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Motivation

I There are a lot of galactic centers hosting supermassive black holes
I There is a lot of matter in the vicinity of the supermassive black holes
I The vast majority of galaxy is inactive
I Possible explanation: low angular momentum accretion

Previous works

I Newtonian: Begelman, Proga, Janiuk, Kurosawa, Sznajder,
Mościbrodzka.

I post-Newtonian: Paczyński, Wiita.
I GR: Font, Daigne, Gammie, McKinney, Bambi, Yoshida, Harada,
Takahashi.



Setup

I Central black hole in the middle and perfect fluid around
I Background geometry: Schwarzschild or Kerr solution
I Horizon-penetrating coordinates: Eddington-Finkelstein or Kerr-Schild
coordinates

I Bondi-type (radial) accretion flow as an initial data (in GR it is known as a
Michel solution )

I Perturbation by adding a small amount of angular momentum



Basic equation

Hydrodynamic:
I Continuity equation:

∇µ(ρuµ) = 0
I Euler equation:

∇µTµν = ∇µ (ρhuµuν + pgµν) = 0

I Equation of state:
p = (Γ− 1)ρε

where:
I ρ is the rest-mass density
I h = 1 + ε+ p/ρ is the specific enthalpy
I ε is the specific internal energy
I p is the pressure
I uµ is the four-velocity of the fluid
I Γ is a constant



Equations of hydrodynamic – Valencia formulation

3+1 separation:

α =
√
− 1
g00 , βi = g0i, βi = − g0i

g00 , γij = gij , γij = gij + βiβj

α2

where:
I three-velocity

vi = ui

αu0 + βi

α
I Lorentz factor

W = αu0 = 1√
1− vivi



Equations of hydrodynamic – Valencia formulation
I The vector of conserved quantities

q = (D,Sj , τ) =
(
ρW, ρhW 2vj , ρhW

2 − p− ρW
)

I The flux vectors

Fi =
(
D

(
vi − βi

α

)
, Sj

(
vi − βi

α

)
+ pδij , τ

(
vi − βi

α

)
+ pvi

)
I The vector of source terms

Σ =
(
0, Tµν

(
∂µgνj − Γδµνgδj

)
, α
(
Tµ0∂µ lnα− TµνΓ0

µν

))



Equations of hydrodynamic – Valencia formulation

1√
−g

∂t (√γq) + 1√
−g

∂i
(√
−gFi

)
= Σ

where:
I g = det gµν
I γ = det γij
I
√
−g = α

√
γ



Initial data
I Stationary, spherically symmetric Bondi-Michel-type accretion solution.
[H. Bondi, 1952], [F. C. Michel, 1972]

I l = −uφ/ut [Kozłowski, Jaroszyński & Abramowicz 1978]
I Some amount of angular momentum l = f(θ) = l0(1− | cos θ|) [D. Proga
& M. Begelman, 2003]

Boundary conditions
I We use spherical grid (with the radial variable ranging from rin to rout)
and horizon-penetrating coordinates

I On the inner boundary of the grid (beneath the horizon of the black hole)
we use outflowing boundary conditions

I On the outer boundary of the grid:
I every quantities is fixed as the values characteristic for the initial conditions,
except following two

I vr - radial component of the velocity evolves freely
I vθ - polar component of the velocity is fixed or evolves freely



Numerical code – technical issues.
I Solver for Riemann problem – HLLE (Harten, Lax, van Leer and Einfeldt)
I Time evolution – Runge-Kutta method
I Output – vtk-file.



Coordinates
I Eddington-Finkelstein coordinates (c = G = 1):

ds2 = −
(

1− 2M
r

)
dt2 + 4M

r
dtdr

+
(

1 + 2M
r

)
dr2 + r2 (dθ2 + sin2 θdφ2) .

I 3+1 separation:

ds2 = −(α2 − βiβi)dt2 + 2βidxidt+ γijdx
idxj ,

where
I α =

√
r/(r + 2M),

I βr = 2M/r,
I γrr = 1 + 2M/r,
I γθθ = r2,
I γφφ = r2 sin2 θ.



Hydrodynamic equations in Eddington-Finkelstein coordinates

We have one equation

∂tq+∂r (αFr)+∂θ
(
αFθ

)
+∂φ

(
αFφ

)
= αΣ−

(
2− Mα2

r

)
α

r
Fr−cot θαFθ,

where the sources Σ read:

Σ1 = 0,

Σ2 = 2p
r

+ ρhW 2

r

(
vθv

θ + vφv
φ − M

r
(vr + α)2

)
,

Σ3 = cot θ
(
p+ ρhW 2vφv

φ
)
,

Σ4 = 0,

Σ5 = Mα

r2

(
2
(

1 + 3M
r

)
α2p+ ρhW 2 (2 (vθvθ + vφv

φ
)

−2α2
(

1 + 2M2

r2 + 3M
r

)
(vr)2 − αvr

))
.



Some particullar configuration which we investigated

No. r′S cs,∞ rB rout l0 vθ

1a 10−2 0.07071 200 300 6.657 free
2a 10−3 0.02236 2000 3000 4.5714 free
3a 10−3 0.02236 2000 3000 10.204 free
4a 10−3.5 0.01257 6324 9487 14.285 free
1b 10−2 0.07071 200 300 6.657 fixed
2b 10−3 0.02236 2000 3000 4.5714 fixed
3b 10−3 0.02236 2000 3000 10.204 fixed
4b 10−3.5 0.01257 6324 9487 14.285 fixed



Initial state of the system:
Three-velocity v = (vr, 0, 0) (Michel

solution), angular momentum
l = l0(1− | cos θ|).



Angular momentum during the evolution (free boundary conditions).



Angular momentum during the evolution (free boundary conditions).
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Density during the evolution (free boundary conditions).



Density during the evolution (free boundary conditions).



mass accretion rate during the evolution
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Progai i Begelmana’s original result of mass accretion rate during the evolution



Summary
I Our results confirm the original Newtonian results.
I The mass accretion rate is smaller than the mass accretion rate for
Bondi-type (Michel) solution in all cases which we considered.

I Outer boundary conditions do not influence the behavior of the flow in the
center of the system.



A Thorne–Żytkow object.


