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Black hole topology

Hawking 1972: 3 + 1–dimensional space–time+suitable energy
conditions+asymptotic flatness (AF). Spatial cross-section of the
event horizon is a topological 2–sphere.

Not true in D + 1 dimensions if D > 3. Emparan–Reall 2001: AF
Black Ring in 4 + 1 dimensions. Horizon topology S2 × S1.

Galloway–Schoen 2006: Horizon cross–section admits a metric of
positive scalar curvature. D = 4 : S3 (or quotient), S2 × S1,
connected sums.
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Near Horizon Limit

D + 1–dimensional manifold M , Lorentzian metric g, Maxwell
potential A, stationary Killing vector U .

Moncrief–Isenberg 1983: In the neighbourhood of the extremal Killing
horizon g(U,U) = 0 ∃ Gaussian coordinates (u, r, yi) s. t. U = ∂/∂u
and

The horizon is a surface r = 0.
yi, i = 1, . . . , D − 1 are coordinates on a Riemannian cross–section Σ.

g = 2du
(
dr + rh− 1

2r
2∆du

)
+ γ, A = rΦdu+B, where

γ = γij(r, y)dyidyj , h = hi(r, y)dyi, B = Bi(r, y)dyi,

∆ = ∆(r, y), Φ = Φ(r, y) are all real–analytic in r.

Near–horizon limit (NHL) Reall 2003, Lewandowski–Pawlowski 2003

u→ u/ε, r → rε, limit ε→ 0

(γ, h,B,∆,Φ). Riemannian metric, one–forms, functions on Σ.
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Results

In NHL, the field equations on (M, g,A) reduce to elliptic equations
on Σ.

Theorem 1: Einstein–Maxwell–Chern–Simons equations (EMCS ≡
minimal supergravity in five dimensions) on M −→ Einstein–Weyl
equations on Σ.

Theorem 2: Compact (Σ, [γ]): squashed S3, product metric on
S2 × S1, or flat torus.

Reconstruct (M, g,A) from its NHL? Too though (Carmen Li’s talk)
Theorem 3: The moduli space of transverse infinitesimal deformations
of a compact near–horizon geometry is finite–dimensional.

All theorems assume supersymmetry.

Unexpected spin-off: conformal invariance and integrability on Σ.
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Minimal supergravity in 5 dimensions

R Ricci scalar of g. Maxwell field H = dA

S =

∫
M
R volM −

3

2
H ∧ ∗5H −H ∧H ∧A.

Field equations

dH = 0, d ∗5 H +H ∧H = 0,

Rαβ −
3

2
HαγHβ

γ +
1

4
gαβH

2 = 0.

NHL: Riemannian (Σ, γ), one–forms (h,B), functions (∆,Φ).

Supersymmetric near horizon

h+ ∗3dB = 0, ∆ = Φ2.

Field equations:

∗3(dΦ + hΦ) = dh, (Maxwell)

d ∗3 h = 0, (Einstein ur)

Rij +∇(ihj) + hihj =
(1

2
Φ2 + hkhk

)
γij (Einstein ij)
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Hyper–CR Einstein–Weyl geometry

Let dim(Σ) = 3. A Weyl structure (Σ, [γ], D)
Riemannian conformal structure [γ] = {e2Ωγ,Ω : Σ→ R}.
Torision–free connection D on TΣ.
Compatibility Diγjk = 2hiγjk for some h ∈ Λ1(Σ).

Cartan 1943. Einstein–Weyl equations: Symmetrised Ricci tensor of
D is proportional to γ ∈ [γ].

Conformal invariance: γ → e2Ωγ, h→ h+ dΩ.

An Einstein–Weyl space is Hyper–CR iff there exists Φ : Σ→ R s. t.

∗3(dΦ + hΦ) = dh, W =
3

2
Φ2, W = Ricci scalar of D.

Gauduchon–Tod 1999. The only compact EW Hyper–CR examples
1 Product metric on S2 × S1 with dh = 0.
2 Flat torus with h = 0.
3 Berger sphere

γ = (σ1)2 + (σ2)2 + a2(σ3)2, h = a
√

(1− a2)σ3

where dσ1 + σ2 ∧ σ3 = 0.
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Main Theorem

Let (γ, h) be a hyper–CR Einstein–Weyl structure on Σ and let
Ω : Σ→ R+ satisfy d ∗3

(
deΩ

)
+ d ∗3

(
eΩh

)
= 0. Then

g = e2Ω(2du(dr + rh− 1

3
r2Wdu) + γ + 6rdudΩ)

A =

√
2

3
eΩr
√
Wdu+ α (?)

is a solution to EMCS. Here α ∈ Λ1(Σ) is s.t. dα = −eΩ ∗3 (h+ dΩ).

All near–horizon geometries for 5D SUSY back holes/rings/strings are
locally of the form (?).

If Σ is compact then γ is a metric on the Berger sphere, a product
metric on S1 × S2 or a flat metric on T 3.

Thank You
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