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T and TT tensors

Condition
∇iT ij = 0

with symmetric T ij appears in GR as
the momentum constraint in the initial value problem
gauge condition for the metric tensor
“conservation law” of the energy-momentum.

If, additionally,
gijT ij = 0 ,

T ij is called a TT tensor (frequent choice in initial value problem).
In flat spaces the TT conditions are solvable thanks to the Poincare
lemma

α
i1..ip

,ip = 0 ⇒ αi1..ip = β
i1..ip+1

,ip+1
.

External indices can be added.
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T tensors in flat spaces

Proposition

All tensors satisfying T ij
,j = 0 have the form

T ij = R ikjp
,kp

where R ikjp is any tensor with algebraic symmetries of the Riemann
tensor.

Proof. From Poincare lemma

T ij = Sijk
,k , Sikj = −Sijk .

Symmetry T ij = T ji yields
S[ij]k

,k = 0
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hence
S[ij]k = V ijkp

,p

and
V (ij)kp = 0 = V ij(kp) .

Taking different permutations of ijk we obtain

Sijk = (V ijkp − V ikjp − V jkip),p

Let R ijkp = −V ikjp − V jpik + 2V [ikjp]

�
D=2

T ij = εikεjpR,kp

D=3
T ij = −εiklεjpsGls,kp

where R and Gij are, respectively, “the Ricci scalar” and “the Einstein
tensor” corresponding to R ijkp.
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Gauge transformations

In dimension D=2 the potential R is defined up to translation by
aix i + b.

Proposition

For D ≥ 3 tensor R ikjp is defined up to translation by

(ξikjpr + ξjpikr − 2ξ[ikjpr ]),r

where ξikjpr = ξ[ik ][jpr ].

Can the Weyl part or the Ricci part in the decomposition

R ik
jp = C ik

jp + 4aδ[i[jR
k ]
p] − 2bRδ[i[jδ

k ]
p]

be eliminated?
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Proposition

T tensors in D = 3 and all analytic T tensors in D ≥ 4 are given by

Tij = a4 Rij − 2aRk
(i,j)k + bR,ij + (aRkp

,kp − b4 R)gij (∗)

where Rij is a symmetric tensor undergoing gauge transformation

Rij −→ Rij + ξ(i,j) − ξk
,kgij

Comments:
Instead of looking for gauge functions leading to C = 0 it is easier
to show that equations (∗) have solutions.
Equations (∗) are linearized Einstein equations for the first
corrections Rij to the flat metric gij .
Hence, the gauge freedom of Rij is deduced (up to functions of
D-1 variables).
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TT tensors

A transverse T ij is traceless iff

Rkp
,kp = 0 .

In D = 2 this is true if 4R = 0.

Proposition

In D ≥ 3 TT tensors are given by

T ij = R ikjp
,kp ,

iff the “Ricci tensor” satisfies

R ij = S(ij)k
,r , Sijk = −Sikj .
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Gauge transformations of Sijk :

Sijk −→ Sijk − 2g i[jξk ] + χijkr
,r + ηijk ,

where
χijkr = χi[jkr ] , ηijk = η[ijk ] .

Proposition

TT tensors in D = 3 are given by

T ij = εkl(i(4Aj)
k − A j)p

kp, ),l

where Aij is a symmetric tensor defined up to the transformation

Aij −→ Aij + χ(i,j) + ηgij

with arbitrary functions χi and η.
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Gauge conditions for TT tensors

C ijkp = 0 as for T tensors

Is R ij = 0 possible?

Proposition

In dimension D ≥ 4 every analytic TT tensor can be put into the form

T ij = C ikjp
,kp

where C ikjp is a tensor with all symmetries of the Weyl tensor..
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Perspectives

Ordinary derivatives can be replaced by covariant ones (in flat
spaces).

Description of symmetric TT tensors in flat spaces?
Yes, but in D=3 the approach of Conboye and Ó Murchadha is
better.

Covariant description of TT tensors in conformally flat spaces?
Not yet.

Generalization to curved spaces?
Only for spaces of constant curvature.
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better.

Covariant description of TT tensors in conformally flat spaces?
Not yet.

Generalization to curved spaces?
Only for spaces of constant curvature.

J. Tafel (University of Warsaw) TT tensors in flat spaces of any dimension
4-th PoToR conferenceKazimierz Dolny 2017 10

/ 10


