EINSTEIN-WEYL SPACES AND NEAR HORIZON GEOMETRY

Maciej Dunajski

Department of Applied Mathematics and Theoretical Physics University of Cambridge

MD, Jan Gutowski, Wafic Sabra, CQG 2017, arXiv:1610.08953.

• Hawking 1972: 3 + 1-dimensional space-time+suitable energy conditions+asymptotic flatness (AF). Spatial cross-section of the event horizon is a topological 2-sphere.

- Hawking 1972: 3 + 1-dimensional space-time+suitable energy conditions+asymptotic flatness (AF). Spatial cross-section of the event horizon is a topological 2-sphere.
- Not true in D + 1 dimensions if D > 3. Emparan-Reall 2001: AF Black Ring in 4 + 1 dimensions. Horizon topology $S^2 \times S^1$.

- Hawking 1972: 3 + 1-dimensional space-time+suitable energy conditions+asymptotic flatness (AF). Spatial cross-section of the event horizon is a topological 2-sphere.
- Not true in D + 1 dimensions if D > 3. Emparan-Reall 2001: AF Black Ring in 4 + 1 dimensions. Horizon topology $S^2 \times S^1$.
- Galloway–Schoen 2006: Horizon cross–section admits a metric of positive scalar curvature. $D = 4 : S^3$ (or quotient), $S^2 \times S^1$, connected sums.

• D + 1-dimensional manifold M, Lorentzian metric g, Maxwell potential A, stationary Killing vector U.

- D + 1-dimensional manifold M, Lorentzian metric g, Maxwell potential A, stationary Killing vector U.
- Moncrief-Isenberg 1983: In the neighbourhood of the extremal Killing horizon $g(U,U) = 0 \exists$ Gaussian coordinates (u,r,y^i) s. t. $U = \partial/\partial u$ and

- D + 1-dimensional manifold M, Lorentzian metric g, Maxwell potential A, stationary Killing vector U.
- Moncrief-Isenberg 1983: In the neighbourhood of the extremal Killing horizon $g(U,U) = 0 \exists$ Gaussian coordinates (u,r,y^i) s. t. $U = \partial/\partial u$ and
 - The horizon is a surface r = 0.

- D + 1-dimensional manifold M, Lorentzian metric g, Maxwell potential A, stationary Killing vector U.
- Moncrief-Isenberg 1983: In the neighbourhood of the extremal Killing horizon $g(U,U) = 0 \exists$ Gaussian coordinates (u,r,y^i) s. t. $U = \partial/\partial u$ and
 - The horizon is a surface r = 0.
 - $y^i, i = 1, \dots, D-1$ are coordinates on a Riemannian cross-section Σ .

- D + 1-dimensional manifold M, Lorentzian metric g, Maxwell potential A, stationary Killing vector U.
- Moncrief-Isenberg 1983: In the neighbourhood of the extremal Killing horizon $g(U,U) = 0 \exists$ Gaussian coordinates (u,r,y^i) s. t. $U = \partial/\partial u$ and
 - The horizon is a surface r = 0.
 - yⁱ, i = 1,..., D 1 are coordinates on a Riemannian cross-section Σ.
 g = 2du(dr + rh ½r²Δdu) + γ, A = rΦdu + B, where
 γ = γ_{ij}(r, y)dyⁱdy^j, h = h_i(r, y)dyⁱ, B = B_i(r, y)dyⁱ,
 Δ = Δ(r, y), Φ = Φ(r, y) are all real-analytic in r.

- D + 1-dimensional manifold M, Lorentzian metric g, Maxwell potential A, stationary Killing vector U.
- Moncrief-Isenberg 1983: In the neighbourhood of the extremal Killing horizon $g(U,U) = 0 \exists$ Gaussian coordinates (u,r,y^i) s. t. $U = \partial/\partial u$ and
 - The horizon is a surface r = 0.
 - yⁱ, i = 1,..., D 1 are coordinates on a Riemannian cross-section Σ.
 g = 2du(dr + rh ¹/₂r²Δdu) + γ, A = rΦdu + B, where
 γ = γ_{ij}(r, y)dyⁱdy^j, h = h_i(r, y)dyⁱ, B = B_i(r, y)dyⁱ, Δ = Δ(r, y), Φ = Φ(r, y) are all real-analytic in r.

Near–horizon limit (NHL) Reall 2003, Lewandowski–Pawlowski 2003

$$u \to u/\epsilon, \quad r \to r\epsilon, \quad \text{limit } \epsilon \to 0$$

- D + 1-dimensional manifold M, Lorentzian metric g, Maxwell potential A, stationary Killing vector U.
- Moncrief-Isenberg 1983: In the neighbourhood of the extremal Killing horizon $g(U,U) = 0 \exists$ Gaussian coordinates (u,r,y^i) s. t. $U = \partial/\partial u$ and
 - The horizon is a surface r = 0.
 - yⁱ, i = 1,..., D 1 are coordinates on a Riemannian cross-section Σ.
 g = 2du(dr + rh ½r²Δdu) + γ, A = rΦdu + B, where
 γ = γ_{ij}(r, y)dyⁱdy^j, h = h_i(r, y)dyⁱ, B = B_i(r, y)dyⁱ, Δ = Δ(r, y), Φ = Φ(r, y) are all real-analytic in r.

Near–horizon limit (NHL) Reall 2003, Lewandowski–Pawlowski 2003

$$u \to u/\epsilon, \quad r \to r\epsilon, \quad \text{limit } \epsilon \to 0$$

• $(\gamma, h, B, \Delta, \Phi)$. Riemannian metric, one–forms, functions on Σ .

• In NHL, the field equations on (M,g,A) reduce to elliptic equations on $\Sigma.$

- In NHL, the field equations on (M, g, A) reduce to elliptic equations on Σ .
- Theorem 1: Einstein–Maxwell–Chern–Simons equations (EMCS \equiv minimal supergravity in five dimensions) on $M \longrightarrow$ Einstein–Weyl equations on Σ .

- In NHL, the field equations on (M, g, A) reduce to elliptic equations on Σ .
- Theorem 1: Einstein–Maxwell–Chern–Simons equations (EMCS \equiv minimal supergravity in five dimensions) on $M \longrightarrow$ Einstein–Weyl equations on Σ .
- Theorem 2: Compact $(\Sigma,[\gamma]):$ squashed $S^3,$ product metric on $S^2\times S^1,$ or flat torus.

- In NHL, the field equations on (M, g, A) reduce to elliptic equations on Σ .
- Theorem 1: Einstein–Maxwell–Chern–Simons equations (EMCS \equiv minimal supergravity in five dimensions) on $M \longrightarrow$ Einstein–Weyl equations on Σ .
- Theorem 2: Compact $(\Sigma,[\gamma]):$ squashed $S^3,$ product metric on $S^2\times S^1,$ or flat torus.
- Reconstruct (M, g, A) from its NHL? Too though (Carmen Li's talk) Theorem 3: The moduli space of transverse infinitesimal deformations of a compact near-horizon geometry is finite-dimensional.

- In NHL, the field equations on (M, g, A) reduce to elliptic equations on Σ .
- Theorem 1: Einstein–Maxwell–Chern–Simons equations (EMCS \equiv minimal supergravity in five dimensions) on $M \longrightarrow$ Einstein–Weyl equations on Σ .
- Theorem 2: Compact $(\Sigma,[\gamma]):$ squashed $S^3,$ product metric on $S^2\times S^1,$ or flat torus.
- Reconstruct (M, g, A) from its NHL? Too though (Carmen Li's talk) Theorem 3: The moduli space of transverse infinitesimal deformations of a compact near-horizon geometry is finite-dimensional.
- All theorems assume supersymmetry.

- In NHL, the field equations on (M, g, A) reduce to elliptic equations on Σ .
- Theorem 1: Einstein–Maxwell–Chern–Simons equations (EMCS \equiv minimal supergravity in five dimensions) on $M \longrightarrow$ Einstein–Weyl equations on Σ .
- Theorem 2: Compact $(\Sigma,[\gamma]):$ squashed $S^3,$ product metric on $S^2\times S^1,$ or flat torus.
- Reconstruct (M, g, A) from its NHL? Too though (Carmen Li's talk) Theorem 3: The moduli space of transverse infinitesimal deformations of a compact near-horizon geometry is finite-dimensional.
- All theorems assume supersymmetry.
- Unexpected spin-off: conformal invariance and integrability on Σ .

• \mathcal{R} Ricci scalar of g. Maxwell field H = dA

$$S = \int_M \mathcal{R} \operatorname{vol}_M - rac{3}{2} H \wedge *_5 H - H \wedge H \wedge A.$$

• \mathcal{R} Ricci scalar of g. Maxwell field H = dA

$$S = \int_M \mathcal{R} \operatorname{vol}_M - \frac{3}{2} H \wedge *_5 H - H \wedge H \wedge A.$$

• Field equations

$$dH = 0, \quad d *_5 H + H \wedge H = 0,$$

$$\mathcal{R}_{\alpha\beta} - \frac{3}{2} H_{\alpha\gamma} H_{\beta}{}^{\gamma} + \frac{1}{4} g_{\alpha\beta} H^2 = 0.$$

• \mathcal{R} Ricci scalar of g. Maxwell field H = dA

$$S = \int_M \mathcal{R} \operatorname{vol}_M - \frac{3}{2} H \wedge *_5 H - H \wedge H \wedge A.$$

Field equations

$$dH = 0, \quad d *_5 H + H \wedge H = 0,$$

$$\mathcal{R}_{\alpha\beta} - \frac{3}{2} H_{\alpha\gamma} H_{\beta}{}^{\gamma} + \frac{1}{4} g_{\alpha\beta} H^2 = 0.$$

• NHL: Riemannian (Σ, γ) , one-forms (h, B), functions (Δ, Φ) .

• \mathcal{R} Ricci scalar of g. Maxwell field H = dA

$$S = \int_M \mathcal{R} \operatorname{vol}_M - rac{3}{2} H \wedge *_5 H - H \wedge H \wedge A.$$

Field equations

$$dH = 0, \quad d *_5 H + H \wedge H = 0,$$

$$\mathcal{R}_{\alpha\beta} - \frac{3}{2} H_{\alpha\gamma} H_{\beta}{}^{\gamma} + \frac{1}{4} g_{\alpha\beta} H^2 = 0.$$

- NHL: Riemannian (Σ, γ) , one–forms (h, B), functions (Δ, Φ) .
 - Supersymmetric near horizon

$$h + *_3 dB = 0, \quad \Delta = \Phi^2.$$

• \mathcal{R} Ricci scalar of g. Maxwell field H = dA

$$S = \int_M \mathcal{R} \operatorname{vol}_M - \frac{3}{2} H \wedge *_5 H - H \wedge H \wedge A.$$

Field equations

$$dH = 0, \quad d *_5 H + H \wedge H = 0,$$

$$\mathcal{R}_{\alpha\beta} - \frac{3}{2} H_{\alpha\gamma} H_{\beta}{}^{\gamma} + \frac{1}{4} g_{\alpha\beta} H^2 = 0.$$

- NHL: Riemannian (Σ, γ) , one–forms (h, B), functions (Δ, Φ) .
 - Supersymmetric near horizon

$$h + *_3 dB = 0, \quad \Delta = \Phi^2.$$

• Field equations:

$$*_3(d\Phi + h\Phi) = dh, \quad (Maxwell) \\ d *_3 h = 0, \quad (Einstein \ ur) \\ R_{ij} + \nabla_{(i}h_{j)} + h_ih_j = \left(\frac{1}{2}\Phi^2 + h^k h_k\right)\gamma_{ij} \quad (Einstein \ ij) \\ \Box = 0, \quad \Box$$

- Let $\dim(\Sigma)=3.$ A Weyl structure $(\Sigma,[\gamma],D)$
 - Riemannian conformal structure $[\gamma] = \{e^{2\Omega}\gamma, \Omega: \Sigma \to \mathbb{R}\}.$
 - Torision–free connection D on $T\Sigma$.
 - Compatibility $D_i \gamma_{jk} = 2h_i \gamma_{jk}$ for some $h \in \Lambda^1(\Sigma)$.

- Let $\dim(\Sigma)=3.$ A Weyl structure $(\Sigma,[\gamma],D)$
 - Riemannian conformal structure $[\gamma] = \{e^{2\Omega}\gamma, \Omega: \Sigma \to \mathbb{R}\}.$
 - Torision–free connection D on $T\Sigma$.
 - Compatibility $D_i \gamma_{jk} = 2h_i \gamma_{jk}$ for some $h \in \Lambda^1(\Sigma)$.
- Cartan 1943. Einstein–Weyl equations: Symmetrised Ricci tensor of D is proportional to $\gamma \in [\gamma]$.

- Let $\dim(\Sigma)=3.$ A Weyl structure $(\Sigma,[\gamma],D)$
 - Riemannian conformal structure $[\gamma] = \{e^{2\Omega}\gamma, \Omega: \Sigma \to \mathbb{R}\}.$
 - Torision–free connection D on $T\Sigma$.
 - Compatibility $D_i \gamma_{jk} = 2h_i \gamma_{jk}$ for some $h \in \Lambda^1(\Sigma)$.
- Cartan 1943. Einstein–Weyl equations: Symmetrised Ricci tensor of D is proportional to γ ∈ [γ].
 - Conformal invariance: $\gamma \to e^{2\Omega}\gamma$, $h \to h + d\Omega$.

- Let $\dim(\Sigma)=3.$ A Weyl structure $(\Sigma,[\gamma],D)$
 - Riemannian conformal structure $[\gamma] = \{e^{2\Omega}\gamma, \Omega: \Sigma \to \mathbb{R}\}.$
 - Torision–free connection D on $T\Sigma$.
 - Compatibility $D_i \gamma_{jk} = 2h_i \gamma_{jk}$ for some $h \in \Lambda^1(\Sigma)$.
- Cartan 1943. Einstein–Weyl equations: Symmetrised Ricci tensor of D is proportional to γ ∈ [γ].
 - Conformal invariance: $\gamma \to e^{2\Omega}\gamma, \quad h \to h + d\Omega.$
- An Einstein–Weyl space is Hyper–CR iff there exists $\Phi: \Sigma \to \mathbb{R}$ s. t.

$$*_3(d\Phi + h\Phi) = dh, \quad W = \frac{3}{2}\Phi^2, \quad W = \text{Ricci scalar of } D.$$

- Let $\dim(\Sigma)=3.$ A Weyl structure $(\Sigma,[\gamma],D)$
 - Riemannian conformal structure $[\gamma] = \{e^{2\Omega}\gamma, \Omega: \Sigma \to \mathbb{R}\}.$
 - Torision–free connection D on $T\Sigma$.
 - Compatibility $D_i \gamma_{jk} = 2h_i \gamma_{jk}$ for some $h \in \Lambda^1(\Sigma)$.
- Cartan 1943. Einstein–Weyl equations: Symmetrised Ricci tensor of D is proportional to γ ∈ [γ].
 - Conformal invariance: $\gamma \to e^{2\Omega}\gamma, \quad h \to h + d\Omega.$
- An Einstein–Weyl space is Hyper–CR iff there exists $\Phi: \Sigma \to \mathbb{R}$ s. t.

$$*_3(d\Phi+h\Phi)=dh, \quad W=\frac{3}{2}\Phi^2, \quad W=\text{Ricci scalar of } D.$$

- Gauduchon-Tod 1999. The only compact EW Hyper-CR examples
 Product metric on S² × S¹ with dh = 0.
 - 2 Flat torus with h = 0.
 - 8 Berger sphere

$$\gamma = (\sigma_1)^2 + (\sigma_2)^2 + a^2(\sigma_3)^2, \quad h = a\sqrt{(1-a^2)\sigma_3}$$

where $d\sigma_1 + \sigma_2 \wedge \sigma_3 = 0$.

MAIN THEOREM

Let (γ, h) be a hyper–CR Einstein–Weyl structure on Σ and let $\Omega: \Sigma \to \mathbb{R}^+$ satisfy $d *_3 (de^{\Omega}) + d *_3 (e^{\Omega}h) = 0$. Then

$$g = e^{2\Omega} (2du(dr + rh - \frac{1}{3}r^2Wdu) + \gamma + 6rdud\Omega)$$
$$A = \sqrt{\frac{2}{3}}e^{\Omega}r\sqrt{W}du + \alpha \quad (\star)$$

is a solution to EMCS. Here $\alpha \in \Lambda^1(\Sigma)$ is s.t. $d\alpha = -e^{\Omega} *_3 (h + d\Omega)$.

- All near-horizon geometries for 5D SUSY back holes/rings/strings are locally of the form (*).
- If Σ is compact then γ is a metric on the Berger sphere, a product metric on $S^1 \times S^2$ or a flat metric on T^3 .

MAIN THEOREM

Let (γ, h) be a hyper–CR Einstein–Weyl structure on Σ and let $\Omega: \Sigma \to \mathbb{R}^+$ satisfy $d *_3 (de^{\Omega}) + d *_3 (e^{\Omega}h) = 0$. Then

$$g = e^{2\Omega} (2du(dr + rh - \frac{1}{3}r^2Wdu) + \gamma + 6rdud\Omega)$$
$$A = \sqrt{\frac{2}{3}}e^{\Omega}r\sqrt{W}du + \alpha \quad (\star)$$

is a solution to EMCS. Here $\alpha \in \Lambda^1(\Sigma)$ is s.t. $d\alpha = -e^{\Omega} *_3 (h + d\Omega)$.

- All near-horizon geometries for 5D SUSY back holes/rings/strings are locally of the form (*).
- If Σ is compact then γ is a metric on the Berger sphere, a product metric on $S^1 \times S^2$ or a flat metric on T^3 .

Thank You