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BLACK HOLE TOPOLOGY

e Hawking 1972: 3 4 1-dimensional space—time+suitable energy
conditions+asymptotic flatness (AF). Spatial cross-section of the
event horizon is a topological 2—sphere.
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BLACK HOLE TOPOLOGY

e Hawking 1972: 3 4 1-dimensional space—time+suitable energy
conditions+asymptotic flatness (AF). Spatial cross-section of the
event horizon is a topological 2—sphere.

@ Not true in D + 1 dimensions if D > 3. Emparan—Reall 2001: AF
Black Ring in 4 4 1 dimensions. Horizon topology S? x S!.
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BLACK HOLE TOPOLOGY

e Hawking 1972: 3 4 1-dimensional space—time+suitable energy
conditions+asymptotic flatness (AF). Spatial cross-section of the
event horizon is a topological 2—sphere.

@ Not true in D + 1 dimensions if D > 3. Emparan—Reall 2001: AF
Black Ring in 4 4 1 dimensions. Horizon topology S? x S!.

o Galloway—Schoen 2006: Horizon cross—section admits a metric of
positive scalar curvature. D =4 : S3 (or quotient), S? x S*,
connected sums.
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NEAR HORIZON LiMIT

@ D + 1-dimensional manifold M, Lorentzian metric g, Maxwell
potential A, stationary Killing vector U.
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NEAR HORIZON LiMIT

@ D + 1-dimensional manifold M, Lorentzian metric g, Maxwell
potential A, stationary Killing vector U.

o Moncrief-Isenberg 1983: In the neighbourhood of the extremal Killing

horizon g(U,U) = 0 3 Gaussian coordinates (u,r,y") s. t. U = 8/0u
and
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e The horizon is a surface r = 0.
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NEAR HORIZON LiMIT

@ D + 1-dimensional manifold M, Lorentzian metric g, Maxwell
potential A, stationary Killing vector U.

o Moncrief-Isenberg 1983: In the neighbourhood of the extremal Killing

horizon g(U,U) = 0 3 Gaussian coordinates (u,r,y") s. t. U = 8/0u
and

o The horizon is a surface r = 0.
e y',i=1,...,D — 1 are coordinates on a Riemannian cross—section .
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NEAR HORIZON LiMIT

@ D + 1-dimensional manifold M, Lorentzian metric g, Maxwell
potential A, stationary Killing vector U.

e Moncrief-Isenberg 1983: In the neighbourhood of the extremal Killing
horizon g(U,U) =0 3 Gaussian coordinates (u,r,y")s. t. U =0/0u

and
o The horizon is a surface r = 0.
e y',i=1,...,D — 1 are coordinates on a Riemannian cross—section .

0 g= 2du<dr +rh— %TQAdu> +v, A=r®du+ B, where

v o= i(ry)dy'dy’, h=hi(r,y)dy’, B = Bi(r,y)dy’,
A = A(ry), ®=(r,y) are all real-analytic in r.
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NEAR HORIZON LiMIT

@ D + 1-dimensional manifold M, Lorentzian metric g, Maxwell
potential A, stationary Killing vector U.

e Moncrief-Isenberg 1983: In the neighbourhood of the extremal Killing
horizon g(U,U) =0 3 Gaussian coordinates (u,r,y")s. t. U =0/0u

and
o The horizon is a surface r = 0.
e y',i=1,...,D — 1 are coordinates on a Riemannian cross—section .

0 g= 2du<dr +rh— %TQAdu> +v, A=r®du+ B, where
v o= i(ry)dy'dy’, h=hi(r,y)dy’, B = Bi(r,y)dy’,
A = A(ry), ®=(r,y) are all real-analytic in r.

o Near—horizon limit (NHL) Reall 2003, Lewandowski—Pawlowski 2003

u—ufe, T—re, limite—0
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NEAR HORIZON LiMIT

@ D + 1-dimensional manifold M, Lorentzian metric g, Maxwell
potential A, stationary Killing vector U.

e Moncrief-Isenberg 1983: In the neighbourhood of the extremal Killing
horizon g(U,U) =0 3 Gaussian coordinates (u,r,y")s. t. U =0/0u

and
o The horizon is a surface r = 0.
e y',i=1,...,D — 1 are coordinates on a Riemannian cross—section .

0 g= 2du<dr +rh— %TQAdu> +v, A=r®du+ B, where
v o= i(ry)dy'dy’, h=hi(r,y)dy’, B = Bi(r,y)dy’,
A = A(ry), ®=(r,y) are all real-analytic in r.

o Near—horizon limit (NHL) Reall 2003, Lewandowski—Pawlowski 2003
u—ufe, T—re, limite—0

e (v,h,B,A,®). Riemannian metric, one—forms, functions on 3.
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RESULTS

e In NHL, the field equations on (M, g, A) reduce to elliptic equations
on X.
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RESULTS

e In NHL, the field equations on (M, g, A) reduce to elliptic equations
on X.

@ Theorem 1: Einstein-Maxwell-Chern-Simons equations (EMCS =
minimal supergravity in five dimensions) on M — Einstein—-Weyl
equations on X..
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RESULTS

e In NHL, the field equations on (M, g, A) reduce to elliptic equations
on 3.

@ Theorem 1: Einstein-Maxwell-Chern-Simons equations (EMCS =
minimal supergravity in five dimensions) on M — Einstein—-Weyl
equations on X..

o Theorem 2: Compact (X, [7]): squashed S3, product metric on
S2 x S1, or flat torus.
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RESULTS

e In NHL, the field equations on (M, g, A) reduce to elliptic equations
on 3.

@ Theorem 1: Einstein-Maxwell-Chern-Simons equations (EMCS =
minimal supergravity in five dimensions) on M — Einstein—-Weyl
equations on X..

o Theorem 2: Compact (X, [7]): squashed S3, product metric on
S2 x S1, or flat torus.

e Reconstruct (M, g, A) from its NHL? Too though (Carmen Li's talk)
Theorem 3: The moduli space of transverse infinitesimal deformations
of a compact near—horizon geometry is finite—dimensional.
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@ Theorem 1: Einstein-Maxwell-Chern-Simons equations (EMCS =
minimal supergravity in five dimensions) on M — Einstein—-Weyl
equations on X..

o Theorem 2: Compact (X, [7]): squashed S3, product metric on
S2 x S1, or flat torus.

e Reconstruct (M, g, A) from its NHL? Too though (Carmen Li's talk)
Theorem 3: The moduli space of transverse infinitesimal deformations
of a compact near—horizon geometry is finite—dimensional.

@ All theorems assume supersymmetry.
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RESULTS

e In NHL, the field equations on (M, g, A) reduce to elliptic equations
on X.

@ Theorem 1: Einstein-Maxwell-Chern-Simons equations (EMCS =
minimal supergravity in five dimensions) on M — Einstein—-Weyl
equations on X..

o Theorem 2: Compact (X, [7]): squashed S3, product metric on
5% x S1, or flat torus.

e Reconstruct (M, g, A) from its NHL? Too though (Carmen Li's talk)
Theorem 3: The moduli space of transverse infinitesimal deformations
of a compact near—horizon geometry is finite—dimensional.

@ All theorems assume supersymmetry.

@ Unexpected spin-off: conformal invariance and integrability on 3.
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MINIMAL SUPERGRAVITY IN 5 DIMENSIONS

@ R Ricci scalar of g. Maxwell field H = dA
S:/ RVO|M—gH/\*5H—H/\H/\A.
M
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MINIMAL SUPERGRAVITY IN 5 DIMENSIONS

@ R Ricci scalar of g. Maxwell field H = dA
S:/ RVO|M—§H/\*5H—H/\H/\A.
M 2
o Field equations
dH =0, dxsH+HANH =0,

3 1
Raﬁ - iHa’yH/B’y + ZgagH2 = 0.
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MINIMAL SUPERGRAVITY IN 5 DIMENSIONS

@ R Ricci scalar of g. Maxwell field H = dA
S:/ RVO|M—§H/\*5H—H/\H/\A.
M 2

o Field equations

dH =0, d+xsH+ HANH =0,

3 1

Ras — EHO,YH/B’Y + ZgagH2 =0.

e NHL: Riemannian (X, ), one-forms (h, B), functions (A, ®).
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MINIMAL SUPERGRAVITY IN 5 DIMENSIONS

@ R Ricci scalar of g. Maxwell field H = dA
S:/ RVO|M—3H/\*5H—H/\H/\A.
M

o Field equations
dH =0, dxsH+HANH=0,

3 1
Raﬁ - iHa’yH/B’y + ZgagH2 = 0.
e NHL: Riemannian (X, ), one-forms (h, B), functions (A, ®).

e Supersymmetric near horizon

h+ x3dB =0, A = 2.
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MINIMAL SUPERGRAVITY IN 5 DIMENSIONS

@ R Ricci scalar of g. Maxwell field H = dA
S:/ RVO|M—3H/\*5H—H/\H/\A.
M

o Field equations
dH =0, dxsH+HANH=0,

Ras — gHMHBV + igagH2 =0.
e NHL: Riemannian (X, ), one-forms (h, B), functions (A, ®).
e Supersymmetric near horizon
h+%3dB =0, A=%2
e Field equations:
*3(d® + h®) = dh, (Maxwell)
d*3h =0, (Einstein ur)

1
Rij + V(i) + hih; = (§q>2 n hkhk)%j (Einstein i5)
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HYPER-CR EINSTEIN-WEYL GEOMETRY

o Let dim(X) = 3. A Weyl structure (3, [v], D)
o Riemannian conformal structure [y] = {€2*vy,Q: ¥ — R},
o Torision—free connection D on T'X.
o Compatibility D;v;x = 2h;v;i for some h € A}(X).
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HYPER-CR EINSTEIN-WEYL GEOMETRY

o Let dim(X) = 3. A Weyl structure (3, [v], D)
o Riemannian conformal structure [y] = {€2*vy,Q: ¥ — R},
o Torision—free connection D on T'X.
o Compatibility D;v;x = 2h;v;i for some h € A}(X).
e Cartan 1943. Einstein—Weyl equations: Symmetrised Ricci tensor of
D is proportional to 7 € [v].
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HYPER-CR EINSTEIN-WEYL GEOMETRY

o Let dim(X) = 3. A Weyl structure (3, [v], D)
o Riemannian conformal structure [y] = {€2*vy,Q: ¥ — R},
o Torision—free connection D on T'X.
o Compatibility D;v;x = 2h;v;i for some h € A}(X).
e Cartan 1943. Einstein—Weyl equations: Symmetrised Ricci tensor of
D is proportional to 7 € [v].
o Conformal invariance: v — €*%y, h — h+ dd.
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HYPER-CR EINSTEIN-WEYL GEOMETRY

o Let dim(X) = 3. A Weyl structure (3, [v], D)
o Riemannian conformal structure [y] = {€2*vy,Q: ¥ — R},
o Torision—free connection D on T'X.
o Compatibility D;v;x = 2h;v;i for some h € A}(X).
e Cartan 1943. Einstein—Weyl equations: Symmetrised Ricci tensor of
D is proportional to 7 € [v].
o Conformal invariance: v — €*%y, h — h+ dd.
@ An Einstein—Weyl space is Hyper—CR iff there exists ® : 3 — R s. t.

3
#3(d® + h®) =dh, W = §‘I>2, W = Ricci scalar of D.
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HYPER-CR EINSTEIN-WEYL GEOMETRY

o Let dim(X) = 3. A Weyl structure (3, [y], D)
o Riemannian conformal structure [y] = {€2*vy,Q: ¥ — R},
e Torision—free connection D on T'X.
o Compatibility D;v;x = 2h;v;i for some h € A}(X).
e Cartan 1943. Einstein—Weyl equations: Symmetrised Ricci tensor of
D is proportional to 7 € [v].
o Conformal invariance: v — €*%y, h — h+ dd.
o An Einstein—Weyl space is Hyper—CR iff there exists ® : 3 — R s. t.
3
2
@ Gauduchon-Tod 1999. The only compact EW Hyper—CR examples
@ Product metric on 5% x S with dh = 0.

@ Flat torus with h = 0.
© Berger sphere

v =(01)" + (02)* + a*(03)°, h=a\/(1—a*)os

where do1 + 02 A o3 = 0.

#3(d® + h®) = dh, W = -®% W = Ricdi scalar of D.
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MAIN THEOREM

Let (v, h) be a hyper—CR Einstein—-Weyl structure on ¥ and let
Q: 3 — RY satisfy d #3 (de?) + d #3 (e°*h) = 0. Then

1
g = e®2du(dr+rh— §r2Wdu) + v + 6rdud)
2
A = \/;eﬂr\/Wdu +a (%)

is a solution to EMCS. Here o € AY(X) is s.t. da = —e® x5 (h + dQ).

@ All near—horizon geometries for 5D SUSY back holes/rings/strings are
locally of the form (x).

o If 3 is compact then + is a metric on the Berger sphere, a product
metric on S* x S? or a flat metric on 7.
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MAIN THEOREM

Let (v, h) be a hyper—CR Einstein—-Weyl structure on ¥ and let
Q: 3 — RY satisfy d #3 (de?) + d #3 (e°*h) = 0. Then

1
g = e®2du(dr+rh— §r2Wdu) + v + 6rdud)
2
A = \/;eﬂr\/Wdu +a (%)

is a solution to EMCS. Here o € AY(X) is s.t. da = —e® x5 (h + dQ).

@ All near—horizon geometries for 5D SUSY back holes/rings/strings are
locally of the form (x).

o If 3 is compact then + is a metric on the Berger sphere, a product
metric on S* x S? or a flat metric on 7.

Thank You
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