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Motivations

Motivations:

GW observations:

inspiral and merger of binary black holes is of distinguished importance for
the emerging field of gravitational wave astronomy

non-linearities necessitate the use of accurate numerical approaches in
determining the emitted waveforms

precision of these simulations—in particular, their initializations—is of critical
importance in enhancing the detection of gravitational wave signals

A new construction:

I. Rácz: Constraints as evolutionary systems, Class. Quantum Grav. 33 015014 (2016)

I. Rácz: A simple method of constructing binary black hole initial data, arXiv:1605.01669

I. Rácz: On the ADM charges of multiple black holes , arXiv:1608.02283
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Motivations

Intitialization:

The constraints:

vacuum initial data: (hij ,Kij) on a 3-dimensional manifold Σ

(3)

R+ (Ke
e)

2 −KefK
ef = 0

DeK
e
a −DaK

e
e = 0

where Da denotes the covariant derivative operator associated with hab

it is an underdetermined system: 4 equations for 12 variables

István Rácz (Wigner RCP, Budapest) Binary black hole initial data 27 September, 2017 4 / 20



Motivations

Intitialization:

The constraints:

vacuum initial data: (hij ,Kij) on a 3-dimensional manifold Σ

(3)

R+ (Ke
e)

2 −KefK
ef = 0

DeK
e
a −DaK

e
e = 0

where Da denotes the covariant derivative operator associated with hab

it is an underdetermined system: 4 equations for 12 variables
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Motivations

The conformal (elliptic) method:

Lichnerowicz A (1944) and York J W (1972):

replace

hij = φ4 h̃ij and Kij − 1
3 hij K

l
l = φ−2 K̃ij

using these variables the constraints are put into the semilinear elliptic system

D̃lD̃lφ− 1
8 R̃ φ+ 1

8 K̃ijK̃
ij φ−7 − 1

12 (Kl
l)
2 φ5 = 0

where D̃l, R̃, ........ h̃ij

K̃ij = K̃
[L]
ij + K̃

[TT ]
ij , where K̃

[L]
ij = D̃iXj + D̃jXi − 2

3 h̃ijD̃
lXl

D̃lD̃lXi + 1
3 D̃i(D̃

lXl) + R̃i
lXl − 2

3 φ
6D̃i(K

l
l) = 0

(hij ,Kij) ←→
(
φ, h̃ij ;K

l
l, Xi, K̃

[TT ]
ij

)
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Motivations

The conformal method:
Impressive mathematical developments since 1944 but ...

either “constancy” of Kl
l or “smallness” of the TT part of K̃ij is required

it is highly implicit due to its elliptic character and the replacements hij = φ4 h̃ij
and Kij = 1

3
φ4 h̃ij K

l
l + φ−2 K̃ij =⇒

no direct control on the physical parameters of the initial data specifications

boundary conditions:

are known to influence solutions everywhere in their domains

the inner boundary conditions—they are applied with excision in the black
hole interior—cannot simply be supported by intuition (trumpet data ... )

Bowen-York type initial data: h̃ij is flat h̃ij = δij and Kl
l = 0

((((Kerr BH
non-negligible spurious gravitational wave content of yielded time evolutions

Σ

Sout

Sin
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The parabolic-hyperbolic form of the constrains

New variables by applying 2 + 1 decompositions:

Splitting of the metric hij :

assume Σ ≈ R×S

Σ is smoothly foliated by a one-parameter family of two-surfaces Sρ :
ρ = const level surfaces of a smooth real function ρ : Σ→ R with ∂iρ 6= 0

=⇒ n̂i = N̂ ∂iρ . . . & . . . hij −→ n̂i = hij n̂j

choose ρi to be a vector field on Σ : the integral curves. . . & ρi∂iρ = 1

‘lapse’ and ‘shift’ of ρi

ρi = N̂ n̂i + N̂ i

γ̂ij = δij − n̂in̂j , N̂ i = γ̂ij ρ
j and γ̂ij = γ̂kiγ̂

l
jhkl

the metric hij can then be given as

hij = γ̂ij + n̂in̂j ⇐⇒ {N̂ , N̂ i, γ̂ij}

István Rácz (Wigner RCP, Budapest) Binary black hole initial data 27 September, 2017 7 / 20



The parabolic-hyperbolic form of the constrains

New variables by applying 2 + 1 decompositions:

Splitting of the metric hij :

assume Σ ≈ R×S

Σ is smoothly foliated by a one-parameter family of two-surfaces Sρ :
ρ = const level surfaces of a smooth real function ρ : Σ→ R with ∂iρ 6= 0

=⇒ n̂i = N̂ ∂iρ . . . & . . . hij −→ n̂i = hij n̂j

choose ρi to be a vector field on Σ : the integral curves. . . & ρi∂iρ = 1

‘lapse’ and ‘shift’ of ρi

ρi = N̂ n̂i + N̂ i

γ̂ij = δij − n̂in̂j , N̂ i = γ̂ij ρ
j and γ̂ij = γ̂kiγ̂

l
jhkl

the metric hij can then be given as

hij = γ̂ij + n̂in̂j ⇐⇒ {N̂ , N̂ i, γ̂ij}
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The parabolic-hyperbolic form of the constrains

2 + 1 decompositions:

Splitting of the symmetric tensor field Kij :

Kij = κ n̂in̂j + [n̂i kj + n̂j ki] + Kij

where

κ = n̂kn̂lKkl , ki = γ̂kin̂
lKkl and Kij = γ̂kiγ̂

l
j Kkl

the trace and trace free parts of Kij

Kl
l = γ̂klKkl and

◦
Kij = Kij − 1

2 γ̂ijK
l
l

The new variables:

(hij ,Kij) ⇐⇒ (N̂ , N̂ i, γ̂ij ;κ,ki,K
l
l,

◦
Kij)

these variables retain the physically distinguished nature of hij and Kij
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The parabolic-hyperbolic form of the constrains

The parabolic-hyperbolic form of the constraints:

An evolutionary system for the constrained fields N̂ ,ki and Kl
l:

?
K [ (∂ρN̂)− N̂ l(D̂lN̂) ]− N̂2(D̂lD̂lN̂)−A N̂ + B N̂3 = 0

Ln̂ki − 1
2 D̂i(K

l
l)− D̂iκ + D̂l ◦Kli + N̂

?
K ki + [κ− 1

2 (Kl
l) ] ˙̂ni − ˙̂nl

◦
Kli = 0

Ln̂(Kl
l)− D̂lkl − N̂

?
K [κ− 1

2 (Kl
l) ] + N̂

◦
Kkl

?
Kkl + 2 ˙̂nl kl = 0 ,

where D̂i denotes the covariant derivative operator associated with γ̂ij
?
K = 1

2 γ̂
ijLργ̂ij − D̂jN̂

j

?
Kij = 1

2Lργ̂ij − D̂(iN̂j), ˙̂nk = n̂lDln̂k = −D̂k(ln N̂)

A = (∂ρ
?
K)− N̂ l(D̂l

?
K) + 1

2 [
?
K

2
+

?
Kkl

?
Kkl ]

B = 1
2

[
R̂+ 2κ (Kl

l) + 1
2 (Kl

l)
2 − 2klkl −

◦
Kkl

◦
Kkl

]
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The parabolic-hyperbolic form of the constrains

The parabolic-hyperbolic system:
The parabolic-hyperbolic system:

no restriction applies to N̂ i, γ̂ij ,κ and
◦
Kij =⇒ they are freely specifiable

throughout Σ

the parabolic equation is uniformly parabolic in those subregions of Σ, where
?
K is either positive or negative
?
K depends exclusively on the freely specifiable fields γ̂ij and N̂ i =⇒

its sign can be tailored according to the desire of the investigated problem

the combined evolutionary system is (locally) well-posed

if suitable initial values for the constrained fields N̂ ,ki and Kl
l are

given, on some level surface S0 in Σ, then, in the domain of dependence
of S0, unique solution exists to the evolutionary system

the fields hij and Kij that can be reconstructed from the freely

specifiable and constrained variables do satisfy the Hamiltonian and
momentum constraints
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Kerr-Schild black holes and the superposed ones

The Kerr black hole:

In Kerr-Schild form:

gαβ = ηαβ + 2H`α`β

inertial coordinates (t, x, y, z) adapted to the Minkowski background ηαβ

H = r3M
r4+a2z2

`α =
(

1, r x+a yr2+a2 ,
r y−a x
r2+a2 ,

z
r

)
the Boyer-Lindquist radial coordinate r is related to the spatial part of the inertial
coordinates as

r4 − (x2 + y2 + z2 − a2) r2 − a2 z2 = 0
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Kerr-Schild black holes and the superposed ones

t = const slices in Kerr spacetime:

the θ = π
2

section

Σ ≈ R3 \ {“ring singularity”}
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Kerr-Schild black holes and the superposed ones

Generic Kerr-Schild black holes:

the Kerr-Schild metrics are form-invariant under Lorentz transformations

if a Lorentz transformation x′α = Λαβ x
β is performed

the metric retains its distinguished Kerr-Schild form

g′αβ = ηαβ + 2H ′`′α`
′
β

where H ′ = H ′(x′α) and `′β = `′β(x′ε) are given as

H ′ = H
(
[Λαβ ]−1x′β

)
, `′β = Λαβ `α

(
[Λεϕ]−1x′ϕ

)
boosts and spatial rotations are special Lorentz transformations =⇒ it is
straightforward to construct models of moving and rotating black holes with
preferably oriented speed and spin
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István Rácz (Wigner RCP, Budapest) Binary black hole initial data 27 September, 2017 13 / 20



Kerr-Schild black holes and the superposed ones

Generic Kerr-Schild black holes:

the Kerr-Schild metrics are form-invariant under Lorentz transformations

if a Lorentz transformation x′α = Λαβ x
β is performed

the metric retains its distinguished Kerr-Schild form

g′αβ = ηαβ + 2H ′`′α`
′
β

where H ′ = H ′(x′α) and `′β = `′β(x′ε) are given as

H ′ = H
(
[Λαβ ]−1x′β

)
, `′β = Λαβ `α

(
[Λεϕ]−1x′ϕ

)
boosts and spatial rotations are special Lorentz transformations =⇒ it is
straightforward to construct models of moving and rotating black holes with
preferably oriented speed and spin
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Kerr-Schild black holes and the superposed ones

Superposed Kerr-Schild black holes:

A binary system will be approximated by:

gαβ = ηαβ + 2H [1]`α
[1]`β

[1] + 2H [2]`α
[2]`β

[2] (*)

H [n] and `α
[n] correspond to the Kerr-Schild data for individual black holes

good approximation close to the individual black holes

Einstein tensor falls off at the rate O(|~x|−4), where |~x| =
√
x2 + y2 + z2

Choice for the free data:

N̂ i, γ̂ij ,κ and
◦
Kij as if (*) solved the Einstein equations

N̂ ,Kl
l and ki on some level surface S0 in Σ deduced from (*) [only on S0 !]
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Solving the constraints as an initial-boundary value problem

The initial-boundary value problem:
the Sρ surfaces have tacitly been assumed to be compact without boundary:

in numerical approaches Σ is chosen to be a large but bounded subset of R3

the product structure Σ ≈ R×S can be guaranteed by choosing the Sρ

leaves to be diffeomorphic to a closed disk in R2

choose Σ to be a cube centered at the origin in R3:

for large enough value of A ...

boundary of Σ:
six squares each with edges of size 2A

the black holes are assumed to be located
on the z = 0 plane

speeds are parallel, spins are orthogonal
to the z = 0 plane

foliation by z = const level surfaces

deduce
?
K from (*)
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István Rácz (Wigner RCP, Budapest) Binary black hole initial data 27 September, 2017 15 / 20



Solving the constraints as an initial-boundary value problem

The critical coefficient
?
K:

the sign of
?
K decides whether the parabolic-hyperbolic system evolves in the

positive or negative ρ-direction

?
K [ (∂ρN̂)− N̂ l(D̂lN̂) ] = N̂2(D̂lD̂lN̂) +A N̂ + B N̂3

it propagates aligned ρi for positive
?
K, while anti-aligned for negative

?
K

restrict considerations to a binary BH system arranged as indicated on the figure
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Solving the constraints as an initial-boundary value problem

Solving the initial-boundary value problem:
The parabolic-hyperbolic system:

?
K can be given as

?
K = −z ·

+
K

?
K is positive below the z = 0 plane, while it
is negative above that plane

solved by propagating, along the
z-streamlines, initial values specified on the
horizontal z = ±A squares

boundary values are to be given on the four
vertical sides of the cube

N̂ ,Kl
l and ki are developed on Σ+ and Σ− separately

global existence and matching of these solutions at their common
Cauchy horizon—at the z = 0 plane—is of fundamental importance

the auxiliary metric (*) possesses a z → −z reflection symmetry

(apart from singularities) the existence of unique (at least) C2 solutions with
proper matching at the “common Cauchy horizon” can be verified
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Input parameters and ADM charges

Input parameters and global ADM charges:

Input parameters: the rest masses M [n], displacements ~d [n], speeds ~v [n]

and spins a[n]~s
[n]
◦ of the involved black holes

essentially the same as used in post-Newtonian description of binaries !!!

Global ADM charges: in terms of the input parameters

though (*) does not satisfy Einstein’s equations it is asymptotically flat
constructed by adding contributions of individual black hole metrics to a
Minkowski background
the ADM quantities are linear in deviation from flat Euclidean space at infinity

M
ADM

= γ[1]M [1] + γ[2]M [2]

M
ADM~d

ADM

= γ[1]M [1] ~d [1] + γ[2]M [2] ~d [2]

~P
ADM

= γ[1]M [1]~v [1] + γ[2]M [2]~v [2]

~J
ADM

= γ[1]
{
M [1] ~d [1]× ~v [1] +M [1]a[1]~s [1]

◦

}
+ γ[2]

{
M [2] ~d [2]× ~v [2] +M [2]a[2]~s [2]

◦

}
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Summary

Summary:

1 a new method to initialize time evolution of binary black hole systems by
applying

a parabolic-hyperbolic formulation of constraint equations
superposing Kerr-Schild black holes

2 the parabolic-hyperbolic equations solved as an initial-boundary value problem

3 existence of unique (at least) C2 solutions is guaranteed (apart from singularities)

4 !!! Anna Nakonieczna’s talk in the afternoon: construct initial data by
integrating numerically the parabolic-hyperbolic form of the constraints

5 the input parameters—the rest masses, speeds, spins and displacements—are
essentially the same as used in PN !!!

6 each of the ADM charges can be given in terms of the input parameters

7 no use of boundary conditions in the strong field regime (tidal deformations)
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Summary

The ADM quantities as flux integrals:

in the applied admissible coordinates the ADM mass, center of mass, linear
and angular momenta are determined by the flux integrals

M ADM =
1

16π

∮
∞

[ ∂ihij − ∂jhii ]njdS

M ADMdi =
1

16π

∮
∞

{
xi [ ∂khkj − ∂jhkk ]−

[
hkj δ

k
i − hkk δij

]}
njdS

P ADM
i =

1

8π

∮
∞

[
Kij − hkj Kl

l

]
njdS

J ADMi =
1

8π

∮
∞

[
Kkj − hkj Kl

l

]
Y ki n

jdS

the symbol
∮
∞ is meant to denote limits of integrals over spheres while their radii

tend to infinity

ni and dS denote the outward normal and the volume element of the individual
spheres in the sequences

the symbol Y ki = εi
jkxj denote the components of the three rotational Killing

vector fields, defined with respect to the applied admissible asymptotically
Euclidean coordinates
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