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T and TT tensors

Condition )
VT'=0
with symmetric T/ appears in GR as
@ the momentum constraint in the initial value problem
@ gauge condition for the metric tensor
@ “conservation law” of the energy-momentum.
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T and TT tensors

Condition )
VT'=0
with symmetric T/ appears in GR as
@ the momentum constraint in the initial value problem
@ gauge condition for the metric tensor
@ “conservation law” of the energy-momentum.
If, additionally, )
g;jT"=0,
T'is called a TT tensor (frequent choice in initial value problem).

In flat spaces the TT conditions are solvable thanks to the Poincare
lemma

I1I Iy I1I +1
aP =0 = ao'tP=p"""
»ip slp+1
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T and TT tensors

Condition )
VT'=0
with symmetric T/ appears in GR as
@ the momentum constraint in the initial value problem
@ gauge condition for the metric tensor
@ “conservation law” of the energy-momentum.
If, additionally, )
g;jT"=0,
T'is called a TT tensor (frequent choice in initial value problem).

In flat spaces the TT conditions are solvable thanks to the Poincare
lemma

I1I Iy I1I +1
aP =0 = ao'tP=p"""
»ip slp+1

External indices can be added.
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T tensors in flat spaces

Proposition

All tensors satisfying T/ ;=0 have the form

i _ pikip
T"=R '

)

where R®P is any tensor with algebraic symmetries of the Riemann
tensor.
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T tensors in flat spaces

All tensors satisfying T/ ;=0 have the form

i _ pikip
T"=R '

)

where R®P is any tensor with algebraic symmetries of the Riemann
tensor.

Proof. From Poincare lemma

Ti=g%, sW=-gk
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T tensors in flat spaces

All tensors satisfying T/ ;=0 have the form

i _ pikip
T"=R '

)

where R®P is any tensor with algebraic symmetries of the Riemann
tensor.

Proof. From Poincare lemma
) e Ki ”
T =&Y Ko S = _8 .

Symmetry T/ = T/ yields
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hence "
Tk \ikp
Slilk — /U "

and
ViDke — g = Vi(kp)
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hence "
Tk \ikp
Slilk — /U "

and
ViDke — g = Vi(kp)

Taking different permutations of jjk we obtain

Sik — (ijkp _ yikip _ V/kip) o
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hence "
Tk \ikp
Slilk — /U "

and
ViDke — g = Vi(kp)

Taking different permutations of jjk we obtain
Sik — (ijkp _ yikip _ V/'kip)’ o

Let Rike — —yikip _ \/ipik | 2 \/likip]
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hence "
Tk \ikp
Glilk — /U .

and
ViDke — g = Vi(kp)

Taking different permutations of jjk we obtain
Sik — (ijkp _ yikip _ V/'kip)’ o
Let Rike — _\/ikip _ \ipik | 2 \/[ikjp]

D=2
Ti = kPR Ko

D=3
TI/ — _GIKIEIpSG[S’kp

where R and Gj are, respe_(_:tively, “the Ricci scalar” and “the Einstein
tensor” corresponding to R,
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Gauge transformations

In dimension D=2 the potential R is defined up to translation by
aix'+ b.
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Gauge transformations

In dimension D=2 the potential R is defined up to translation by
aix'+ b.

Proposition

For D > 3 tensor R™P s defined up to translation by
( gikjpr + éjpikr ) E[ikjpr]) ,

where é‘ikjpr — é‘[ik][/pr].
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Gauge transformations

In dimension D=2 the potential R is defined up to translation by
aix'+ b.

Proposition

For D > 3 tensor R™P s defined up to translation by
( gikjpr + éjpikr ) E[ikjpr]) ,

where é‘ikjpr — é‘[ik][/pr].

Can the Weyl part or the Ricci part in the decomposition

K] [i
p) — 2bR0 ;0

ik pik [i k]
R’ i = C’ ot 4ab [/R ol

be eliminated?
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Proposition
T tensors in D = 3 and all analytic T tensors in D > 4 are given by
K
Tj=aA Ryj—2aR( + bR+ (aR”", —bAR)g; ()

where R is a symmetric tensor undergoing gauge transformation

Ry — Ry +&ij) — £
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Proposition

T tensors in D = 3 and all analytic T tensors in D > 4 are given by
K
Tj=aA Ryj—2aR( + bR+ (aR”", —bAR)g; ()

where R is a symmetric tensor undergoing gauge transformation

Rj — Rj+ &) — €'%9i

Comments:

@ Instead of looking for gauge functions leading to C = 0 it is easier
to show that equations (x) have solutions.
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Proposition
T tensors in D = 3 and all analytic T tensors in D > 4 are given by
K
Tj = a Ry —2aR(, + bR+ (aR", —b A R)g;  (¥)

where R is a symmetric tensor undergoing gauge transformation

Rj — Rj+ &) — €'%9i

Comments:

@ Instead of looking for gauge functions leading to C = 0 it is easier
to show that equations (x) have solutions.

@ Equations (x) are linearized Einstein equations for the first
corrections Ay to the flat metric gj;.

@ Hence, the gauge freedom of Rj; is deduced
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Proposition

T tensors in D = 3 and all analytic T tensors in D > 4 are given by
K|
Tj=aA Ryj—2aR( + bR+ (aR”", —bAR)g; ()

where R is a symmetric tensor undergoing gauge transformation

Rj — Ry + &) — €%

Comments:

@ Instead of looking for gauge functions leading to C = 0 it is easier
to show that equations (x) have solutions.

@ Equations (x) are linearized Einstein equations for the first
corrections Ay to the flat metric gj;.

@ Hence, the gauge freedom of Rj is deduced (up to functions of
D-1 variables).
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A transverse T/ is traceless iff

K
R, =0.
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A transverse T/ is traceless iff
kp
R o= 0.

In D = 2 this is true if AR = 0.
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TT tensors

A transverse T/ is traceless iff
K
R ‘fkp =0.
In D = 2 this is true if AR = 0.

In D > 3 TT tensors are given by

i _ pikip
™m=R,,

iff the “Ricci tensor” satisfies

RI =8k gik=_gh.
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Gauge transformations of S¥:
Sk, ik _pgligh ik ik

where ) B ) )
Xl/kr — Xl[/kr] ’ nuk — 77[I/k] )
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Gauge transformations of S¥:
Sk, ik _pgligh ik ik

where

Xijkr _ Xi[/'kr] ’ Uijk _ 77[i/'k] ]

Proposition

TT tensors in D = 3 are given by
Ti — Ekl(i(AAl)k . Akp{)p),/
where Aj; is a symmetric tensor defined up to the transformation
Ajj — A+ X(i,) + 19i

with arbitrary functions x; and n.
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Gauge conditions for TT tensors

Ckp = 0 as for T tensors
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Gauge conditions for TT tensors

Ckp = 0 as for T tensors

Is RY = 0 possible?

J. Tafel (University of Warsaw) TT tensors in flat spaces of any dimension



Gauge conditions for TT tensors

Ckp = 0 as for T tensors

Is RY = 0 possible?

Proposition
In dimension D > 4 every analytic TT tensor can be put into the form

i _ ik
T - C ,kp

where C™P js a tensor with all symmetries of the Weyl tensor..
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@ Ordinary derivatives can be replaced by covariant ones (in flat
spaces).
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@ Ordinary derivatives can be replaced by covariant ones (in flat
spaces).

@ Description of symmetric TT tensors in flat spaces?
Yes, but in D=3 the approach of Conboye and O Murchadha is
better.
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@ Description of symmetric TT tensors in flat spaces?
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@ Covariant description of TT tensors in conformally flat spaces?
Not yet.
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@ Ordinary derivatives can be replaced by covariant ones (in flat
spaces).

@ Description of symmetric TT tensors in flat spaces?
Yes, but in D=3 the approach of Conboye and O Murchadha is
better.

@ Covariant description of TT tensors in conformally flat spaces?
Not yet.

@ Generalization to curved spaces?
Only for spaces of constant curvature.
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