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Stochastic wave equation

| consider an infinite set of fields x with masses m, interacting
with the inflaton ¢ by a linear coupling A\;x?¢®. Eliminating x |
obtain in an expanding metric

3
Ro—a > Do+ (3H+77) 0 +mP o+ V' (6)+ 27 Ho = ya~2n. (1)
7 is the white noise related to Brownian motion
(dB(t,x)dB(s,y)) = (n(t,x)n(s,y))dt = 6(t — s)Ge(x — y)dt (2)

x-dependence neglected in a homogeneous universe



The energy-momentum
The energy-momentum tensor of the scalar field in the presence of
noise is not conserved. We have to compensate the
energy-momentum by means of a compensating energy-momentum
T4e which we associate with the dark sector .

T, is
Th = T TH. 3)
From the conservation law
(Téf);u = *( le);u' (4)
The energy-momentum as an ideal fluid
Tgey = (pde + pde)uuuy - glwpde; (5)

where p is the energy density and p is the pressure. The velocity
u" satisfies the normalization condition

guutu” =1.
For the scalar field we have the representation

Ut = P GOy d) 3, (6)



We have
(TH)y = 9613 Iy~ 2206~ 7HE)  (9)
For T% in a homogeneous metric
dp+3(1+ w))Hpdt = 19e6 0 a3 dB — 372 Hpdepdt — +2(9:0)dt,

(10)
For a potential V we have

w = (5(00) — V)(5(@0) + V) (11)

The compensating energy density must have the (non)conservation
law with an opposite sign

dpde + 3H(1 + w)pdedt = 37*Hpd,pdt + ~+2(0r¢)?dt — ’y@tgba_% o dB,
(12)

(13)

where
Pde
w=-—.

Pde



Einstein equations are written in the form
1
RHY — Eg‘“’R = 8nGT}, (14)
The Friedman equation in the FRLW flat metric reads

H? = %(p"i’,ode)' (15)

Differentiating
da = Hadt (16)

_ 8nG

dH?
3

(dp+dpae) = ~87GH (14w )p+(1+w)pge ) dt (17)



To the environmental noise B | add Starobinsky-Vilenkin noise W
describing quantum fluctuations of the inflaton. | get a closed
consistent system of stochastic equations

d¢ = Ndt (18)

1

dN = —(3H+~%)Ndt — V’dt—g'y2Hgbdt+'ya_%odB+2—H%odW
T

(19)

dH = —47GN?dt (20)

da = Hadt (21)



The slow roll system

The diffusion (small roll) system reads

1
(3H++2)d¢ = —V’dt—gfyzHédt—l—’ya*%odB—i—%H%odW (22)

dH = —47G(0;¢)dt
da = Hadt



The Starobinsky-Vilenkin slow roll (quantum) system corresponds
to the limit v — 0 limit
1, 1 3
at¢——37HV +ZH2 OatB (25)
together with
OtH = —471G(0:9)? (26)



| can get a relation between H and V from the equations of motion

at(%n23+ V+ %72H¢25— o H? + 72 7PH + A) + 31 GH24° M2
=va Mo 8B+ 2 H2Mo oW
(27)



| use the approximation

1 871G 1
H:’72(3+47TG¢2)+\/7; (V4+A)+ = |‘|2+v(3+47rc¢2)2

(28)
There remains to derive a(¢) from

na= [ H@)d = [H@)@0) 0)ds  (29)



Finally

H = 87;G(v+/\) (30)
Then
In(a) = —87rG/d¢( VY (A + V) (31)

For the slow roll system we have the Fokker-Planck equation for
the probability distribution

O0tP =0, +0p—15 P
' ¢ 8Ha? ? Ha? (32)
+8?8¢H28¢H2P + 8¢(3H)‘1V’P



The evolution scale factor a(¢) in some inflationary models

We know H(¢) as a function of ¢. The dependence of a on ¢ is

. . 2
more involved (we need to calculate some integrals). If V = %gbz
then

a=exp ( — 87GAm2In|¢| — 27TG¢2> (33)

Large ¢ corresponds to small a and small ¢ to large a.



If V =g¢" (n>2) then

a-exp(—ip_n)ngqb 47 Gn gb)

If $ — oo then a — 0, if ¢ — 0 then a — oo (for A > 0).

If V = gexp(\¢p) then

8T GA 3G >

a=exp e P(A0) = =0

(34)



If = 400 then a — 0, if ¢ - —o0 then a — oo .

For a flat potential
L+ ¢

Ekr e

we have

(36)

a:exp<—87rG/\( (KLIn]¢\_|_2( ¢2+8
taR-n) '”|¢|+4(L%<+5L)¢2+8(K—L>¢4)>

0" + s L)¢4

(37)



Let V = gcos ¢ then

a:exp(—8wG(—g_1/\|n|tan(§)]—In|sin¢)|)) (38)

a — 0 when ¢ — 0. When ¢ — 7 then a may goes to oo if

g 1A > 1 (otherwise a — 0).

The special case of “natural inflation” with V(¢) = g(1 — cos ¢)
gives

a=exp (87TG In(2 cos2(§)>

Then, a — 0 when ¢ — 7 (starts from the maximum of the
potential reaching the minimum).



There is an interesting case of the double-well potential

2
V()= 56" - 54 (39)

then i
8mwGA wGut  4mnGA
a=lo| »* lgg? — 2| ¢ exp(-7Ge?)  (40)
If ® — 0 then a — 0 (for A > 0, if if A =0 then a — const # 0. If

¢ — ,ug_% then a goes either to 0 or to infinity depending on the
value of A . When ¢ — oo then a — 0.



Probability distribution of universes created in stochastic
inflation

The probability distribution determines the probability of an
appearance of the universe with given ¢ or a(¢). Let us consider
the simplest cases first

The stationary solution of Fokker-Planck without the
Starobinsky-Vilenkin noise is

P =\Vexp(—12xG [*d¢/' (V) 1 (A + V)>

e (= 51/55E [ doV'VVF Rexp(—247G [* dof (V) (A + V)
(41)



If we assume that V does not grow faster than exponentially and is
an even function of ¢ then for a large |9

P~ Has = /Vexp(~127G [? d¢'(V') "1 (A + V)) (42)

If v = 0 (the environmental noise is absent) then we obtain the
Linde-Starobinsky-Vilenkin-Hartle-Hawking solution

3 1
82 VN
This formula fails to express a probability distribution (P is not
integrable) if V does not fall quickly enough for large ¢ or if
V + A =0 at a certain ¢. ( as for the double well potential (50)
and ¢" with A = 0). | show that an environmental noise allows to
avoid this difficulty.

P=(V+A)exp( (43)



Let us write ,
P=H"1a:P
Then, equation for stationary distribution reads

'{—;H‘la_ 0yP + gks H39,(H2 a7 P)

V'a

,\)\w Nlw

o

(44)

wn—n

Using the formulas for H and for a | obtain
InP =—6 [ dpHa*(y? + ;25 H%a3) !
V4 g2 (B2 (V A+ APG(V + M)V = 3EE(V 4+ A) (V)T
(45)

When a — 0 for ¢ — oo then we get for large ¢ that P ~ Ha> as
in the model without the quantum noise.



For the potential ¢" the formula for a gives for a large ¢ (small a)
P = |4|? exp(—6mGn~1¢?) (46)

This is the well-known gamma distribution in statistics( more
precisely the x2 distribution).If on the other hand a®>H?® tends to
infinity then

~ 87T2 _4 / 3 8nG 21,2 5 1y 987G N—1y
P =5 JaoH (ViR PGV T Vv
(47)

This is the Linde-Starobinsky-Vilenkin-Hartle-Hawking solution



If we set s
P=Hz2P
then the equation for P reads

1
82

I\J\U’!

2
L Ha39,(H 327>

~ 3 ~ 1 5 A
PY+ —H3,P = —~H VP
18 )+ 20 37

When we calculate the derivatives of H and a then we obtain
(23512 VE + K% ) #)ayIn P

( a
:_%(i)% 3(V+NA):2 (48)
+ 2 (52)F (V 4+ A) 1V'—i(8TG> H(V A+ A)(V)

-

From this formula we can also see that if a — 0 for a large ¢ then
3
P ~ Ha2



If ais large (either for large ¢ or small ¢ ) so that a3V3 = oo then
the terms independent of a can be omitted in the formula above
and we get the Linde-Starobinsky-Vilenkin-Hartle-Hawking formula

8

P~ (V+ /\)_% exp(m)

(49)



Conclusions

1) If a2 H® — 0o then we get
Linde-Starobinsky-Vilenkin-Hartle-Hawking formula

8

P~ (V+ /\)7% exp(m)

(50)

3 3
2) If a2H® — 0 we get the formula P ~ Ha2 as if there were no
quantum fluctuations



