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Context and the existing work

@ Momentum spaces, or phase spaces, with nontrivial geometry
that appear in quantum gravity
e Born reciprocity and three-dimensional gravity
e Quantum gravity phenomenology, relative locality framework
e Group field theory, loop quantum cosmology etc.
@ Target manifolds for field values of non-linear sigma models and
the Tseytlin string action

@ The principle of finiteness of physical quantities, at the base of the
Born-Infeld theory

@ Potential connections between quantum gravity, cosmology and
condensed matter physics

Nonlinear Field Space Theory:

J. Mielczarek and T.T., Phys. Lett. B 759, 424 (2016)
J. Mielczarek, Universe 3, 29 (2017)

T.T., Acta Phys. Pol. B Proc. Suppl. 10, 329 (2017)

J. Bilski, S. Brahma, A. Marcianoé and J. Mielczarek, arXiv:1708.03207 [hep-th]
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Homogeneous cosmology Spherical phase space
Dynamics of the model

Phase space variables

Phase space I = R? is formed by values of a scalar field ¢ and its
conjugate momentum 7, at every point of space £. We assume that
I is actually a sphere, parametrized in terms of usual angles ¢ and 6
or the spin-like vector S = (S, Sy, S;), so that

Ty ¥
Sy := Ssinfcos ¢ = Scos © Rz cos R1 (1)
S, := Ssinfsing = Scos = ﬁz sin ﬁ (2)
S, :=Scosh = Ssin (3)

Rz
where Ry, R, are certain dimensionful constants and ¢/R; € [—m,7),
n,/Re € [-%, 5]. For afield defined on the Minkowski background we
have the limiting condition R{R, = S.

Ve o \‘\F
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Homogeneous cosmology Spherical phase space
Dynamics of the model

Phase space algebra

In the Minkowski case the symplectic form is given by the area 2-form

wy = SsiNfdo A df = cos =2 dr, A dp, (4)
Rom
satisfying fsz wy = 47S. For the FRW background we introduce the
gravitational field variable g = Vpa® (here a is the scale factor and Vg
a fiducial spatial volume) and its conjugate momentum p. Then we
assume that the generalized symplectic total form is

w:=dadpAdgq+cos 5—— dr, ANdyp. (5)

R()

However, for w to be a closed form we need Rx(q) = R.. The corre-
sponding Poisson bracket has the form

[8- 0- 0 8-} Co1 [8- 0- 0- 0 (©)

dqop  dpaq sH [0pom, Om,0p
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Homogeneous cosmology S
Dynamics of model

Hamiltonian from the Heisenberg model

The Hamiltonian of the continuous XXZ Heisenberg model coupled to
a magnetic field B (for convenience, B := (By, 0, 0)) has the form

Hyxz = /d3 (VS)2 + (VS))2 + A(VS,)?) +,:LB.S), (7)

where J, ji are coupling constants and A the anisotropy parameter.
The homogeneous field corresponds to the term « B, which we adapt
to the FRW background multiplying the measure d®x by Na?, obtaining

HSmatmat = _Nq ﬁBX SX (8)

iiB,S iiB,S _
_Nq( [iByx s+“2R2 5,+“2,§12 ©? + O(p* ”wg)>.

The ordinary scalar field is recovered (up to a shift o< S) in the limit
S — oo for the following identification of the model's parameters:

m 1 /S
ﬂBXEq;—Z, R1Ea %, R. =+/Sqom. 9)
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Homogeneous cosmology

Total Hamiltonian

As the result, the matter Hamiltonian acquires the form

q2 2q2
The first term in the expansion will lead to a cosmic bounce, while the
negative energy density that occurs for Sy > 0 should be balanced by

some additional matter content. Nevertheless, in what follows we will
use the positive-definite Hamiltonian

Hsmat = —Nm%sx = Ng ( sm% 4 + ;m%p? + O(4)> . (10)

Hiat := Nm% (SiSX) (11)
and then the total Hamiltonian is
3
Hot = Herw + Hinat s Hirrw = —THNQPZ ) (12)
where x = 87 G. It generates the constraint 3 He = 0, equivalent to
Qo 3K o
m?(S—SX): 7] (13)
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Homogeneous cosmology

Friedmann equation

Introducing the Hubble factor h = ¢/(3q), we now find that the Fried-
mann equation is given by (for the gauge N = 1)

CO\E

W _mZO (S-S (14)

where p denotes the matter energy density. If we express it in terms
of the energy density and pressure of an ordinary scalar field
po = §;+2 2. P, ;;;m% (15)
we may obtain corrections to the usual Friedmann equation
2 K K q° > 15 2
h :§p¢—§m (p@—zF’W)—i—OU/S). (16)
They become relevant for large g and then can trigger a recollapse.
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Homogeneous cosmology S
Dynamics of

Evolution equations

Our Hamiltonian H,, also leads to the following equations for gravity

q=-—Nagp,

o SR 2 90 o _ Sy

p= TNp + Nm? (S Sy — Sy arctan 5, 17)

and for the field
- 3k S,
Sy = ?Np Sy arctan 5 (18)
Sy =NmS, — ?NpSX arctan S S;=—-NmS,. (19)
X

Alternatively, on the hemisphere ¢ /Ry € (-%,%), 7p/Re € (=%, %)
one may use the angular-like variables, which are governed by

. NRZ T ¥ LI 2ain P
P = —tanﬁzcosﬁ17 7, = —NRyqm smﬁ. (20)
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Quantization of the model
Perturbative inhomogeneities First order corrections

Hamiltonian for the inhomogeneous field

In this case let us restrict to the regime of S — oo but with A # 0.
Then our matter field Hamiltonian becomes (we also choose N = a)

H, = /d3x’H¢

= /d3x a*

Changing the variables to v := ap and 7, := 9L, /dv’ we can derive

2 2
Mo (Vo) 1 2 2
o8 T 222 2™ ¥ T ones

(Vr,)2 . (21)

2 \VARE 1 A
Hy= G B g g (Vb V)
+0(A?), (22)

where m%; = m?a?— 4"’ /ais the effective mass, h = a'/athe conformal
Hubble factor and we make an expansion around A = 0.
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Quantization of the model
Perturbative inhomogeneities First order corrections

Quantum field operators

Since in the considered limit S — oo we simply have

{p(0),mo(y)} = m —@x-y), (@3

the standard quantization can be applied, leading to
[0(x). o (y)] = 16 (x — y) . (24)

Furthermore, we Fourier expand the field operators
V(x) = / ( 213)’; €U, A(x) = (Z‘f)’; 7 € Ruc (25)

and decompose their modes in the basis of creation and annihilation
operators, satisfying [, 84] = 6 (k — q), ( is the conformal time)

A

() = f(r) &+ fi (1) &L k> (26)
Fu(T) = g(7) B+ g (1) &' - (27)
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Quantization of the model
Perturbative inhomogeneities First order corrections

Dynamics of mode functions

Next we may write down the (symmetrized) quantum Hamiltonian

~ Ak2
H, = /d3 <1 + ) (ﬁvkﬂk + ﬁik%vk>
+7 / d*k (w,% t oo h2) (AK\A/; + vk)
1 Ak ot a TN
7 ma 5h (Vkﬂk + V|I7Tvk + 7Tka|;r + WIka) , (28)

with w2 = k2 + m%;. It determines the evolution equations of ¥ and
vk, Which together give us equations for mode functions:

p AKZ AK?
fio +20 5z f+ [wﬁ o2 (k? + mPa? — 2@2)} k=0, (29)

as well as
2

Ak
G =+ 50— fi) +0(8%). (30)
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Quantization of the model
Perturbative inhomogeneities First order corrections

Vacuum state normalization

Therefore, the Wronskian condition also becomes modified
o s AKk?
f(f5) — fif =i (1 + m232> +0(A2). (31)
We now calculate that energy of the initial ground state is given by

(0|A,[0) = /d3k Ex,

Ek(1

The form of f, can be found by applying the decomposition f, = r,e/®x
and Iooking for a minimum of Ex. In particular, for such k that k2 >> m?;

and 2K e <1we obtain the corrected Bunch-Davies vacuum

ek AK? (1 dr
fi = N [1 + o (4 - /kaz/az)] +0(8%).  (33)

Ak 2, AKZ L\ .. . 20K2 . |
232)|gk + (o4 ) 2+ 2o i (32)
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Perturbative inhomogeneities First order corrections

Spectrum of perturbations

Simple quantum correlations are captured by a two-point function

sin(k|x — |)

Xy Py(k,n),  (34)

©lptx. ply. nlo) = [ e SN

where Py (k,7) = 5> L K8|f(7)/a(7)|? is the power spectrum. In partic-
ular, in the de Sitter regime (i.e. for a = —(h7)~") it simplifies to

Py(k,7) = h 2x2 14 By +0(A?) (35)
P\HT) =\ on 6 ’
with x = —k7. Consequently, the spectral index is found to be

dinPy(x =1)

ngi= = ES == =0. (36)
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Work in progress and outlook

@ Joint treatment for the field’s background and perturbations
@ Calculation of the tensor to scalar ratio

@ Analysis of the phase space trajectories

@ Quantum theory in the case of the finite size of phase space
@ Investigation of relations with condensed matter physics

o ...
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