)}$ is the connection with torsion H.

We shall integrate the gravitino KSE along the e^+ and e^- directions (u, r) dependence of all bosonic fields is known).

Split the Killing spinors into positive and negative light-cone chiralities

$$\epsilon = \epsilon_+ + \epsilon_- \; , \qquad \qquad \Gamma_{\pm} \epsilon_{\pm} = 0$$

Integrating the gravitino KSE along e^+ and e^-

$$\begin{array}{lcl} \epsilon_{+} & = & \eta_{+} + \frac{1}{4}u(h+N)_{i}\Gamma^{i}\Gamma_{+}\eta_{-} + \mathcal{O}(\alpha'^{2}) \\ \\ \epsilon_{-} & = & \eta_{-} + \frac{1}{4}r(h-N)_{i}\Gamma^{i}\Gamma_{-}\eta_{+} + \frac{1}{8}ru(h-N)_{i}(h+N)_{j}\Gamma^{i}\Gamma^{j}\eta_{-} + \mathcal{O}(\alpha'^{2}) \end{array}$$

 ϵ must satisfy the full KSE $\Longrightarrow \eta_{\pm}$ must satisfy the *reduced KSE*

Split the Killing spinors into positive and negative light-cone chiralities

$$\epsilon = \epsilon_+ + \epsilon_- \; , \qquad \qquad \Gamma_{\pm} \epsilon_{\pm} = 0$$

Integrating the gravitino KSE along e^+ and e^-

$$\begin{array}{rcl} \epsilon_{+} & = & \eta_{+} + \frac{1}{4}u(h+N)_{i}\Gamma^{i}\Gamma_{+}\eta_{-} + \mathcal{O}(\alpha'^{2}) \\ \\ \epsilon_{-} & = & \eta_{-} + \frac{1}{4}r(h-N)_{i}\Gamma^{i}\Gamma_{-}\eta_{+} + \frac{1}{8}ru(h-N)_{i}(h+N)_{j}\Gamma^{i}\Gamma^{j}\eta_{-} + \mathcal{O}(\alpha'^{2}) \end{array}$$

 ϵ must satisfy the full KSE $\Longrightarrow \eta_{\pm}$ must satisfy the *reduced KSE*

Global analysis (maximum principle) on $\tilde{\nabla}^2 \parallel \eta_{\pm} \parallel^2$ implies:

$$\Delta = \mathcal{O}(\alpha'^2)$$
 $N = h$ $Y = dh$

Theorem (Completion of AdS classification):

No AdS_2 solutions in heterotic supergravity, up to $\mathcal{O}(\alpha'^2)$, for which \mathcal{S} is smooth and compact without boundary, and all fields are smooth.

Supersymmetry enhancement

We simplified the reduced KSE to the following minimal set of KSE:

$$\tilde{\nabla}_{i}^{(+)} \eta_{\pm} \equiv \left(\tilde{\nabla}_{i} - \frac{1}{8} W_{ijk} \Gamma^{jk} \right) \eta_{\pm} = \mathcal{O}(\alpha'^{2})$$

$$\mathcal{A} \eta_{\pm} \equiv \left(\Gamma^{i} \tilde{\nabla}_{i} \Phi \pm \frac{1}{2} h_{i} \Gamma^{i} - \frac{1}{12} W_{ijk} \Gamma^{ijk} \right) \eta_{\pm} = \mathcal{O}(\alpha'^{2})$$

Supersymmetry enhancement

We simplified the reduced KSE to the following minimal set of KSE:

$$\tilde{\nabla}_{i}^{(+)} \eta_{\pm} \equiv \left(\tilde{\nabla}_{i} - \frac{1}{8} W_{ijk} \Gamma^{jk} \right) \eta_{\pm} = \mathcal{O}(\alpha'^{2})$$

$$\mathcal{A} \eta_{\pm} \equiv \left(\Gamma^{i} \tilde{\nabla}_{i} \Phi \pm \frac{1}{2} h_{i} \Gamma^{i} - \frac{1}{12} W_{ijk} \Gamma^{ijk} \right) \eta_{\pm} = \mathcal{O}(\alpha'^{2})$$

• Zeroth order in α' :

$$\eta_+$$
 satisfies " $+$ " \implies $\eta_- = \Gamma_- \Gamma^i h_i \eta_+$ satisfies " $-$ " and conversely

$$\eta_-$$
 satisfies " $-$ " \Longrightarrow $\eta_+ = \Gamma_+ \Gamma^i h_i \eta_-$ satisfies " $+$ "

Key ingredient: $\tilde{\nabla}^{(+)}h = \mathcal{O}(\alpha')$ by global analysis on $\tilde{\nabla}^2 h^2$ (maximum principle)

Supersymmetry enhancement

We simplified the reduced KSE to the following minimal set of KSE:

$$\begin{split} \tilde{\nabla}_{i}^{(+)}\eta_{\pm} & \equiv \left(\tilde{\nabla}_{i} - \frac{1}{8}W_{ijk}\Gamma^{jk}\right)\eta_{\pm} = \mathcal{O}(\alpha'^{2}) \\ \mathcal{A}\eta_{\pm} & \equiv \left(\Gamma^{i}\tilde{\nabla}_{i}\Phi \pm \frac{1}{2}h_{i}\Gamma^{i} - \frac{1}{12}W_{ijk}\Gamma^{ijk}\right)\eta_{\pm} = \mathcal{O}(\alpha'^{2}) \end{split}$$

• Zeroth order in α' :

$$\eta_+$$
 satisfies " $+$ " \implies $\eta_- = \Gamma_- \Gamma^i h_i \eta_+$ satisfies " $-$ "

and conversely

$$\eta_-$$
 satisfies " $-$ " \implies $\eta_+ = \Gamma_+ \Gamma^i h_i \eta_-$ satisfies " $+$ "

Key ingredient: $\tilde{\nabla}^{(+)}h = \mathcal{O}(\alpha')$ by global analysis on $\tilde{\nabla}^2 h^2$ (maximum principle)

• First order in α' :

Susy enhancement if \exists at least one $\eta_{-}^{[0]} \neq 0$.

Reason: if $\exists \eta_{-}^{[0]} \neq 0$, extra eqn. + local analysis $\Longrightarrow \tilde{\nabla}^{(+)} h = \mathcal{O}(\alpha'^2)$.

Lichnerowicz Theorem

Can we make the statement:

Killing Spinors η_{\pm} $\stackrel{1:1}{\Longleftrightarrow}$ solutions of a Dirac equation ?

(It works in $D=11~{\rm sugra},$ type IIA, IIB and for AdS geometries)

Lichnerowicz Theorem

Can we make the statement:

Killing Spinors η_{\pm} $\stackrel{1:1}{\Longleftrightarrow}$ solutions of a Dirac equation

(It works in $D=11~{\rm sugra},$ type IIA, IIB and for AdS geometries)

Proof: Define the modified connection with torsion:

$$\hat{\nabla}_i \equiv \tilde{\nabla}_i^{(+)} + \kappa \Gamma_i \mathcal{A}$$

and the modified near-horizon Dirac operator:

$$\mathcal{D} \equiv \tilde{\mathbf{X}}^{(+)} + q\mathcal{A}$$

 $\kappa,q\in\mathbb{R}$, and $\tilde{
abla}^{(+)}\eta_{\pm}=\mathcal{A}\eta_{\pm}=\mathcal{O}(lpha'^2)$ are the KSE.

Consider the functional

$$\mathcal{I} \equiv \int_{\mathcal{S}} e^{c\Phi} \left(\| \hat{\nabla}_i \eta_{\pm} \|^2 - \| \mathcal{D} \eta_{\pm} \|^2 \right) , \qquad c \in \mathbb{R}$$

Manipulate \mathcal{I} and finally assume $\mathcal{D}\eta_{\pm} = \mathcal{O}(\alpha'^2)$.

• Zeroth order in α' :

$$\int_{\mathcal{S}} e^{-2\Phi} \| \hat{\nabla} \eta_{\pm} \|^2 + \left(\frac{1}{6} \kappa - 8\kappa^2 \right) \int_{\mathcal{S}} e^{-2\Phi} \| \mathcal{A} \eta_{\pm} \|^2 = \mathcal{O}(\alpha')$$

$$(q = \frac{1}{12}, c = -2, 0 < \kappa < \frac{1}{48}).$$

$$\implies \tilde{\nabla}^{(+)}\eta_{\pm} = \mathcal{O}(\alpha') , \qquad \mathcal{A}\eta_{\pm} = \mathcal{O}(\alpha')$$

• Zeroth order in α' :

Manipulate \mathcal{I} and finally assume $\mathcal{D}\eta_{\pm} = \mathcal{O}(\alpha'^2)$.

$$\int_{\mathcal{S}} e^{-2\Phi} \| \hat{\nabla} \eta_{\pm} \|^{2} + \left(\frac{1}{6} \kappa - 8\kappa^{2} \right) \int_{\mathcal{S}} e^{-2\Phi} \| \mathcal{A} \eta_{\pm} \|^{2} = \mathcal{O}(\alpha')$$

$$(q = \frac{1}{12}, c = -2, 0 < \kappa < \frac{1}{12}).$$

$$\implies \tilde{\nabla}^{(+)}\eta_{\pm} = \mathcal{O}(\alpha') , \qquad \qquad \mathcal{A}\eta_{\pm} = \mathcal{O}(\alpha')$$

• First order in
$$\alpha'$$
:
$$\int_{\mathcal{S}} e^{-2\Phi} \left[\| \hat{\nabla} \eta_{\pm} \|^2 + (\frac{1}{6}\kappa - 8\kappa^2) \| \mathcal{A} \eta_{\pm} \|^2 + \frac{\alpha'}{64} \left(2 \| dh \eta_{\pm} \|^2 + \| \tilde{F} \eta_{\pm} \|^2 \right) \right] = \mathcal{O}(\alpha'^2)$$

 $A\eta_{+} = \mathcal{O}(\alpha')$ (again!)

 $\implies \tilde{\nabla}^{(+)} \eta_+ = \mathcal{O}(\alpha')$.

and the extra conditions

$$ilde{F}_{ij}\Gamma^{ij}\eta_{+}=\mathcal{O}(lpha')\;, \qquad \qquad dh_{ij}\Gamma^{ij}\eta_{+}=\mathcal{O}(lpha')$$

Lichnerowicz Theorem is not enough to establish susy enh. at $\mathcal{O}(\alpha'^2)$.

Summary

• Non-existence of AdS_2 heterotic backgrounds, for which ${\cal S}$ is smooth, compact and without boundary.

Summary

- Non-existence of AdS_2 heterotic backgrounds, for which ${\cal S}$ is smooth, compact and without boundary.
- Zeroth order in α' : Lichnerowicz Theorem is not needed. Global analysis of h^2 implies susy enhancement

Summary

- Non-existence of AdS_2 heterotic backgrounds, for which ${\cal S}$ is smooth, compact and without boundary.
- Zeroth order in α' : Lichnerowicz Theorem is not needed. Global analysis of h^2 implies susy enhancement
- First order in α' : global analysis $(\tilde{\nabla}^2 h^2)$ and Lichnerowicz) are insufficient to imply susy enhancement. The reason is our no-control on $\mathcal{O}(\alpha'^2)$ corrections.

Summary

- Non-existence of AdS_2 heterotic backgrounds, for which $\mathcal S$ is smooth, compact and without boundary.
- Zeroth order in α' : Lichnerowicz Theorem is not needed. Global analysis of h^2 implies susy enhancement
- First order in α' : global analysis $(\tilde{\nabla}^2 h^2)$ and Lichnerowicz) are insufficient to imply susy enhancement. The reason is our no-control on $\mathcal{O}(\alpha'^2)$ corrections.
- Found a sufficient condition for susy enhancement. There must exists at least one non-vanishing $\eta_{-}^{[0]}$.

Open questions for heterotic horizons

• Susy enhancement when all $\eta_-^{[0]} \equiv 0$?

Open questions for heterotic horizons

- Susy enhancement when all $\eta_{-}^{[0]} \equiv 0$?
- Extension into the bulk:

 ${\sf near-horizon\ geometry} \quad \longrightarrow \quad {\sf BH\ solutions\ ?}$

- Taylor expand the horizon fields at first order in r (moduli).
- Show that the moduli must satisfy an elliptic system of PDEs.
- → The moduli space is finite dimensional (see Carmen Li's talk)

What happens to the moduli space when string corrections are considered?