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MOTIVATION

> There are a lot of galactic centers hosting supermassive black holes

> There is a lot of matter in the vicinity of the supermassive black holes

v

The vast majority of galaxy is inactive

v

Possible explanation: low angular momentum accretion

PREVIOUS WORKS

> Newtonian: Begelman, Proga, Janiuk, Kurosawa, Sznajder,
Moscibrodzka.

> post-Newtonian: Paczynski, Wiita.

> GR: Font, Daigne, Gammie, McKinney, Bambi, Yoshida, Harada,
Takahashi.



SETUP

> Central black hole in the middle and perfect fluid around
> Background geometry: Schwarzschild or Kerr solution

> Horizon-penetrating coordinates: Eddington-Finkelstein or Kerr-Schild
coordinates

» Bondi-type (radial) accretion flow as an initial data (in GR it is known as a
Michel solution )

> Perturbation by adding a small amount of angular momentum



BASIC EQUATION

Hydrodynamic:

> Continuity equation:
Vu(pu') =0

> Euler equation:
VT =V, (phu'u” + pg"’) = 0

> Equation of state:
p= (I —1)pe
where:
> p is the rest-mass density
> h =1+ e+ p/p is the specific enthalpy
> ¢ is the specific internal energy
> p is the pressure

ut is the four-velocity of the fluid
I is a constant



EQUATIONS OF HYDRODYNAMIC — VALENCIA FORMULATION
341 separation:

1 ) 0i - - igj
o= /=g, Bi=goi, B = —do5, vis = 9i5, v/ = 9" + £

where:

> three-velocity
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> Lorentz factor 1
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EQUATIONS OF HYDRODYNAMIC — VALENCIA FORMULATION

» The vector of conserved quantities
q= (D7 Sij) = (pW, phW2vj7phW2 —p— pW)

> The flux vectors

(o (r-2) ) (-2 )

> The vector of source terms

% = (0, 7" (Ougvs — Tpngsi) s (T"°0u Ina — T'T7},))



EQUATIONS OF HYDRODYNAMIC — VALENCIA FORMULATION

r 8 (VAa) + F & (V=gF') =
where:
> g =detg,,
> v = deti;

- Vi=ayT



INITIAL DATA

> Stationary, spherically symmetric Bondi-Michel-type accretion solution.
[H. Bondi, 1952], [F. C. Michel, 1972]

> | = —ug/u; [Koztowski, Jaroszyriski & Abramowicz 1978]

» Some amount of angular momentum [ = f(0) = lo(1 — | cosf|) [D. Proga
& M. Begelman, 2003]

BOUNDARY CONDITIONS

> We use spherical grid (with the radial variable ranging from rin to Tout)
and horizon-penetrating coordinates

> On the inner boundary of the grid (beneath the horizon of the black hole)
we use outflowing boundary conditions
> On the outer boundary of the grid:

> every quantities is fixed as the values characteristic for the initial conditions,
except following two

> vy - radial component of the velocity evolves freely

> vg - polar component of the velocity is fixed or evolves freely



NUMERICAL CODE — TECHNICAL ISSUES.
> Solver for Riemann problem — HLLE (Harten, Lax, van Leer and Einfeldt)
> Time evolution — Runge-Kutta method
> Output — vtk-file.



COORDINATES

» Eddington-Finkelstein coordinates (¢ = G = 1):

it = —(1-2D)a + Daar

(14 20 @ 2 (a6 + sin 0d0?)
» 341 separation:

ds® = —(a® — ;") dt* + 2Bida’ dt + i jdx'da? |

where
> a= +/r/(r+2M),
> BT:2M/"',
> e =14+ 2M/r,
> Y99 =12,

> Vop = r2sin? 6.



HYDRODYNAMIC EQUATIONS IN EDDINGTON-FINKELSTEIN COORDINATES

We have one equation

9_ Ma?

Ort+ 0, (0F") 40y (aF°) 40, (aF?) = aZ— ( ‘

) QR ot faF?,
r

where the sources X read:

1 = 0,

2 hWV?2 M, .
N, = 2,7 (veve +vgv? — — (0" + a)2) ,

r r r
Y3 = cotf (p + phW2U¢’U¢) ,
s = 0,

3M

Y5 = % (2 (1 + T) a2p + phW2 (2 (1}9’[}9 + v¢v¢)

> 3M
—2a° (1 + 2% + 37‘) (v")? — owr)) .



SOME PARTICULLAR CONFIGURATION WHICH WE INVESTIGATED

No. rh Cs,00 B Tout lo v

la 1072 0.07071 200 300 6.657 free
2a 107 0.02236 2000 3000 4.5714 free
3a 1073 0.02236 2000 3000 10.204 free
4a 10735 0.01257 6324 9487 14.285 free
1b 1072 0.07071 200 300 6.657 fixed
2b  107%  0.02236 2000 3000 4.5714 fixed
3b  107% 0.02236 2000 3000 10.204 fixed
4b  1073%° 0.01257 6324 9487 14.285 fixed




Initial state of the system:
Three-velocity v = (v",0,0) (Michel
solution), angular momentum
l=1o(1—|cosf)).
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Angular momentum during the evolution (free boundary conditions)
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Angular

momentum during the

evolution (free boundary conditions)
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» Start movie



Density during the evolution (free boundary conditions).

0 2 4 6 8 10121416 18
x

0 2 4 6 8 10121416 18 0 2 4 6 8 10121416 18
x x
100 323 1044 3373

10900

DA



Density during the evolution (free boundary conditions).
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mass accretion rate during the evolution
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Progai i Begelmana's original result of mass accretion rate during the evolution
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Fi6. 5.—Time evolution of the mass accretion rate in units of the Bondi
rate, for model BO4fla.



SUMMARY

> Our results confirm the original Newtonian results.

> The mass accretion rate is smaller than the mass accretion rate for
Bondi-type (Michel) solution in all cases which we considered.

> Quter boundary conditions do not influence the behavior of the flow in the
center of the system.



A Thorne—Zytkow object.

Artist rendering of a Thorne-Zytkow Object (TZ0O) Derivative of Paul G. Beck's Work (Not to Scale)




