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Stochastic wave equation

I consider an infinite set of fields χa with masses ma interacting
with the inflaton φ by a linear coupling λaχ

aφ. Eliminating χ I
obtain in an expanding metric

∂2
t φ−a−24φ+(3H+γ2)∂tφ+m2φ+V ′(φ)+

3

2
γ2Hφ = γa−

3
2 η. (1)

η is the white noise related to Brownian motion

〈dB(t, x)dB(s, y)〉 = 〈η(t, x)η(s, y)〉dt = δ(t − s)Gt(x− y)dt (2)

x-dependence neglected in a homogeneous universe



The energy-momentum
The energy-momentum tensor of the scalar field in the presence of
noise is not conserved. We have to compensate the
energy-momentum by means of a compensating energy-momentum
Tde which we associate with the dark sector .
Tµν
tot is

Tµν
tot = Tµν + Tµν

de . (3)

From the conservation law

(Tµν
de );µ = −(Tµν);µ. (4)

The energy-momentum as an ideal fluid

Tµν
de = (ρde + pde)uµuν − gµνpde , (5)

where ρ is the energy density and p is the pressure. The velocity
uµ satisfies the normalization condition

gµνu
µuν = 1.

For the scalar field we have the representation

uµ = ∂µφ(∂σφ∂σφ)−
1
2 , (6)

ρ+ p = ∂σφ∂σφ, (7)

p =
1

2
∂σφ∂σφ− V . (8)



We have

(Tµν);µ = ∂νφ(γa−
3
2 η − γ2∂tφ−

3

2
γ2Hφ) (9)

For T 0ν in a homogeneous metric

dρ+ 3(1 + wI )Hρdt = γ∂tφ ◦ a−
3
2 dB − 3

2γ
2Hφ∂tφdt − γ2(∂tφ)2dt,

(10)
For a potential V we have

wI = (
1

2
(∂tφ)2 − V )(

1

2
(∂tφ)2 + V )−1. (11)

The compensating energy density must have the (non)conservation
law with an opposite sign

dρde + 3H(1 + w)ρdedt = 3
2γ

2Hφ∂tφdt + γ2(∂tφ)2dt − γ∂tφa−
3
2 ◦ dB,

(12)
where

w =
pde
ρde

. (13)



Einstein equations are written in the form

Rµν − 1

2
gµνR = 8πGTµν

tot , (14)

The Friedman equation in the FRLW flat metric reads

H2 = 8πG
3 (ρ+ ρde). (15)

Differentiating
da = Hadt (16)

dH2 =
8πG

3
(dρ+dρde) = −8πGH

(
(1+wI )ρ+(1+w)ρde

)
dt (17)



To the environmental noise B I add Starobinsky-Vilenkin noise W
describing quantum fluctuations of the inflaton. I get a closed
consistent system of stochastic equations

dφ = Πdt (18)

dΠ = −(3H+γ2)Πdt−V ′dt− 3

2
γ2Hφdt+γa−

3
2 ◦dB+

1

2π
H

3
2 ◦dW

(19)
dH = −4πGΠ2dt (20)

da = Hadt (21)



The slow roll system

The diffusion (small roll) system reads

(3H+γ2)dφ = −V ′dt− 3

2
γ2Hφdt+γa−

3
2 ◦dB+

1

2π
H

3
2 ◦dW (22)

dH = −4πG (∂tφ)2dt (23)

da = Hadt (24)



The Starobinsky-Vilenkin slow roll (quantum) system corresponds
to the limit γ → 0 limit

∂tφ = − 1

3H
V ′ +

1

2π
H

3
2 ◦ ∂tB (25)

together with
∂tH = −4πG (∂tφ)2 (26)



I can get a relation between H and V from the equations of motion

∂t(
1
2 Π2 + V + 3

4γ
2Hφ2 − 3

8πGH
2 + 1

4πG γ
2H + Λ) + 3πGγ2φ2Π2

= γa−
3
2 Π ◦ ∂tB + 3

2πH
5
2 Π ◦ ∂tW

(27)



I use the approximation

H = γ2(
1

3
+ 4πGφ2) +

√
8πG

3
(V + Λ) +

1

2
Π2 + γ4(

1

3
+ 4πGφ2)2

(28)
There remains to derive a(φ) from

ln a =

∫
H(φ)dt =

∫
H(φ)(∂tφ)−1(φ)dφ (29)



Finally

H =

√
8πG

3
(V + Λ) (30)

Then

ln(a) = −8πG

∫
dφ(V ′)−1(Λ + V ) (31)

For the slow roll system we have the Fokker-Planck equation for
the probability distribution

∂tP = ∂φ
γ2

18Ha
3
2
∂φ

1

Ha
3
2
P

+ 1
8π2∂φH

3
2∂φH

3
2P + ∂φ(3H)−1V ′P

(32)



The evolution scale factor a(φ) in some inflationary models

We know H(φ) as a function of φ. The dependence of a on φ is

more involved (we need to calculate some integrals). If V = m2

2 φ
2

then
a = exp

(
− 8πGΛm−2 ln |φ| − 2πGφ2

)
(33)

Large φ corresponds to small a and small φ to large a.



If V = gφn (n > 2) then

a = exp
(
− 8πGΛ

(2− n)ng
φ2−n − 4πGn−1φ2

)
(34)

If φ→∞ then a→ 0, if φ→ 0 then a→∞ (for Λ > 0).
If V = g exp(λφ) then

a = exp
(8πGΛ

gλ2
exp(−λφ)− 8πG

λ
φ
)

(35)



If φ→ +∞ then a→ 0, if φ→ −∞ then a→∞ .
For a flat potential

V =
L + φ2

K + φ2
(36)

we have

a = exp
(
− 8πGΛ

(
ΛK2

2(K−L) ln |φ|+ ΛK
2(K−L)φ

2 + Λ
8(K−L)φ

4 + Λ
8(K−L)φ

4

+ LK
2(K−L) ln |φ|+ L+K

4(K−L)φ
2 + 1

8(K−L)φ
4
))

(37)



Let V = g cosφ then

a = exp
(
− 8πG

(
− g−1Λ ln | tan(

φ

2
)| − ln | sinφ)|

))
(38)

a→ 0 when φ→ 0. When φ→ π then a may goes to ∞ if
g−1Λ > 1 (otherwise a→ 0).
The special case of “natural inflation” with V (φ) = g(1− cosφ)
gives

a = exp
(

8πG ln(2 cos2(
φ

2
)
)

Then, a→ 0 when φ→ π (starts from the maximum of the
potential reaching the minimum).



There is an interesting case of the double-well potential

V (φ) =
g

4
φ4 − µ2

2
φ2 (39)

then

a = |φ|
8πGΛ
µ2 |gφ2 − µ2|

πGµ2

g
− 4πGΛ

µ2 exp(−πGφ2) (40)

If φ→ 0 then a→ 0 (for Λ > 0, if if Λ = 0 then a→ const 6= 0. If

φ→ µg−
1
2 then a goes either to 0 or to infinity depending on the

value of Λ . When φ→∞ then a→ 0.



Probability distribution of universes created in stochastic
inflation

The probability distribution determines the probability of an
appearance of the universe with given φ or a(φ). Let us consider
the simplest cases first
The stationary solution of Fokker-Planck without the
Starobinsky-Vilenkin noise is

P =
√
V exp(−12πG

∫ φ
dφ′(V ′)−1(Λ + V )

)
exp

(
− 6

γ2

√
8πG

3

∫
dφV ′

√
V + Λ exp(−24πG

∫ φ
dφ′(V ′)−1(Λ + V )

)
(41)



If we assume that V does not grow faster than exponentially and is
an even function of φ then for a large |φ|

P ' Ha
3
2 =
√
V exp(−12πG

∫ φ
dφ′(V ′)−1(Λ + V )

)
(42)

If γ = 0 (the environmental noise is absent) then we obtain the
Linde-Starobinsky-Vilenkin-Hartle-Hawking solution

P = (V + Λ)−
3
4 exp(

3

8G 2

1

V + Λ
) (43)

This formula fails to express a probability distribution (P is not
integrable) if V does not fall quickly enough for large φ or if
V + Λ = 0 at a certain φc ( as for the double well potential (50)
and φn with Λ = 0). I show that an environmental noise allows to
avoid this difficulty.



Let us write
P̃ = H−1a−

3
2P

Then, equation for stationary distribution reads

γ2

18H
−1a−

3
2∂φP̃ + 1

8π2H
3
2∂φ(H

5
2 a

3
2 P̃)

= −1
3V
′a

3
2 P̃

(44)

Using the formulas for H and for a I obtain

ln P̃ = −6
∫
dφHa3(γ2 + 9

4π2H
5a3)−1(

V ′ + 3
8π2 ( 8πG

3 )2(V + Λ)2( 5
4 (V + Λ)−1V ′ − 9

2
8πG

3 (V + Λ)(V ′)−1)
)

(45)

When a→ 0 for φ→∞ then we get for large φ that P ' Ha
3
2 as

in the model without the quantum noise.



For the potential φn the formula for a gives for a large φ (small a)

P = |φ|
n
2 exp(−6πGn−1φ2) (46)

This is the well-known gamma distribution in statistics( more
precisely the χ2 distribution).If on the other hand a3H5 tends to
infinity then

ln P̃ = −8π2

3

∫
dφH−4

(
V ′+

3

8π2
(

8πG

3
)2V 2(

5

4
V−1V ′−9

2

8πG

3
V (V ′)−1)

)
(47)

This is the Linde-Starobinsky-Vilenkin-Hartle-Hawking solution



If we set
P̂ = H

3
2P

then the equation for P̂ reads

γ2

18
H−1a−

3
2∂φ(H−

5
2 a−

3
2 P̂) +

1

8π2
H

3
2∂φP̂ = −1

3
H−

5
2V ′P̂

When we calculate the derivatives of H and a then we obtain(
1

8π2 ( 8πG
3 )

3
4 a3V

5
2 + γ2

18 ( 3
8πG )

7
4

)
∂φ ln P̂

= −1
3 ( 3

8πG )
5
4 a3(V + Λ)

1
2V ′

+ 5γ2

72 ( 3
8πG )

7
4 (V + Λ)−1V ′ − γ2

4 ( 3
8πG )

3
4 (V + Λ)(V ′)−1

(48)

From this formula we can also see that if a→ 0 for a large φ then

P ' Ha
3
2



If a is large (either for large φ or small φ ) so that a3V
5
2 →∞ then

the terms independent of a can be omitted in the formula above
and we get the Linde-Starobinsky-Vilenkin-Hartle-Hawking formula

P ' (V + Λ)−
3
4 exp(

8

3G 2(V + Λ)
) (49)



Conclusions

1) If a
3
2H5 →∞ then we get

Linde-Starobinsky-Vilenkin-Hartle-Hawking formula

P ' (V + Λ)−
3
4 exp(

8

3G 2(V + Λ)
) (50)

2) If a
3
2H5 → 0 we get the formula P ' Ha

3
2 as if there were no

quantum fluctuations


