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T. Trześniewski Compact phase space and cosmology 1 / 14



Homogeneous cosmology
Perturbative inhomogeneities

Outline:

1 Homogeneous cosmological model
Spherical phase space for the field
Classical dynamics of the model

2 Perturbative quantum inhomogeneities
Quantization of the linearized model
First order corrections to the standard case
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Context and the existing work

Momentum spaces, or phase spaces, with nontrivial geometry
that appear in quantum gravity

Born reciprocity and three-dimensional gravity
Quantum gravity phenomenology, relative locality framework
Group field theory, loop quantum cosmology etc.

Target manifolds for field values of non-linear sigma models and
the Tseytlin string action
The principle of finiteness of physical quantities, at the base of the
Born-Infeld theory
Potential connections between quantum gravity, cosmology and
condensed matter physics

Nonlinear Field Space Theory:
J. Mielczarek and T.T., Phys. Lett. B 759, 424 (2016)
J. Mielczarek, Universe 3, 29 (2017)
T.T., Acta Phys. Pol. B Proc. Suppl. 10, 329 (2017)
J. Bilski, S. Brahma, A. Marcianò and J. Mielczarek, arXiv:1708.03207 [hep-th]
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Spherical phase space
Dynamics of the model

Phase space variables
Phase space Γ = R2 is formed by values of a scalar field ϕ and its
conjugate momentum πϕ at every point of space Σ. We assume that
Γ is actually a sphere, parametrized in terms of usual angles φ and θ
or the spin-like vector S = (Sx ,Sy ,Sz), so that

Sx := S sin θ cosφ = S cos
πϕ
R2

cos
ϕ

R1
, (1)

Sy := S sin θ sinφ = S cos
πϕ
R2

sin
ϕ

R1
, (2)

Sz := S cos θ = S sin
πϕ
R2

, (3)

where R1, R2 are certain dimensionful constants and ϕ/R1 ∈ [−π, π),
πϕ/R2 ∈ [−π2 ,

π
2 ]. For a field defined on the Minkowski background we

have the limiting condition R1R2 = S.

T. Trześniewski Compact phase space and cosmology 3 / 14



Homogeneous cosmology
Perturbative inhomogeneities

Spherical phase space
Dynamics of the model

Phase space algebra

In the Minkowski case the symplectic form is given by the area 2-form

ωM = S sin θ dφ ∧ dθ = cos
πϕ

R2M
dπϕ ∧ dϕ , (4)

satisfying
∫

S2 ωM = 4πS. For the FRW background we introduce the
gravitational field variable q ≡ V0a3 (here a is the scale factor and V0
a fiducial spatial volume) and its conjugate momentum p. Then we
assume that the generalized symplectic total form is

ω := dp ∧ dq + cos
πϕ

R2(q)
dπϕ ∧ dϕ . (5)

However, for ω to be a closed form we need R2(q) = R2. The corre-
sponding Poisson bracket has the form

{·, ·} =

[
∂·
∂q

∂·
∂p
− ∂·
∂p

∂·
∂q

]
+

1
cos πϕ

R2

[
∂·
∂ϕ

∂·
∂πϕ

− ∂·
∂πϕ

∂·
∂ϕ

]
. (6)
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Hamiltonian from the Heisenberg model
The Hamiltonian of the continuous XXZ Heisenberg model coupled to
a magnetic field B (for convenience, B := (Bx ,0,0)) has the form

HXXZ = −
∫

d3x
(

J̃
(
(∇Sx )2 + (∇Sy )2 + ∆(∇Sz)2)+ µ̃B · S

)
, (7)

where J̃, µ̃ are coupling constants and ∆ the anisotropy parameter.
The homogeneous field corresponds to the term ∝ B, which we adapt
to the FRW background multiplying the measure d3x by Na3, obtaining

HSmatmat = −Nq µ̃BxSx (8)

= Nq
(
−µ̃BxS +

µ̃BxS
2R2

2
π2
ϕ +

µ̃BxS
2R2

1
ϕ2 +O(ϕ4−nπn

ϕ)

)
.

The ordinary scalar field is recovered (up to a shift ∝ S) in the limit
S →∞ for the following identification of the model’s parameters:

µ̃Bx ≡
q0m
q2 , R1 ≡

1
q

√
Sq0

m
, R2 ≡

√
Sq0m . (9)
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Total Hamiltonian
As the result, the matter Hamiltonian acquires the form

HSmat = −Nm
q0

q
Sx = Nq

(
−Sm

q0

q2 +
π2
ϕ

2q2 +
1
2

m2ϕ2 +O(4)

)
. (10)

The first term in the expansion will lead to a cosmic bounce, while the
negative energy density that occurs for Sx > 0 should be balanced by
some additional matter content. Nevertheless, in what follows we will
use the positive-definite Hamiltonian

Hmat := Nm
q0

q
(S − Sx ) (11)

and then the total Hamiltonian is

Htot = HFRW + Hmat , HFRW = −3κ
4

Nqp2 , (12)

where κ ≡ 8πG. It generates the constraint ∂
∂N Htot = 0, equivalent to

m
q0

q2 (S − Sx ) =
3κ
4

p2 . (13)
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Friedmann equation

Introducing the Hubble factor h ≡ q̇/(3q), we now find that the Fried-
mann equation is given by (for the gauge N = 1)

h2 = m
q0

q2 (S − Sx ) ≡ κ

3
ρ , (14)

where ρ denotes the matter energy density. If we express it in terms
of the energy density and pressure of an ordinary scalar field

ρϕ :=
π2
ϕ

2q2 +
1
2

m2ϕ2 , Pϕ :=
π2
ϕ

2q2 −
1
2

m2ϕ2 , (15)

we may obtain corrections to the usual Friedmann equation

h2 =
κ

3
ρϕ −

κ

9
q2

Sq0m

(
ρ2
ϕ −

1
2

P2
ϕ

)
+O(1/S2) . (16)

They become relevant for large q and then can trigger a recollapse.
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Evolution equations
Our Hamiltonian Htot also leads to the following equations for gravity

q̇ = −3κ
2

Nqp ,

ṗ =
3κ
4

Np2 + Nm
q0

q2

(
S − Sx − Sy arctan

Sy

Sx

)
(17)

and for the field

Ṡx =
3κ
2

Np Sy arctan
Sy

Sx
, (18)

Ṡy = Nm Sz −
3κ
2

Np Sx arctan
Sy

Sx
, Ṡz = −Nm Sy . (19)

Alternatively, on the hemisphere ϕ/R1 ∈ (−π2 ,
π
2 ), πϕ/R2 ∈ (−π2 ,

π
2 )

one may use the angular-like variables, which are governed by

ϕ̇ =
NR2

q
tan

πϕ
R2

cos
ϕ

R1
, π̇ϕ = −NR1qm2 sin

ϕ

R1
. (20)
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Quantization of the model
First order corrections

Hamiltonian for the inhomogeneous field

In this case let us restrict to the regime of S → ∞ but with ∆ 6= 0.
Then our matter field Hamiltonian becomes (we also choose N = a)

Hϕ =

∫
d3x Hϕ

=

∫
d3x a4

[
π2
ϕ

2a6 +
(∇ϕ)2

2a2 +
1
2

m2ϕ2 +
∆

2m2a8 (∇πϕ)2

]
. (21)

Changing the variables to v := aϕ and πv := ∂Lv/∂v ′ we can derive

Hv =
π2

v

2
+

(∇v)2

2
+

1
2

m2
effv

2 +
∆

2m2a2 (∇πv − h∇v)2

+O(∆2) , (22)

where m2
eff ≡ m2a2−a′′/a is the effective mass, h ≡ a′/a the conformal

Hubble factor and we make an expansion around ∆ = 0.
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Quantum field operators
Since in the considered limit S →∞ we simply have

{ϕ(x), πϕ(y)} =
δ(3)(x− y)

cos(πϕ(x)/R2)
−→ δ(3)(x− y) , (23)

the standard quantization can be applied, leading to

[v̂(x), π̂v (y)] = iδ(3)(x− y) Î . (24)

Furthermore, we Fourier expand the field operators

v̂(x) =

∫
d3k

(2π)3/2 eik·xv̂k , π̂v (x) =

∫
d3k

(2π)3/2 eik·xπ̂vk (25)

and decompose their modes in the basis of creation and annihilation
operators, satisfying [âk, â

†
q] = δ(3)(k− q), (τ is the conformal time)

v̂k(τ) = fk (τ) âk + f ∗k (τ) â†−k , (26)

π̂vk(τ) = gk (τ) âk + g∗k (τ) â†−k . (27)
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Quantization of the model
First order corrections

Dynamics of mode functions
Next we may write down the (symmetrized) quantum Hamiltonian

Ĥv = O(∆2) +
1
4

∫
d3k

(
1 +

∆k2

m2a2

)(
π̂vkπ̂

†
vk + π̂†vkπ̂vk

)
+

1
4

∫
d3k

(
ω2

k +
∆k2

m2a2 h
2
)(

v̂kv̂†k + v̂†k v̂k

)
− 1

4

∫
d3k

∆k2

m2a2 h
(

v̂kπ̂
†
vk + v̂†k π̂vk + π̂vkv̂†k + π̂†vkv̂k

)
, (28)

with ω2
k ≡ k2 + m2

eff. It determines the evolution equations of v̂k and
π̂vk, which together give us equations for mode functions:

f
′′

k + 2h
∆k2

m2a2 f
′

k +

[
ω2

k +
∆k2

m2a2

(
k2 + m2a2 − 2h2)] fk = 0 , (29)

as well as

gk = f
′

k +
∆k2

m2a2 (h fk − f
′

k ) +O(∆2) . (30)
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Vacuum state normalization
Therefore, the Wronskian condition also becomes modified

fk (f ∗k )
′
− f ∗k f

′

k = i
(

1 +
∆k2

m2a2

)
+O(∆2) . (31)

We now calculate that energy of the initial ground state is given by

〈0|Ĥv |0〉 =
1
2
δ(3)(0)

∫
d3k Ek ,

Ek ≡
(

1 +
∆k2

m2a2

)
|gk |2 +

(
ω2

k +
∆k2

m2a2 h
2
)
|fk |2 +

2∆k2

m2a2 h fk g∗k . (32)

The form of fk can be found by applying the decomposition fk = rk eiαk

and looking for a minimum of Ek . In particular, for such k that k2 � m2
eff

and ∆k2

m2a2 � 1 we obtain the corrected Bunch-Davies vacuum

fk =
e−ikτ
√

2k

[
1 +

∆k2

m2a2

(
1
4
− ika2

∫
dτ
a2

)]
+O(∆2) . (33)
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Spectrum of perturbations

Simple quantum correlations are captured by a two-point function

〈0|ϕ̂(x, τ)ϕ̂(y, τ)|0〉 =

∫ ∞
0

dk
sin(k |x− y|)

k2|x− y|
Pϕ(k , η) , (34)

where Pϕ(k , τ) ≡ 1
2π2 k3|fk (τ)/a(τ)|2 is the power spectrum. In partic-

ular, in the de Sitter regime (i.e. for a = −(h τ)−1) it simplifies to

Pϕ(k , τ) =

(
h

2π

)2

x2
(

1 +
∆

6η
x2
)

+O(∆2), (35)

with x ≡ −kτ . Consequently, the spectral index is found to be

nS :=
d lnPϕ(x = 1)

d ln k
= 0 . (36)
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Work in progress and outlook

Joint treatment for the field’s background and perturbations
Calculation of the tensor to scalar ratio
Analysis of the phase space trajectories
Quantum theory in the case of the finite size of phase space
Investigation of relations with condensed matter physics
...
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