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NOTE: the lectures are for experimental and theoretical students. They are light on proofs
and derivations and try not to be overly technical. The accent is on “getting the gist of it”
and on helping the students develop understanding about how SM works at Colliders.

| will discuss e*e colliders in order to gain insight into the nature of parton-hadron transitions
| will then move to hadron colliders where we will use QCD in all it generality and glory.
No discussion of DIS.

DIS was important to establish QCD; to understand QCD we will stick with hadron colliders.




Introduction: why care about strong interactions?

» Because we mostly use hadron colliders. They collide hadrons = strongly interacting particles

» Because most of the particles produced and observed at colliders are hadrons
» Because we can manage perturbation theory and it really works:

» there are 3 constants in the Standard Model:

1
» the fine structure constant (it is small) O‘(M — 0) N ——
137
» The Fermi constant (it is even smaller)
» The strong coupling constant (large) as(p=myz)~0.1

v’ The effects due to strong interactions are by far the largest and most important ones.

v We need to have a handle on them for any meaningful collider phenomenology.



Schematic view of a typical high energy event and its main evolution stages
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Schematic view of a typical high energy event and its main evolution stages
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» How realistic is this picture?

» As it turns out, it is overly simplistic, not overly complicated.

» The above picture is inherently classical; no proper quantum effects are included yet

» Inclusion of proper quantum effects is a dramatic complication, that is not yet fully
achieved.

Overly simplistic dictionary: classic = LO; quantum = NLO or NNLO, etc




QCD is a SU(3) gauge theory. The strong charge is called color.

QCD: the formal bit

The QCD Lagrangian reads:

Extra material

1

L= q.alin"Ouday — g7 tGp AL — madap) g p — JFu FH
q

F;?V = QMA;& — 6I/Aﬁ — Js fABCAEAg

7»bq,a, - quark fields. They carry two indices:

AC

K

4C
tab

* Flavor: g=u,d,s,c,b,t (6 flavors)
* Color:a=1...3

- gauge fields (gluons). They also carry two indices:
* Lorentz index

e Colorindex: C=1...8 (dimension of the color algebra)

QCD is symmetric in the
6 quark flavors. They
are distinguished only
by their masses!

- eight SU(3) generators (in the fundamental (3x3) representation).

fABC - the structure constants of the algebra

Is

- the ONLY gauge coupling of the theory: a5 =

g
47




QCD: color Extra material

Color is not observed (everyone knows that!). So how do we then choose the color matrices?
A particular representation is given by the Gell-Mann matrices.
All that is important are their commutation relations and traces.

by _ ; pab N% -1
R ST = (1 T = Crdx .+ Cr == (<479
b b b
{TG,T } = N(Sa -+ d® CT’C7 ZfabCfabd = Cubeg , Ca=N (: 3)’
1 a
Tr(T°T?) = Tré™ , where Ty = -, ? )
2 Zdabcdabd: N _46d 49 — ()
T(T%) = 0. o N ’

C: and C, : the first Casimir of SU(3) in the fundamental/adjoint representation
QCD has also a second Casimir (which rarely appears). A prominent place is the Tevatron A,
Some useful relations:

T3 T = % <5il5jk — %&'j&cl) ,
v (TaTch) _ i (dee 4 ; fabey
Tr (TaTbTaTC) - —ﬁ(sbc,
For the theory behind computation of colour factors see [hep-ph/9802376].
For any serious computation use the program FORM (by Jos Vermaseren).



QCD: color Extra material

* Some examples of color factors for Feynman diagrams:

a b :
| m | a :
) k J a d -
J
armma 210 1 1
TuTy = 3 <5kk5ij - Néki‘sjk) ¢
1 ( 5 1 S TTy = Te(T°T)
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i 1 N fabCfdbc 2é6 N(Sab — CA(Sab £ iaab =Trdap

C

ade pefc pdbf __ pade pcef pbfd 2:18 _ﬁ abe
T = = ]

10 1 1 )
T Th T, = 3 <5kl5ij - N(Ski(sjl> Ty,
1 1
= ST — 5T
2.7 1. .
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More on QCD Extra material

%FA FA/,LI/

QCD allows another peculiar term: 68 v
U

This term involves CP violation and is typically set to zero. We know it is small: |9 < 10710
This terms can be rotated away for massless quarks. But quarks have non-zero masses ...

Quantum numbers of quarks:

d U S c b t
Q — electric charge —% +§ —% —|—§ —% +§
| — isospin % % 0 0 0 0
|, — isospin z-component —% —i—% 0 0 0 0
S — strangeness 0 0 -1 0 0 0
C — charm 0 0 0 +1 0 0
B — bottomness 0 0 0 0 -1 0
T — topness 0 0 0 0 0 +1

* Electric charge: Q:|Z+B+S+(2Z+B+T
« Hypercharge: YyopB4ig_ CZBFT

3



The Standard Model: masses

The gluons are massless. Exactly massless due to the gauge symmetry.
Quark masses are free parameters in QCD. In the SM they are set through the EW sector
via the Yukawa coupling between quarks and Higgs (more later).

Quark masses are strange concept in QCD.

QCD, per se, does not need masses. QCD dynamics generates most of the hadronic masses.
At perturbative level the Lagrangian mass appear as “usual” mass (like the electron mass).
This point is subtle, however. Quark masses are not observables (unlike m,).

Quark masses for light quarks are defined through the meson masses. Usually running
masses are used (MSbar, 1S, etc).

For top quark the pole mass is suitable because the top decays before hadronization.

We will keep revisiting the issue of masses.

The EW couplings of quarks read schematically:

Lp =) (i@—mi - miH)%‘

v

9 T SY(T+ T+ o T— W= W
m;wm—wa’ Wi+ T W)Y,

—GZQiEﬂ“%Au

g N T 7.5
- — 7
2 cos By EZ Vi vH (91 — 947°) Vi Zu




QCD: how we compute things

» ... using Feynman diagrams and rules (or by using one of the many programs on the market)
» Given the process we want to compute and the level of approximation (LO, NLO, etc) we:

» construct the full set of Feynman diagrams [hint: use existing software]
> square them : (...) x (...)"
» integrate over loops and phase-space, as appropriate.

v Example: top quark pair production at hadron colliders

NLO: qg->tt H




QCD versus QED: twins that can be very far apart

» Perturbatively QCD and QED are very similar. In fact they are almost identical once color has
been handled:

The transition QCD - QED: th > 1, fA¢->0, C,20,C.> 1L
» In calculations it is often useful to compare the two, or to think of the abelian limit of QCD.
» The true differences first appear due to coupling running (not obvious in the Lagrangian):

* In QED: coupling decreases with distance
* In QCD: coupling increases with distance

» At large distances (or small energies) QCD becomes confining,
i.e. the constituent particles, the quarks, cannot be separated.

» In observables quarks always form bound states: the hadrons.
» No quark (or gluon) can be observed alone.

» Formalize:
* only colorless states can be observed (i.e. hadrons are always colorless).



QCD versus QED: twins that can be very far apart

» The true differences first appear due to coupling running:
» QED: coupling decreases with distance
» QCD: coupling increases with distance (decreases with energy)
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» A firm prediction of the theory: the coupling must be process independent.
» Its running too. It is known to 4 loops!

By now plenty of precision data that confirms this. A triumph for QCD!




Why do we care about the running of the coupling?

» Perturbative computations at low scales are meaningless!!! o
> Running of the coupling is computed from diagrams like:

1 ~
0.(Q?) = A =200 MeV
BoIn(Q?/A?) B, = 11N - 2N,

» The point is that we cannot — at least not yet — calculate cross-section exactly.
» What we do is an approximated calculation: LO, NLO, etc.

» Imagine we perform a LO calculation; effectively‘a classical result, that knows nothing about
running of the coupling.

» But if we replace the coupling constant with the running coupling, we effectively add some
higher order quantum effects that improve the predictions

g

» If we do a higher order calculation, say at NLO, then some of the quantum effects are already
directly included so the extra running-coupling effects become less needed.




QCD: quarks or hadrons?

We defined the Standard Model but we didn’t see anywhere strongly interacting particles like
* Proton
* Neutron
* Mesons

These are not less important; after all, the LHC collides protons!
This brings us to the main problem: namely, how to describe bound states.

We imagine that hadrons (like the proton) are bound states of quarks and gluons.
We cannot describe this from first principles (due to the confining nature of QCD)
(lattice gauge theory aims at solving QCD numerically and non-perturbatively)

* Some understanding exists: we know how to describe bound states in
* Non-relativistic QM
 QED (hydrogen atom, positronium) [Bethe, Salpeter ‘51]

A lot of scientific modeling is involved in the description of the production and decay of
strongly interacting bound-states at Colliders and this would be a major subject for the
remainder of these lectures.

Scientific modeling means we preserve the predictivity of the theory,
not just model what we can’t calculate!




QCD: quarks or hadrons?

v'Let’s build some intuition first

v The process of forming a bound state:
v Imagine a cloud of protons, just sitting in space.
v An electron flies in.
v What can happen?
* An electron goes out, likely deflected from its original path
* A bound state is formed.

Detailed calculation required in order to predict the details.

v/ On the other hand, we can answer less detailed questions without additional effort.

* Here is a good example: what is the amount of bound states to be produced?
* Answer: the same as the net amount of electrons (N,, — N,). Thus no need to calculate
bound states!

v’ This is an example of inclusive observable (i.e. we are not interested in the details... )
v’ Inclusive observables are encountered often. They are very useful. Get to know them!



First QCD calculation:

e*e' 2 hadrons



et e colliders

The cross-sections for various SM process at e*e colliders as a function of the collider energy
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e*e colliders come in two shapes: circular and linear. Some past/present/future experiments

2105 LA [N L L L L LN L L UL LR N L AL BLULEL R LRI LR IR
LEP ? hep-ex/0211003v1
« CERN (1989 to 2000) £
« Vs =89 to 206 GeV g“’ 3 e*e’—hadrons
@)

* 4 points: Aleph, Delphi, L3, Opal. i
e 27 km tunel now houses the LHC 10°F
* Legacy: validated the SM ;

Stanford Linear Collider (SLC) 102;—%%% o
. ’ F T PETRA — |
b ;fg%iiiigf * LEP) 10 ;—gggﬁ o L?E_I;)CI LEPII E
2 miles linear accelerator exists since 1966 g b koo b Lo Lo
* Legacies: Studies of Z-boson; discovery of charm and tau. Centre-of-mass energy (GeV)
B-physics

* BaBar (SLAC linac)

* Belle (KEK, Japan)

e Operational till late 2000’s.

* Asymmetric e*e colliders in the 10 GeV range. Mostly: ete- -> Y(4S) -> B*B- or B’B°
* Legacy: CP violation in B-sector; unprecedented precision in B-physics.

e Future upgrade Belle Il (to be operational sometime during LHC Run 2)

ILC,CLIC
* Proposed future colliders with c.m. energy 250-1000 GeV
* Precision Higgs/top studies. BSM searches and identification of possible TeV BSM physics.



QCD: time to get our hands dirty!

v We are ready to do an inclusive calculation in QCD Make sure you understand

this well!l

e*e = hadrons

(i.e. find the probability that by scattering e* e pairs, we produce any hadron)

0.5

v’ This is an example of inclusive observable. We do not ask: Q)

* what kind of hadrons are produced?
* what is their distribution

* what is their multiplicity

* etc.

0.2t

v Essentially, this is just a counting experiment.

And an important one! 01}

04|

03+
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Quark — hadron duality: in very inclusive observables, quarks and hadrons are the same thing

t

Note this keyword
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QCD @ e*e = hadrons: main features

v The lowest order Feynman diagrams (Born process):

e e*e annihilation proceeds through the exchange of:
* (at low energy): a virtual photon
* (at higher energy): also a Z-boson

* Main feature of this reaction is that (typically”) the center of mass frame for the
hadronic final state coincides with the lab frame (i.e. the detector).

* Since we can easily modify the energy of the reaction, we can achieve a great deal of control
over the produced final state.

* The produced hadronic final state originating form the “decaying” gauge boson is in a color
singlet state. This is very important: it implies that the hadronic system has no strong
interactions with the “outside world”.

» The above points are the MAIN difference w/r to hadron colliders!

Unless a real photon is emitted prior to the gauge boson producing the hadronic state.
Then we speak of Initial State Radiation (ISR).
This highly antiquated terminology still in use today at hadron colliders.



QCD: e*e- = hadrons

v The lowest order Feynman diagrams (Born process):

v The R-ratio (very well measured observable; insensitive to the details of hadronization).

QcCD

/

+_— +_— -
o(e e — hadrons) Zq olee —qq) 2
= =3 Qg

R — _
olete™ —ptu™) oleTe — ptu™)

\

QED

From here we can experimentally constrain:
* the electric charge of quarks
* the number of colors
* the number of quark generations

 We will not dwell on the precise expressions for the EW couplings. They are not relevant for
our subsequent discussion. If interested, huge textbook literature available on this.



QCD: e*e- = hadrons

v The one-loop quantum corrections:

v" In dimensional regularization, i.e. in d=4-2e dimensions, and after UV renormalization:

5 2 2 3
o9 = 300 {1—|—%H(e) —————8—|—7T2—|—O(6):|}
r

62 €

v'Oooops! The result is divergent (when €= 0) and so is meaningless !!!

v This is not a mistake but an indication of a serious deficiency! We must be doing something
very wrong.
v’ Let’s re-analyze the whole setup.

v Any ideas? Or questions up to here? >



QCD: back to e* e = hadrons

v The one-loop quantum corrections

v’ need to be supplemented by real-radiation ones:
P1

k +

P2

Q: But why should this work?

* One way to see why this works, is to recall the definition of R:

o(eTe™ — hadrons) B an(e+e_ — qq)

R =33 Qg
)G

olete™ —ptp=)  olete™ - ptp~

* True only at Born Level. At higher orders we have to allow for all possible combinations,
not just qq! 2



QCD: back to e* e = hadrons

v The one-loop quantum corrections

v’ need to be supplemented by real-radiation ones:

Pi1
>AqA<_; + >M<JV
Pz

_ 2 2
o1 = 30y {1+ 28 () [-5-2-s4a? 0]}
3 €2 €
7 o 2 3 19
o499 — 200—5 H (e) {—2—|———|—— —7r2—|—(’)(e)}
7 € € 2
_ 2 as 2
Nice! The sum of the two is now finite © h= 3% @q {1 +t T O(as)}

* The key concept here is the notion if inclusiveness: two final states might be formally
different but if we cannot distinguish them experimentally, then they are effectively the25
same!



QCD: back to e* e = hadrons

v The following equation is remarkable also because it demonstrates the existence of 3 colors!

R =3Y QF {1+a75+0(o%)}
q

>

N. = number of quark colors (N=3)
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Fig. 113 Ratio R of (11.6) as a function of the total e e center-of-mass energy. (The sharp peaks correspond to the production of narrow
1 resonances just below or near the flavor thresholds.)

v" Data consistent with N.=3; excludes N.=1 26



More on the IR singularities

v There are two types of IR singularities:
* Soft
* Collinear

v They are very significant physically; appear everywhere. Let’s understand them well.

* Soft singularity: due to emission (real or virtual) of a soft massless gauge boson
(photon or gluon) with vanishing energy.

* Collinear singularity: due to emission (real or virtual) of a massless gauge boson
(photon or gluon) with a momentum parallel to the emitting massless quark.

v’ Technically, these singularities are due to vanishing propagators.
v" The singularities are regulated, say dimensionally, and then when you integrate over them
(in the loop or over the phase space) explicit poles are generated.

Diverging propagators

P1

P2



Go into the deep: augment the formal theory with physics intuition
Infra Red (IR) singularities

v Where do these singularities come from? Dy
1 1 1 Ik
(P =F)?| oo "2k pORO(L — cos(6)) P2

1 KV — 0 soft singularity ,

diverges when = {

(p— k)? cos(f) — 1 collinear singularity .

v What does their presence indicate? (i.e. what are they trying to tell us?)

* A state with a soft gluon is indistinguishable from a state without it.
* Note: this is conceptual limitation! Detectors have finite resolution.
* A profound consequence: if we allow one soft gluon, we should allow arbitrary many.
* This leads to resummation (more later)

* A state with a gluon collinear to the emitting particle is indistinguishable from a state without it.
We can have many collinear gluons.

v’ So, a state is not a simple concept after all. It can contain many “basic” states. We always
have to sum over all allowed states. The biggest complication in collider phenomenology!

v Infrared safety: only infrared safe observables are meaningful.



Go into the deep: augment the formal theory with physics intuition
Infra Red (IR) singularities

P1

1 1 1

(p - k)Q p2:k2:o o 2p . k o pOkO(l . COS(O)) q .

; diverges when = KO — 0 soft singularity , P2
(p—k)? & ] cos(f) — 1 collinear singularity .

* Question:
 OK...thisis all fine... but do we need to care about these emissions?
» After all we cannot see them or detect them even if there is a large number of them!

 The answer is yes, we need to care about them very much.
* The reason is that although the individual emissions are very soft/collinear the probability
for their emission becomes very large (formally infinite) as can be seen from the

divergent propagator above.

* Another reason specific to QCD: soft gluons may carry zero energy but they carry a unit
of color charge! Therefore soft gluon emission has dramatic effect on the color flow in the

whole process!

The implications of soft/collinear emissions are, therefore, global and very significant.



Definition of a final state
We noted that:

v’ So, a state is not a simple concept after all. It can contain many “basic” states. We always
have to sum over all allowed states: the biggest complication in collider phenomenology!

1. Definition of observable must be independent of the perturbative order
2. Definition of a final state does depend on the perturbative order

Example: Higgs boson production

* Inclusive Higgs production (i.e. H+anything)
Anything = (0,H,HH,g,88888,qq88, etc.)

* Born level: anything = 0 Leading Order (LO)
* First correction: anything =g Next-to-Leading Order (NLO)
* Second correction: anything = (gg,qq) Next-to-Next-to-Leading Order (NNLO)

Note:

1. The emitted particles are not only soft or collinear; they can be anything (e.g. hard).

2. When we integrate over them, there is always a region where they become soft/collinear.
3. This leads to divergences. They cancel when all states are included.

4. IR safety implies we always need to include at least soft/collinear radiation.




Differential observables
(i.e. identified particles in the final state)



Collinear factorization. Partons and hadrons.

v Up to here we didn’t pay any attention to the distinction quarks/gluons/hadrons.

v The reason was we chose to work only with very inclusive observables.

v Most interesting observables are not fully inclusive. They are differential observables.

v For differential observables we need to distinguish between quarks/gluons and hadrons.

Some terminology:
v’ Parton: a quark or a gluon, i.e. an object that we can treat perturbatively

v’ Hadronization: the process of forming a hadron. It is initiated by an energetic parton.

I High-Q* Scatterirlg :1."?"‘.“. . 2. Parton Shower
v’ Fragmentation = Hadronization i 2T W
SN \ o
“e, ! Ve
. . . Syt ’ R
Why things change when we go to differential observables? = . =Y
. . . . '
|dea: at the differential level we start to ask questions SON TS
about the nature and structure of the final state! sritoniztion  FAREY Ui vt

Example: what is the momentum of the parton?

e But that supposes we can distinguish the partons from each other.
* We now know this is not IR safe.

* So we expect new divergences to appear .



Collinear factorization. Partons and hadrons.

v" We saw that once real and virtual corrections to an inclusive observable are added, the IR
divergences cancel.
v" But what happens when we look at differential distributions?

If you compute the NLO corrections to the energy distribution of a quark (x=normalized energy)
it is still divergent (but now only a single power of €). The result reads:

d 1
da (eTe™ = g+ X) = —opom PV () + finite terms
T €

qq
Pq<8><x>—§<1”> [ar@@ =0 [l = [ 1) 6@ - g(0)dr
+

l—=x

o P: the Altarelli-Parisi splitting function (at 1 loop; known to 3 loops)
o Notice — their integral is zero (these are not functions but distributions
o there are also functions for any splitting (q—=2q, 9=2g, £29,8628)

Check: / dw—e e- —q+X)=o(eTe = X)

Good! We reproduced what we already know from the inclusive calculation
(that the differential distribution is divergent, but the total inclusive one is finite)




Collinear factorization. Fragmentation functions.

What to do with the remaining singularity (since it doesn’t just cancel)?
The issue stems from the fact that what we are calculating does not correspond to what we
are measuring!

do
We calculate partons dr

(efe” =g+ X)

We measure hadrons

do

versus _(
dx

ete” = H+X)

So, this must be it! We just have incomplete calculation and QCD reminds us we are not
done!

- OK: how do we describe the hadrons then?

The only good way we know is based on factorization

Hadrons are non-perturbative objects
This means we cannot describe them in perturbation theory

Non-perturbative phenomena are described by QCD - we believe - but:

We cannot solve QCD non-perturbatively (a big open question; lattice calculations may help)

Therefore we have to model the parton -> hadron transition

do

—(efe” = H+X) =

dx

Perturbative, finite
(singularities removed by hand).

/

do

dx

\

Non-perturbative.
Extract from experiment.




Collinear factorization. Fragmentation functions.

The way to think about the collinear divergences is that they are not real divergences;
They are just artifacts of our idealized picture that the process of producing a hadron goes
through an on-shell massless parton.

v How do we model the fragmentation functions Dysn(x)?

* They are non-perturbative d_0(6+6— S H+X) = do ® Dyoyrr ()
* process independent i.e. universal dr dr

* Therefore, can be extracted from experiment

* They only depend on g and H.

v Few more things to note:

* fragmentation functions are not observables
* they are not unique: depend on the definition of the counterterms
e usually in the MS-bar scheme.

* Fragmentation of massive quarks (charm, bottom) requires additional perturbative component
for resummation of In(m) terms.
* This was the resolution of the b-production puzzle at Tevatron ~20 years ago.



The bottom line on fragmentation functions

Fragmentation functions are relevant at any collider. They are best measured at e*e

The proper definition is (at e*e colliders):

1 do” h Lz 5. h, T 9
o = ) = Z/ = Cilzas), DI 1) + O(—f)

C.: coefficient functions. They are process dependent but purely perturbative. Can be
computed at LO, NLO, NNLO (all 3 known), ... It is standard to define them in Msbar scheme.

2
Cai(z:a5) = (1=0a) big + o> e (2) + (52) el (2) + ... .

2 @t 2m

The FF D,"is process independent. However its definitions in NOT unambiguous!

The way D,"is extracted is:
* Take some experimental data (i.e. LHS of the above equation)
* Compute perturbatively C,
 Extract D,". Usually one assumes some functional form for D,"and then fits its
parameters. A typical example is:

D} (, 1) = Na®(1 = 2)? (14 7(1 - 2)°)

D. de Florian et al., Phys. Rev. D76, 074033 (2007);
D. de Florian et al., Phys. Rev. D75, 114010 (2007).
S. Albino et al., Nucl. Phys. B803, 42 (2008).
, S. Kretzer et al., Eur. Phys. J. C22, 269 (2001).
° . S. Kretzer, Phys. Rev. D62, 054001 (2000).

A num ber Of grou ps eXtra Ct FF S L. Bourhis et al., Eur. Phys. J. C19, 89 (2001).
M. Hirai et al., Phys. Rev. D75, 094009 (2007).
C. Aidala et al., Phys. Rev. D83, 034002 (2011).



More on fragmentation functions
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Note: for light flavor
fragmentation the FF’s

Some examples: ]
P 1 10 are peaked at low-x
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Fragmentation functions satisfy sum rules (the momentum of the incoming parton is
conserved when summed over all final state hadrons)

1
Z/ dzz DMz, p?) = 1
n V0

Fragmentation functions depend on the partonic fraction but also on an energy scale.
This scale dependence can be predicted within pQCD (time-like evolution):

w7
Z

0
Oln p?2

1
D;(z, 42) = Z/ %Pji(z,as(ﬁ))l)j(g,ﬁ) (Timelike) DGLAP equation
j T

PO+, Altarelli-Parisi

where:  pi(za0) = = P00 + (%>2P(1)(2>+ (%f ji
splitting functions

PYL 21/ Ut 27




More on fragmentation functions Extra material

* Heavy quark fragmentation functions are peculiar. We suppose that the non-perturbative
transition b->B is initiated only by the corresponding heavy flavor “b”. Same for charm...

* Then the perturbative part can be computed perturbatively and it reads:

dUQ (2,Q,m Z/ de da“ (#,Q, ) Dayo (2’%) O (g)p

where Q is a heavy quark (on-shell) with mass m.

* The FF D,/ satisfies DGLAP evolution equation. Its boundary condition can be evaluated
perturbatively at some low scale py = m:

The non-perturbative part is fitted from data

ni @ _ as(,“O) ! (n) @
D“/Q(Z m)_z< 27 ) da (Z’m) 1 1 € —2
=0 Peterson et al. [233]: Dnp(z) xx— (1 .1 )
z z —z

A" (2) = 8a0d(1 — 2),

(1) Ho 142 15 N Colangelo&Nason [236] 1 Dpp(z) o<(1 — 2)®2P
o (= 12) <o [T (i () 1), " ~
5 3.5 FT T T
L (50) =1 et 1) (1) i A
(1) fo\ _ 250 & 51 Ge : 1
dYs, (z E) —0, ié 3 DELPHI 91 GeV dﬁ ﬁ 7
S sk e ) Peaked at large-x
The NNLO term d®@ also known. il jﬁf 1)
03¢ e i
= oA

000 02703704 0570607 08 091
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Physics at hadron colliders



Collinear factorization. Parton distribution functions.

v Recall the factorized form of the cross-section in e*e collisions:

do _ do
%(eﬂz — H+X) = T ® Dy p(z)

v We encounter conceptually the same story when we consider hadrons in the initial state

(€= Drell-Yan-type process)

v" Even for fully inclusive observables collinear singularities remain.
They are associated with the Initial hadron = parton transition.
v' This non-perturbative transition is described by parton distribution functions.
v They are very similar to fragmentation functions but are not the same!
v" Extracted from experiment
v Universal (i.e. process independent)
v Scheme dependent (typically MS-bar)



Hadron colliders: the basics

Extra material

The natural kinematical variables at hadron colliders are dictated by a) the cylindrical ge-
ometry of the beam-detector system and b) the fact that the initial state momentum (along

the z-direction) is unknown.

p'u - <E7px7py7pz)
= (mq cosh(y), prsin(e), pr cos(¢), mr sinh(y))

where we have introduced:

Py =ps+ pz (transverse momentum),

mp = \/p%+m? (transverse mass),

1 E
y=3 In <E tgz) (rapidity) .

An easier to measure variable is the pseudorapidity:
n=—Intan(/2) with n=y| _ .

In general we have:

\/ m?2 + pZ cosh? 1) + prsinh
=1In

Yy , and : 77:y|m=0'
\/m2+p2T

e The pseudorapidity is easy to measure directly, in terms of the angle 6.

e Rapidity differences are boost invariant.
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Hadron colliders: differences w/r to e*e

w7 ow. .7,

v Partonic fraction “z” versus “x”:
v" In fragmentation we have q -> H (i.e. H carries fraction 0 < z < 1 of the momentum of q)

v" In PDF’s we have H -> q (i.e. q carries fraction 0 < x < 1 of the momentum of H)
v" Thus z and x are “related” as z <---> 1/x (careful, this is kinematically forbidden!)

v The initial partonic state momentum is not known in hadronic collisions. This is easy to see:
Let the two protons have 3-momenta P and —P. The initial state partons have 3-momenta
X,P and —x,P. Since the partonic fractions x, and x, can be as low as zero, then the
momentum of the initial state can be very large or very small, symmetric or very asymmetric

i.e. boosted along the beam direction.

v The final state is not evolving on its own. In hadron-hadron collisions there are spectators.
The final state resulting from the hard collision (i.e. what we care about) can interact
with the beam remnants.

Spectators )

E =====z=z==z=z=z==z=z===z=z==z=z=z==z=Z==z=z=======z===z========== )|=
(anti}Proton \_/ (anti) Proton

Proton P=% J‘

A

Spectators

These are mostly small but can be significant sometimes.



Collinear factorization in all its glory
Some hadron

v )

d d A
Zpp s H+X)= Y [i®f;©——(ij = k+X)®@Dj () + O ( QCD)
dpr 1,J,k=4,4,9 dpr

Q

v Two pdf’s for LHC collisions (1 for DIS)

v One fragmentation function for each observed final state hadron
No need for it if we have gauge bosons, Higgs, jets.

v We sum over all possible partons in the initial/final state

v'The factorization formula does not automatically apply to every process
v" For some never been proven,
v'For other may not apply (or remainders changes)

v It is not exact. It misses terms that are small

v Qs a “typical” scale. A hard scale which is large. That’s why we can neglect the remainder.

v’ There is, of course, scheme dependence (how collinear singularities are factorized). Msbar ...

v The schemed dependence only means that what is meaningful is the LHS and
not any one term on the RHS



Factorization and factorization scales

We saw that factorization is useful because it offers the right way to interpret IR
singularities in hard scattering cross-sections with initial/final state identified partons.

Question: why at hadron colliders — even for fully integrated over final state — we still have
leftover collinear singularities?

It turns out there is much more to factorization than the above!

Every factorization leads to the appearance of a factorization scale

This actually makes sense: “factorization” means we separate long-distance from short-
distance physics. But where is the formal separation boundary? For this we need to introduce
a scale — called factorization scale p. — which tells us what is long- and what short-distance.
The theory does not tell us what the value of this scale is.

And how could it? Such scale is unphysical — it is a formality, an artifact — of our formal
separation (recall: when we factorize we neglect terms that are “small”, i.e. factorized
expressions are not exact but approximately exact).

If the factorization scale is unphysical then observables should not depend on it! This is
important requirement that has profound implications!



qs;,ik: = ¢i £ G — (Qk + q/f) J QXS - Z (QT - gr)

DGLAP evolution equation
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi: 1970’s

The space-like evolution equation (for hadron colliders) reads:

0
Wfi(:v,/f) = Pyj(x,p?) @ fi(z, p*)

The splitting functions have perturbative expansion (now known to 3 loops) and satisfy some

all-order relations: Poaw = Page = 0aly+ D3
m P,o = Pso, = 6P+ P2
N™=L,O 2 o k41 2 (k) di9k qi9k qq qq

Pij (malu ) - Z (g (:u )PZ] (I) P =P = P._

—0 gq gq; g

Pog = nyp Pyg = 1y Pyg
This is a matrix equation which mixes all quark flavors, all antiquarks and the gluon. We need
to quasi-diagonalize to solve it. It is useful to think in terms of the flavor symmetry of all
quarks (they are all massless!). There is one combination which transforms as the gluon
(flavor singlet) and it cannot be decoupled from the gluon:
d E Pyq qu) (%) & ~

= X s — r 1+ Qr

dln;ﬂ(g) (qu Pig g for ¢ Z<q 0r)

r=1

The non-singlets can be defined as And they evolve (1-dim equations) with

nf + v v
P = quipqﬁ’
Po = Pq‘:l_Pqul—i_nf(quq_Ps

qq

) = P+ Py

r=1

The quark singlet evolves with:  Poq = P.f + (P + Pr)

See http://arxiv.org/pdf/hep-ph/0408244v1.pdf for more details




DGLAP: initial conditions

v An example: the NNPDF2.3 pdf set (one of several major sets of pdfs)

1

I IIIIIIII I L I LU 1_

NNPDF2.3 (NNLO) ]
xf(xu2=10 GeV?) 1
= 0.8f

- 10
0.9 0.9F 4

xf(xu2=10* GeV?)
0.8 ]

07 1 0.7F

0.6 E 0.6F

0.5 - 0.5F
0.4 . 0.4F -
0.3F -

0.3F b

107 107 10" 1 10° 102

e Left: scale Q=3GeV
* Right: scale Q=100 GeV

v The width of the curves indicates the uncertainty
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More on the factorization and renormalization scales

The most controversial topic. Ever.

(as we discussed already) Factorization scale separates long- from short-distance physics
The renormalization scale is unrelated; this is simply the scale at which the running coupling
is evaluated. Usually the two are taken to be equal. But they need not be.

An observable is formally independent of these scales. However this is only true if we can
compute the full perturbative series. In such case, the sum of all terms (and each term is
scale dependent) becomes scale-independent.

In reality, we only compute the perturbative expansion to some fixed order (LO or NLO or
NNLO, etc). This means that due to the missing higher order terms the cancellation of the
scale independence is spoiled and the final predicted result does depend on these scales.
Here is an example (for factorization and renormalization scales being equal):

0 Xs (M2) 1,0 1,1 u?
oij1(B,p,m) = al(j,)l{l + = lagj’l) +olt) In <W

2
Oés(MQ) 2,0 2,1 M2 2,2 /~b2
" (T) [ang) +oir In (W +oip) In’ —5 )| +0()

Clearly, the more terms we add in the perturbative expansion, the smaller the dependence
on these scales.

This is verified in all known cases where higher-order perturbative calculations have been
made.

Scale variation is the standard procedure for establishing the error due to missing higher
order terms. It is not based on hard science but can be verified with NNLO calculations.
One systematic approach is BLM. [Brodsky, Lepage, Mackenzie '83]



Resummation



Resummation: why large logs?

While we managed to dispose of all IR singularities present in fixed order calculations, as it
turns out, we haven’t removed all traces of them!

Upon cancellation of soft singularities, or upon the factorization of the collinear ones, finite
but numerically large remainders remain in the perturbative results.

These terms are of logarithmic nature, i.e. they look like Log[s], and s<<1. Such logs are thus
large.

The problem is not just in the fact that these terms are large; after all, all kinds of numbers
appear in perturbative calculations; some are big and some are small (e.g. Pi*2~10 which is
large) without deep underlying reason.

The problem is that such terms ~Log[s] appear systematically to all orders in the perturbative
expansion.



Resummation: why large logs?

Let s be some small parameter, s << 1, while s > 0. Denote L = log(s). Let O be some
observable with the following perturbative expansion:

0=0" tag(@L+...)+a% (al? +biL+...) +O(a})

Basically, at each order of ag we get higher and higher accompanying powers of L.
The maximum power of L is different for soft and collinear logs. For the example above,
for each power of o’y we get terms like:

e olL" (Leading Logs, or LL),
e o2 L""1 (Next-to-Leading Logs or NLL),
e aL"? (Next-to-Next-to-Leading Logs or NNLL), etc.

Therefore, what we call leading log is not just one term, but a series of terms to all orders
mag: asl + (OzsL)Q + (OzsL)?’ +....

This is significant, because (if we restrict ourselves to LL for now) the perturbative
expansion of the observable O is actually in two parameters:

o0

O(as,asLl) = Z Op.noks(asL)”
k.n

Recall that ag ~ 0.1 < 1 and agL = O(1). Thus since agL > ag we effectively have:
o0
O(as,asL) =Y on(asL)"
n

This is the problem: we are trying to compute O in an expansion which is not convergent at
all! This implies that while we can compute, at least in principle, any fixed order expansion of
O(ag) this makes no sense at all because the expansion is not convergent. Thus perturbation
theory fails.

The only way to restore the predictivity of the theory is to resum all terms ~ (agL)", to
all orders in ag.

Once this is done at the LL level, we have remaining the next subleasing expansion (which
now becomes the dominant one), i.e. the NLL one in (agL)"/L. The story here is the same.
These have to be resummed, too. And so on and so forth.

Extra material
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How factorization leads to resummation

Extra material

Let’s consider the following very simplified expression for some observable in eTe™:
O(x) = C(x,pur) X D(x, pr) + small terms,

and since the observable O is independent of yr we have:

d
— (O(z)) =0.
o (O))
This implies that:
d d
— =~v=—up——32D>D :
MFdIuFC(fE»MF) V=g (2, pr)

Above v is an integration constant, known as “anomalous dimension”. We can easily integrate
the above to make the scale dependence of D explicit:

D(x, pr) ~ exp [’y /MF dIn uF] ~ (up)" x D(z,1).

The above equation indicates that the scale dependence of D can be predicted - even if D is
non-perturbative!

* The above argument captures most relevant features; in reality there are complications.
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How factorization leads to resummation

Extra material

Problem: the product “X” is usually a convolution, not multiplication. This fails the above

argument.
Solution: go from momentum “x” space to Mellin moment “N” space.

F(V) = / N (2)da

0

In this space a convolution is turned into simple product:

f®g(xr) — f(N)g(N)

The p. dependence also enters through the running coupling ...

The dependence on . is through dimensionless ratios u/Q for some kinematical variable Q

(or some mass).

The main point is:

D(z,pr) ~ exp [7 /MF dlnuF] ~ (ur)’ x D(z,1)

expresses the major wisdom: factorization leads to evolution!




How factorization leads to resummation Extra material

Let’s go back and collect what we found so far (and be more careful about the arguments):

2 2 2
O<N7Q_27a5>:C<N7Q_27a5>'D<N7N_F27aS>
m 52 m
Q is some large scale
m is some small (but perturbative) scale

N is some kinematic variable (rather its Mellin conjugate)

The factorization scale dependence enters exactly as above; this follows from the differential
equations we solved.

How is the evolution useful? Rewrite it as:

2 2 2 2
O<N7Q_27a5>:C<N7Q_27QS>'E<Naﬂ_§7a5>'D<Nau_027aS)
m HE Ho m

Above p; and p,are two distinct factorization scales.

Choose: pr= Qand py= m

Then the functions C and D have no large ratios of scales: C(N,1) and D(N,1).

C(N,1) can be computed perturbatively (in this case perturbation theory works at its best)
D(N,1) does not depend on any scales — just on one kinematic variable and can be extracted
from data.

The only remaining piece is E. It is perturbative. It is process-independent. It only depends on
the anomalous dimension and the strong coupling. It depends on the ratio of two very
different scales.



How factorization leads to resummation Extra material

2 2 2 2
O<N7Q_23as>:O<N7Q_27a5')'E<N7#_§7a5)'D<N7M_()27045>
m M o m

* Let’s go back and collect what we found so far (and be more careful about the arguments):

13 Wi dy
B (% as) = ew | [ Afostn®] B 109
Ho | /m? H
C o
Y(as)
= ex dag| E(N,1,«
P _/m2 Blas) ( s)

and E(N,1) can be computed perturbatively.

 The above equation is very general

* In particular, if the anomalous dimension depends on the kinematics (i.e. N) we get the
DGLAP evolution equation; the anomalous dimension are the AP splitting functions!

* There is more: rewriting the above result the way we did, allows us to remove any large log
from our results {will explain later):

2 Q? d
O (N%ﬂs) =C(N,1,ag)- E(N,1,ag)- D (N,1,ag) - exp [/m2 V(Ozs(u))f]

We close the circle: Factorization =» Evolution =» Resummation




Resummation: collinear logs

The logs are two types:
e Collinear
e Soft

Collinear logs are simpler; they originate from small masses. Imagine we have a small mass
m. By small we mean not the absolute size of m but relative to other hard scales in the
problem. Let Q be one such scale and m<<Q. Let also assume that all other kinematical scales
(if present) are also large and of the order of Q.

Thus: s=m”"2/Q"2<<1 and L=Log[m”2/Q"2]>>1.

How do we resum collinear logs? With the DGLAP equation. Recall what we just derived:

2 Q2
O (N’ %7@5) =C(N,1,a5) - E(N,1,as) - D(N,1,as) - exp [/ V(QS(M))%]

m?2

If y is the LO splitting function then we have y=y,a. and the exp term reads:

2 2

0S8 Well-behaving
Recal: L=In(2L Therefore: emosl = (m—) ——
! (Q2> ’ Q? function!

We now can expand the exponent and will get: 1 + const a L + const (agL)? + ...
which is indeed the LL tower we wanted to resum!



Resummation: soft logs

The soft logs are trickier.

We get up to two powers of logs per power of a..
Soft logs are more entangled. They “exponentiate” not just as simple numbers (like the
collinear logs) but rather as color matrices.

>> Exponentiation is synonymous to resummation <<

For soft logs the small parameter “s” is not a fixed parameter (like the mass was) but is a
kinematical variable!

Therefore, s can be small in some kinematical configurations but large in others!

To understand soft logs one first have to identify the kinematical configurations where
they can emerge. How do we do that?

This is done on a case by case basis, separately for each process and observable.
These are configurations that are close to the edge of phase space. In such

configurations the emission of hard radiation is impossible since in this kinematical
corner there is simply no energy available for radiating anything but a soft gauge boson.



Resummation: soft logs
 Examples

* Drell-Yan z = Q2/3 (s-partonic c.m. energy; Q mass of the lepton pair)
* Inclusive Higgs production z = m%{/s

* Inclusive top pair production z = 4m2/s , M- mass of top quark

* Top quark pairinvariant mass 2z = Mt2f/5

* In all cases the “soft limit” is when z->1. The large logs are Log"[1-z]/(1-z). In Mellin space
z<->N this corresponds to Log"(N) (for N->oo),

* What this implies is that in all cases, when z->1, all the energy available to the system is
barely enough to produce the required final state, and very little energy left for extra

radiation.

* The total energy available for radiation is E__,=(1-z)Vs -> 0.



. o ? ]
Resummation: how to resum soft logs? Extra material

The way to describe soft gluon radiation (i.e. the system in the “soft limit”) is to work in the
eikonal approximation.

In this approximation we take the so called Born configuration and treat it semi-classically.

We think the basic Born-level particles follow their classical trajectories as if no radiation
takes place, and on top of this we add radiation which does not exert any back-reaction on
the hard emitting particles (called eikonals).

In effect we need to compute the S-matrix in the eikonal approximation. This is much easier.

Think about it this way: the theory is rather complicated in general. But once we approach a
singular limit then everything simplifies. Why? Because close to a singularity the whole
dynamics is dominated by the leading power in the singular variable and everything else is
strongly suppressed.

In other words, close to the z->1 limit (or N->o<) the cross-section is dominated by its most
singular term and it naturally can be furthered factorized. An example follows:



Resummation: how to resum soft logs?

Extra material

Resummation in top pair production (the most complex case you may consider)

The fully differential

cross-section:

Define

z

dghl h2—>QQ
dM?2dydn

dzx, dz
Z/ dz/ —b by /hy (Tas b

X(S(z— T )5(y—llnﬁ>
Talh 2 T

m2

X ( ) —2 —, as(1?)
wei oo | 217, , s s (p
1F-QQ 2

The cross-section
factorizes as:

The most important ingredient is

the so-called “soft function” which
we derive by computing the S-matrix
in the eikonal approximation.

%) b/ (o, 147)

).

dzzN"to(2)

dze=W=D0=2)5(2) + O(1/N)

T M? . 1
_ . o(N) =
e and go to Mellin space: (N) /01
-
M2 2
wp (N77]777m27as(ﬂ2)) = Jl(N7aS( )) ..Jk(N,M/,u,m/,u,aS( 2))

M2 2
x Tr |:HP (Fu %7ﬁ7a5(:u2)> (

N2 2
s (Ti,m-ﬁj,asw%)
XS (1757,

Do you see the exponents? They produce the LL, NLL, etc

- mxp{ .
u=M

By, s (M?/N?))

xPexp{ —

N2M2 M2
e i) + o)

o (- B (1 >>}

[
M/N,u

[ s (o) |



Resummation: the Sudakov formfactor Extra material

Jet functions read

1 N-1 _ (1—-2)%2Q?% ; 2
I N.Q) = 5 [ d/ll\{ / “-24p (0. [¢*]) + D (0 [(1 - 27Q7)) } -

Real radiation Virtual corrections (i.e. no-emission probability)

Jet functions are process independent and can be extracted, for example, from Drell-Yan
and/or Higgs production and hadron colliders.

The jet function describes the independent evolution of an initial hard, well-separated,
parton (quark or gluon).

It contains both real emissions and pure virtual corrections.

Note the virtual piece. It can be interpreted as no-emission probability. It is a fundamental
ingredient in parton showers and many higher-order calculations!

In reality, the R and V pieces are separately divergent (when z=>1, i.e. soft emissions). The
proper definition of no-emission probability requires virtual + unresolved soft emissions,
which is finite. We will return to it later.



Resummation: final comments

What is the moral of the story? There is hardly any other subject in our field which stirs more
emotions and controversies than the application of soft-gluon resummation.

Everyone agrees that in principle it is needed. But there is no clear guidance when it is
useful.

In particular, since it is orders of magnitude easier to do an NNLL resummation that a full
NNLO calculation, often we are tempted to expand the NNLL exponent up to the NNLO terms
(in a). Such expansion produces some of the terms that would be found in a full NNLO
calculation. This way we have some approximation to the full NNLO.

This approach is now simply known as approximate NNLO.

Is this approach useful?
My personal impression is that it rarely is.
1. The formulation of the approximation is by itself ambiguous,
2. In a number of important cases this approximation fails to be close to the full result.

In general this approximation may only be expected to be good if the soft terms are
dominant in the full NNLO. This is rarely, if ever, the case at hadron colliders.

And a word about quasi-collinear logs Log[m/Q]: LEP studies of b-production have shown the
resummation of these logs is important at Z-pole energies, i.e. Log[m,/m,] is large enough
and needs to be resummed.



Soft gluon Resummation: examples

The best example | know of that shows how important soft-gluon resummation is the
reduction in the size of the relative theory error of the tt total cross-section as a function of
the collider energy

As the collider energy gets smaller there is less and less energy for radiation

In this region the difference between fixed order and resummed calculations becomes
apparent.

0.7 . . 0.7 . .
NLO —— NLO ——
0.6 NLO+NLL - - - - 0.6 NLO+NLL - - - -
al NLO+NNLL —— ] aal NLO+NNLL —— ]
. NNLO —— . NNLO ——
s 05¢ NNLO+NLL - - - - A s 057 NNLO+NLL - - - - A
o NNLO+NNLL —— o NNLO+NNLL ——
X 04 < 04
g g
@) o)
' 0.3 r ' 0.3
3 \ 3
S \ S
L 02r¢ L 02
0.1+ 0.1 H_
0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
04 06 038 1 1.2 14 16 1.8 2 0 5 10 15 20 25 30 35 40 45
Vs [TeV] Vs [TeV]

Fig. 3. — The relative scale uncertainty of the t¢ cross-section, computed as a function of the
LHC collider energy at fixed order (NLO and NNLO) and including with soft-gluon resummation

(NLL and NNLL).
See http://arxiv.org/pdf/1305.3892.pdf for details &2




Soft gluon Resummation: examples

Thrust distribution in e*e  -> 3 jets at NNLO:

T = max M , (1)

no >, |pil
where the sum is over all momentum 3-vectors p; in the event, and the maximum is over all
unit 3-vectors n. In the endpoint region, T'— 1 or 7 = (1—T") — 0, no fixed-order calculation
could possibly describe the full distribution due to the appearance of large logarithms. For

example, at leading order in perturbation theory the thrust distribution has the form

See http://arxiv.org/pdf/0803.0342.pdf

1 do 200, | —4InT —3
—— =0(7) + +... ], (2)
oo dr 3 T
_ gy tde 20 g
R(T)_/OdTgodT/_1+37T[ 2In*7 —3In7+...]
00— 20—
[ ! resummed and matched

fixed order
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Final states at hadron colliders (particles and jets)



Final states at hadron colliders (particles and jets)

The particles observed at colliders are:
* Strongly interacting ones (mesons, baryons)
* Weakly interacting ones
* The gauge bosons (y,Z,W)
* Higgs (which decays of course)
* Leptons
The problem is that there are many of them

Even at high PT the number of identifiable tracks is in the dozens and hundreds.

It would be very very, hard to describe such large multiplicities down to the individual
particle.

Luckily, they tend to clump together along the direction of some hard parton (which we do
not see directly) that initiated them.

Such clumps of particles are called jets.



Jets at hadron colliders:
an alternative way of thinking about hadron production

II)

v'Jets are not “Physical” objects: they are merely clusters of hadrons
v No two jets are the same!
v' But Jets are natural at hadron colliders:
v" Ex: describing the water molecules in Jet d'eau is hard
v The water jet itself depends on the dynamics among
the constituent
v It is the natural thing to study when the detector is close
to the water source.
v Have been measured at colliders since the late 1970-ies.

The process of jet formation: \/ \E/ % v
P 0
* K
—

g e LO partons NLO partons parton shower hadron level
—
K ® S — Jet | Def" Jet | Def" Jet | Def" Jet | Def"
quar o 9 -8 = K | | ,, ,,
— L
_,E g J'IZO jet1 jet2 jet1 jet2 jet1 jet2 jet1 jet2
o O
o =
I © — K¢
©
6= —
c —~—— °
g .
[ ]

More details: Gavin Salam, TASI lectures on Jets (2013)
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Jets and infrared safety

Jets are defined through some algorithm (or jet function) which tells us how the measured
particles are grouped into jets.

Many such definitions exist. A very popular one nowadays is the anti-KT algorithm of
Cacciari, Salam and Soyez ’08.

If you are interested in this subject, you want to read this paper
http://arxiv.org/pdf/0802.1189v2.pdf

Infrared safety means that we work with observables that are not singular when soft /collinear
emissions are made (Note: fragmentation functions are the opposite extreme since they are
collinearly unsafe; there we collect all collinear singularities and put them into the hadron).

do ; )
o /\M(”)lzé (0= F @1, .pn)) do™

The ”Jet” observation function has to have the following property:

Fén—i_l)(pla SR 7pnapn+1> - Fén)(pl’ T 7pn)7 if Prt1 = ¥
=Fy

+1 .
Fén )(pla---apnapn—i—l) )<p17---7pn+pn—|—1)> if anpn—i—l



Jets: definition

* |n arealistic LHC event one has to cluster around 103-10* particles.

* Few particles are hard, most are soft (soft: i.e. momentum->0)

* For this we need:
* Ajetalgorithm (IR safe one!) that will cluster all these partons into jets
* Speed (i.e. fast algorithm)

 Some popular jet algorithms:
o K;
* Cambridge-Aachen
* Anti-K;

* How does the clustering work?

* Define a distance function d;; between any two particles or proto-jets (proto-jet: a collection
of particles that may not yet be a jet), as well as a distance d;; between each particle and the
beam

K; algorithm: Cambridge/Aachen anti-K; algorithm:
dij = min(pj;, pj;) AR} /R dij = AR} /R° di; = min(1/p}, 1/p};) ARS; /R?
dzB:pi dlel dszl/p?Z

And: AR = (y; —y;)% + (¢s — ¢;)> R:a parameter (cone size); R=0.5-1



Jets: definition

The distance AR; is boost invariant
The jet size R:

If R —large, then the concept of jet looses its meaning because it becomes equivalent to
the total cross-section.

If R-very small, we have a problem: the jet is formally IR finite the the space where IR
cancellation takes place becomes very tight and the IR cancellation becomes imperfect.
As a result, in the limit R->0 we get terms like Log[R].

Indeed, in the limit R->0 we must run into trouble since we conceptually go to the
fragmentation function case we described previously (which was IR unsafe).

Implementation:

Construct the set of all measured momenta p;

Compute all distances d;g and d;; (defined on previous page)

If d.gis the smallest on the list: call “i” a jet and remove from the list

If dj;is the smallest: then add p; and p; and replace them in the list with their sum.
Continue until all particle (proto-jets) momenta in the list are exhausted.

The resulting objects are our jets.

At the end, only jets above certain p; cut are used in the final analysis.

Speed: for N particles, the number of comparisons is O(N3). This is big.
A library called FastJet exists, which reduces the time to N log[N]. Moreover it provides
common implementation and interface to many jet algorithms.



The shapes of Jets; addition of soft radiation

Some jets are better at handling additional soft radiation (i.e. are less sensitive to it)

[GeV] ‘ _ k, R=1 | b, [GeV] | CamiAachen, R=1 |

, f=0.75

Figure 1: A sample parton-level event (generated with Herwig [8]), together with many random soft
“ghosts”, clustered with four different jets algorithmes, illustrating the “active” catchment areas of
the resulting hard jets. For k; and Cam/Aachen the detailed shapes are in part determined by the
specific set of ghosts used, and change when the ghosts are modified.
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Latest developments in Jets
For more info see the proceedings of the annual BOOST conference http://boost2015.uchicago.edu
* Boosted objects as jets.

* Imagine W decaying to jets (W—2> qq). In cases the W itself is very energetic its decay
products will appear as a single jet. Same for decaying boosted tops.
* The real motivation for considering such cases is searches for new physics:
* Imagine a heavy resonance decaying to pair of tops (typical bSM possibility)
* Each one of the tops will be highly boosted
* The top decay products will be collimated.
e Jet substructure
* A way of distinguishing normal QCD jets (they are not supposed to have any
characteristic internal structure) from highly boosted decays is to try to identify the
presence of sub-jets in a highly energetic and massive jets.
* Explosion of interest and literature on this topic in the last few years. Many techniques
developed: N-subjettiness, etc; Jet trimming, Jet filtering, Jet pruning.
For more info see http://arxiv.org/abs/1307.0007 , http://arxiv.org/abs/1311.2708
* Fat jets and recent diboson 8TeV excess (ATLAS, CMS) (a search which is optimized towards
heavy objects decaying to gauge bosons)

See http://arxiv.org/abs/1506.00962
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Decay of unstable particles: narrow width approximation
For < m

The propagator of an unstable particle (Breit-Wigner resonance) of momentum ¢, mass m

and width T is:
1

P(Qam7r> - (q2 . m2)2 +m2F2

(this is just the modulus square of the usual propagator for a particle of width I)
In the NWA we take the formal limit:
1 s

y 5 2 2
(g2 — m2)2 + m2I2 I (q m”)

i.e. the decaying particle is placed on-shell. This way the Phase space for the complete n-body
process factories into the product of the phase space of all particles but the decay products,
times the decay of the unstable particle.

The NWA leads to drastic simplification:

0 = Oprod X BR,

where T'yo¢ is the same as I above. If there is only one decay mode then BR = 1.

The error is O(I'/m). Works well in SM (top, W,Z). Application more subtle in bSM context.
See: http://arxiv.org/abs/0807.4112 for further details. 72




Monte Carlo integration methods



Monte Carlo integration methods

So far we discussed only analytical integration in our discussion of cross-sections.
This is, of course fine, but as it turns out it is very restrictive given the realities of
experimental analyses at colliders.

So, what’s the problem?

The problem is that analytical integration is, by its very nature, inclusive.

Let’s look at an example:

f(x) is some probability density (we imagine it corresponds to some differential
distribution)

Within the analytical integration approach b

a question we can ask is: what is the value: F(a,b) = /a flz)de

In effect this is a bin.

Clearly this is well defined only if a=/=b

Therefore we cannot ask, or predict, what will be the measured value of F in a single
point F(a,a). In other words, within this approach, we cannot predict single events.

Yet single events happen all the time at colliders.

MC comes to the rescue!



Monte Carlo techniques are super useful for two very important reasons:

* Formally, they are an integration technique, i.e. we can use them to do integration
numerically. Compare, for example with Gaussian integration.

- - * * Generate N points randomly over the (x,y) square
Example: >l R * Count the points inside the circle (n)
calculating the of « .. e Derive: /4 = n/N
value of it 0.5\< / * Asimple counting experiment. Error: ~

-1 -0.5 0 0.5 1

2l

* MC integration has smaller numerical precision in 1D,
* In higher dimensions MC has no competition.

* The way the integration is done is by summing up discrete points in the continuous
variable(s) being integrated. We interpret such discrete points as collider events.

Therefore, Monte Carlo integration offers the possibility to compute
formally continuous distributions by summing up individual, discrete
events, while being proper integration technique at the same time!

A word of caution: although the interpretation of such MC events as the real-life collider
events is absolutely tantalizing, one should be careful: this is only an integration technique
which carries the inherent uncertainties of the underlying theoretical approximation.



Monte Carlo integration methods

* Note about probability density interpretation:
Going beyond LO many of the contributions are not positive anymore.
* Thisis OK, since:
* The observable is positive definite
* Itis a sum over partonic reactions, each of which is unphysical (their separation is

scheme dependent)
* The LO usually are positive but higher orders can individually be negative.



Fixed order calculations with MC techniques: LO

A fuIIy differential observable at LO is defined as:

/fz r1) fi(x2)

2
M;i(p1,p2 = q1,---,qn) 5(O—Fo(q1, e qn)) d®(q1, ..., qn)dr1drs

1] guu ‘ ’
!
. pi=11P ; po=m1P 3(n-1)+2 variables;
(some redundant)
d3 d3q,,—
: dD(qr,. .. ) = (20) 8 (D1 +p2— @1 — dn) 7 1

(27‘(‘)32E1 o (271')32En_1

* O labels some observable (say P;) and Fy(...) is its analytic representation
through the final state momenta

To integrate analytically, we first separate the pdf’s and the integrations over x, ,

Then perform analytically the integrations over the independent 3-momenta keeping x, ,
fixed

dO'_ flefx2)
o= 2 / ]

1J=g,u,u,.

2
M;;i(p1,p2 = q1,---,qn) 5(O—FO(Q1, e ﬂn))d@(m, .oy Qn)dxdxs

partonic cross-section

Finally perform the remaining x, , integrations numerically.
If the partonic x-section is simple enough we can get analytic expression and therefore
compute the O-dependence as a smooth curve; no bins needed. 77



Fixed order calculations with MC techniques: LO

do fi(@1) fj(w2)
dO B Z / 128 2

1)=g,U,U,...

2
5(O—Fo(q1, ce ,qn)> d(I)(ql, “e ,qn>d$€1d$2

Mij(phpQ 41, 7qn)

Performing such integrations analytically is often not practical. In complicated cases it is
hardly possible.

MC integration is much simpler! Consider the above integral as a simultaneous integral over
all final and initial states variables (i.e. consider x, , on equal footing with the final state ones)

Parameterize the final state momenta through independent variables z;...z5, ;) such that they
take values on the unit hypercube 0 <z, < 1:

dg(h d3Qn—1
27‘(‘)32E1 o (271')32En_1

dCI)(ql, ooy qn) = ( = J(Zl, ceey zg(n_l))dzl ce dZ?)(n—l)

Note: the z/'s are simply normalized energies and cos(angles)

The matrix element depends on scalar products: (p, ,.q;) and (q;.q;). Rewrite them through z,
The x-section now reads:

do

-5 = /w(ﬂm, T, 21 zg(n_l))é(() — Fo(z1,..., Z3(n—1))>dﬂ31dﬂf2d21 oo d23(p_1)

Here is how we actually implement the MC integration:



Fixed order calculations with MC techniques: LO

do

@ = /’(U([El, Loy 21y, Zg(n_l))é(O - FO<217 ) ZB(n—1)>>dx1dx2dZ1 e sz(n—l)

Attempting the above integral with a MC, as it is, is a bad idea:
* Fix the value of O
* Take a random point (x, ,,z)
* F, at this point will not be equal to the chosen O

For MC integration we need to bin “events”. Therefore we need to replace the delta-function
with a binning function:

dop = /w(:m,fl?% 21y - - -723(n—1))B<FO(Zlv X ZB(n—l))>dx1d5’32dZ1 - d23(n-1)

The binning function is a set of theta functions; basically it takes values 1 or O.

Binning could be done simultaneously in several variables.
Or even fully exclusively:

1. Decide binning for each variable of interest
Generate a point (x, ,,z;). We call it “event”. Beware it is not exactly a physical event!
Compute the value of B(....) at this point. It is non-zero for only one bin.
Compute the value of the weight w(...) at this point. Add it to the bin determined in 3.
Continue the process until sufficiently large number of “events” generated in each bin.
Divide by the number of “events” in each bin (i.e. obtain the average w in each bin)

o vk wN



Fixed order calculations with MC techniques: LO
doo = /w($1,$2,zl, . -7Z3(n1))B(FO(Z17 . -723(n1))>d$1d$2dZ1 co e d23(p—1)

* Binned distributions are very easy to manipulate.

* One could even compute the “events” without regard of any binning!
* Generate events
* Save the event information: (x, ,,z;) and weight w(...) for each event.
e At alater point analyze and bin the events.

* Such approach allows unprecedented flexibility

* Without having to re-compute the matrix elements | M(...)| 2, one could a posteriori, after
events are computed, change:

* Value of the renormalization scale (recall |M()|*2 ~ a*(ug); so divide by this an multiply
by a(u:’) evaluated a some different scale y’ =/= us.

* Value of factorization scale*

* The pdf set*

* In practice computing at LO is fast enough; the above approach is very handy at NLO, and
beyond.

* To do this, one has to save separately the contributions from all contributing partonic
reactions, not just their sum, as implied by the above equation!



Fixed order calculations with MC techniques: NLO

NLO x-sections can be computed following the LO MC methods described above.
However, there are dramatic complications that arise at NLO, and which we describe next.

At NLO we need to sum over all cuts (i.e. all different partonic final states) that contribute to
the observable at hand.

We expect this from our previous discussions of IR safety.
Dijets as an example:
1. If we want to have exactly 2 jets
* then extra radiation has to be only Unresolved
2. If we want at least 2 jets (i.e. could be 2,3 or more)

* Then extra radiation could be anything (i.e. Unresolved or Resolved)

Putting it all together we get:



Fixed order calculations with MC techniques: NLO

* The so-called “Virtual” 2->n contribution:

d(Z%né‘_ /flefjazg

1L00p (

2
2 = n;e) 5<O—FO(1, . ,n)) d®(q1, ..., qn)dridrs

e The 1 Loop contribution is divergent; it contains explicit poles in epsilon.

2

+2Re (M(Bom)(2 —n) X MgLOOp)@ — n; 5))+NNLO terms

V= v

M;;(2 — n)

‘M Born) (2 . n)

* Phase space in d-dimensions. Note the phase space integration of this piece is regular
but normally has to be performed in d-dim since terms ~ eps can multiply poles from V
which results in finite contributions to the x-section.

* The so-called “Real” 2> n+1 contribution:

d(2—>n—|—15_ /flefjl‘g

2
M(Bom)(Q — n+1)| & <O—Fo(1, ey n—|—1)> d®(q1; - - - gn+1)dzrdTs

* The amplitude is the Born one, so no poles in eps (still sub-leading terms in eps might
have to be retained)

* The phase space is done in d-dimensions:
* Theintegrand is finite
* Upon integration over phase space eps poles are generated



Fixed order calculations with MC techniques: NLO Extra material

* There is another source of divergences: collinear divergences.
* They are simpler (of complexity of one-loop less, i.e. Born, but still have to be accounted for)
* Here is what happens, schematically, through NNLO:

* After Real and Virtual corrections are added together the x-section is still divergent.
Through NNLO we have (p stands for the relevant kinematic variable):

5(z,p) =9, p) + as6M (e, p) + 26 (e,0) + ...

e Subtract collinear singularities for hadron colliders (i.e. factor them into the hadrons) as:

i€ p) _ 3 [(A”d(x) R Th ® sz] (p)

Divergent — ) — T

* From the above we derive the finite x-section
* The process-independent collinear counter-terms are:

Lij(e,2) = 0;;6(1 —x) + 0451“1(.]1.)(6, x) + oz%l“l(?)(e, x),
1 Pz-go)(x)

21 € ’

(1) _
Fz’j (e,) =

2
2) (1 1m0 o 50 (0) 1w
1% (e,2) = <27r> {262 {Pz'k ®ij (z) +50Pij (x)} 2€Pij (@} .



Fixed order calculations with MC techniques: NLO

* Adding Real and Virtual corrections is, unfortunately, highly non-trivial.

1Loop)(2 — n;e)

2
2 do(2 = n;e) _ /fz 1) f(w2) 6<O—Fo(1,...,n))d<1>(q1 ----- Gn)dx1di

Born) (

do 2%n+1€: /le‘lfjafg 2 5 nt1)

* Here are the problems:

The integration over the Real phase-space has to be done in d-dim.
This generates explicit poles and we have to control them analytically
This is against the spirit of MC integrations where everything is done numerically.

The next complication:
*  We want to have fully differential calculations
* This means Real and Virtual poles must cancel in every point (local cancellation)
* And for any measurement function (recall that the measurement functions for the
Real and Virtual corrections are different).
* Therefore we have to ensure that poles cancel even before the observation
functions have been specified!
It turns out it is sufficient to know their limiting behavior in soft/collinear limit (recall
our discussion of jets)

1 .
Fén-l_ )(p17 ce ,pngpn—Fl) - Fén)(pl’ e ,pn)a if Pr+1 =7 0
Fén+1)<p17'-'7pn7pn+1) - Fén)(pb?pn +pn—f—1)7 if pn”pn—i—l



Fixed order calculations with MC techniques: NLO

Two methods are available on the market.

Slicing method (older; not exact; being developed even to NNLO)
Subtraction method (newer; exact; has been extended to NNLO)

To get a feeling for how the methods work we will simplify them;

lgnore the presence of collinear singularities (as the previous slide)

Hide the presence of pdf’s etc.
will consider only one kinematical variable (called x); think of it as the energy of the

additional emitted gluon
1
dop = / d—ng(az)Fo(n +1;2) + (
0

Recall that
Fo(n+1;2=0) = Fo(n) ; R(0) = VPl

pole

— vﬁn> Fo(n)

... and the function R(x) is finite for x=0 (follows from the factorization of amplitudes)

In the phase-space slicing method we split the integration over x in two:

Vpole

doo = /01 W@ ) Foln + 1:2) + ( + Vﬁ“> Fo(n)

$1+€ IS5

Vpole

- vﬁn> Fo(n)

:/5 dz R(Q:)Fo(n—l—l;x)"'/; xcfng(f’f)FO(”“;xH( e

0 x1+€

Take 6 very small, 6<<1. In the first term we can approximate R(x)=R(0)
Set eps=0 in the second term (integration is now finite). Integrate it numerically



Fixed order calculations with MC techniques: NLO

* The slicing method:

pole

U odx .
dop = i x1+€R($)FO(n+1,x)+ .

+ Vﬁn) Fo(n)

pole

° dx ! dx fin
:/0 xHeR(x)FO(n—I—l;x)—l—/é x1+€R(x)FO(n—|—1;x)—|— +V Fo(n)

£

L dz

A (—% + log(é)) VPOl Es(n) +/(S ?R(:U)Fo(n +1;2) + (VI:IG + Vﬁ“) Fo(n)

/1 dx pole fin
~ | R@)Fo(n+ L) + (1og(5)v Vv ) Fo(n) + O(6)

* When 6> 0 the approach becomes exact however the numerical integration becomes
unstable.
* One has to show that the error due to finite 6 is small.

* The behavior for x>0 (i.e. In the singular limit) can be predicted with resummation
* Q; resummation technique (Catani, Grazzini)

e Used for computing all 2-to-2 reactions at NNLO where the Born final state is color
singlet (WW,ZZ,yy). Now is being developed also for colorful final states like top-
pair.

* N-subjettiness. New technique developed in the last year (Boughezal, Focke, Liu,
Petriello)
* NNLO corrections to (W+jet; Higgs+jet)



Fixed order calculations with MC techniques: NLO

* The subtraction method. Use the mathematical identity:

o

slte = %5(33) 5 %T: llnngfx)] )

n=0

* Then rewrite (everything is exact)

pole

1 dCU fin
oo — /0 S R(@)Fo(n+ 1) + ( LV )Fg(n)

€

- / d— (R(z)Fo(n + 1;2) — R(0)Fo(n + 1;0)) + V™ Fo(n)

- /o B (%)Fo(n + 1) - vpoleFo<”>>, Vol
i

Vanishes for x=>0

* The above integral is now finite
* In any kinematical point
* For any observable
* Therefore, we can easily construct an MC (partonic MC)

 Method has been developed at NLO (basis for the MC@NLO); also at NNLO (Czakon). Used
for top pair; Higgs +jet, top decay).



Fixed order calculations with MC techniques: NLO

pole

/x1+ Fo(n+1x)+( - +Vﬁn>FO(n)

- / % (R(@)Fo(n + 1:2) — R(0)Fo(n+150) + VI Fo(n)

- &

Event (n+1 kinematics) Counter-event (n kinematics)

Although the method is exact and implementable in MC, it brings addt’| complications at
NLO

* Finiteness is achieved through combination of events and counter-events; events have
positive weight; counter-events — negative weight.
* Separately, they can be arbitrary large but added together they are finite.

* Events and counter-events are strongly correlated.
* @Generate event and its counter-event at the same time

* Two separate calculations are now needed (they are individually finite):
1. Subtracted real contributions
2. Finite Virtual term



Parton showers and event generators (Leading Order)



What is a shower?

Hard emissions (at some scale Q) are described well in fixed order perturbation theory.
The probability for such emissions is suppressed by powers of a.(Q) << 1.

Soft emissions (at some soft scale S) are ubiquitous because a,(S) = 1.

In particular there can be many such emissions.

Example: a typical event for Z 2 hadrons; Credit: Bryan Webber
down to ~ GeV scales in average around

7 gluons are emitted.

Here is how a typical hard collision event is developing:

After the collision hard radiation is possible; few very hard particles are produced. This
part is well described by fixed order perturbation theory.

The produced partons are off-shell and can still radiate. Typically these are soft
emissions (real and/or virtual).

As discussed previously such emissions are cheap and can be copious.

This stage is described by a “parton shower”, i.e. a calculator that simulates soft and/or
collinear emissions. Due to their universality and factorizability, such calculations are
much easier than full FO calculations.

Once the system is at very low scales O(GeV), perturbation theory completely breaks
down. We enter the hadronization stage. Hadronization can be modeled “exclusively”.
Programs that do all steps above are called event generators (like HERWIG, PYTHIAJ.



Cluster

Main hadronization models

Credit: Ellis, Stirling, Webber

),

String (like string theory)
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Main hadronization models

Cluster hadronization model

Used in HERWIG

Assumed that color singlet cluster are
formed from neighboring g-gbar pairs
These color cluster then decay into
hadrons

The mass of the clusters is few GeV
How they decay to hadrons is model
dependent. But a simple phase space-
based model already works well.

The model does not work very well with
very massive cluster

Problems with Baryons and heavy
quarks.

String hadronization model

Used in PYTHIA

The color string formed from a quark pair
breaks down into hadrons

String is consistent with linear confining
potential

bA

M (qq — hy -+ ) oc e
A —area
Kinks — from gluon emissions



Parton showers and event generators:

Matching to LO calculations

Extra material




Why we need LO+PS matching? Extra material

* Multijet events are omnipresent at the LHC. QCD produces many of those; bSM too. To find
bSM we need good understanding of the genuine QCD backgrounds.

CMS ’14 http://arxiv.org/pdf/1402.4770v2.pdf

CMS Simulation, L =19.5 fb™, (s = 8 TeV
Njeis = 3, H. > 500 GeV

CMS Simulation, L =19.5 fb", Vs =8 TeV
Ny 3, H = 500 GeV, A = 200 GeV
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3-5  500-800  300-450 | 9904220 | 660+130 | 590+70 | 40420 | 22804270 | 2305
35  500-800  450-600 | 273+63 77+17 | 66.3£9.5 | 13715 | 418466 454
3-5  500-800 >600 42410 95+4.0 | 57413 | 01107 | 57.4+11.2 62 Data vs.
background
>8  500-800 >200 0753 19415 | 2.8+14 | 01707 4.8133 8
>8  800-1000  >200 0.6+0.6 | 4.8429 | 23412 | 0572 8.3733 9
>8  1000-1250  >200 0.6+05 | 147173 29413 | 07759 5.6153 8
>8  1250-1500  >200 0.0707 51435 | 14409 | 05703 71738 5
>8 >1500 >200 0.0757 0.0153 24414 | 0973 33417 2

* Notice the limit of the simulation
* Notice the large number of jets that are actually measured. And this is for 8 TeV. The LHC
now operates at 13 TeV! o



Why we need LO+PS matching? Extra material

* The genuine shower programs cannot predict such events with any reasonable accuracy.

* Pythia, for example, has only 2 2 1 and 2 = 2processes genuinely built in. To generate
many hard jets with a shower, one has to use the soft and collinear radiation of the
shower well outside its intended “comfort” zone.

* A warning —this can be achieved by playing with the scales — but would this be correct?
And a more general warning: programs can produce any number. It is up to the user to
make sense of produced results. The logic of “an imperfect number is better than no
number” could be very useful but also very dangerous. One has to be very careful there!

e Large number of hard emissions are naturally described in fixed order perturbation theory.
But these are single, colorful (typically massless) on-shell partons that look nothing like the
jets we measure.

* Clearly, we need a combination of:
* hard emissions generated by g complete fixed order calculation (these will give the
proto-jets)
* parton shower (builds the highly complex internal structure of the jets).

 Combining fixed order calculations with parton showers is a non-trivial task which is by now
solved in many ways at LO. Doing this at NLO is still a very advanced problem. At NNLO this
hasn’t even been seriously contemplated (not yet — but may not be far into the future!)



Before we match LO with PS: what’s a merging scheme? Extra material

* First, recall the distinction between inclusive and exclusive observable

Example: inclusive jets: typically, within QCD, this means two or more jets.
At LO however, we only include 2-to-2 diagrams. This way no final states with 3 or more
particles (jets). At the same time a state with, e.g. 8 jets, also belongs to this inclusive
observable.
Question is: how to account for such multi-jet events?
Exclusive event: one with a fixed number of final state particles (jets). For example:

* Exactly 2

* Exactly 3
Note: at LO (and only at LO) the various final states are mutually exclusive, i.e. an
inclusive sample is just a sum of exclusive ones. This absolutely doesn’t work at NLO and
beyond!

* Thus, we arrive at the basic idea of merging samples at LO:

Introduce a separation measure between final states with n and n+1 partons.

Generate samples for all processes with n final states, n<N N, . “O(10) —see
previous slide.

Add the samples. They are non-overlapping by construction, i.e. any double counting is
avoided.

A guestion: this seems an easy thing to do. But then why do we need NLO calculations?

max*



The difference between a merged LO sample and an NLO (or N¥LO) calculation

Extra material

Lets take as an example Higgs production:
* Inclusive Higgs at LO: pp—2H
* Inclusive Higgs at NLO: pp—> h; h+j
* Inclusive Higgs at NNLO: pp->h;h+j;h+jj

A merged LO sample with N_.,=2 would cover all of the above final states.
But not in the full kinematic range!

For example, in the merged LO sample we are not allowed to take any two final state partons
too close to each other. In fact, the result would diverge if we attempted to do that!

Thus, the LO merged sample depends on the parameter that separates the different
multiplicities.

In contrast, in an NLO calculation one can take the extra emitted final state parton and make
it as close as desired to any other parton. The divergence is compensated by the divergence
in the loop virtual corrections that are absent in the merged sample!

Similarly at NNLO: there up to two partons can become very close to any other parton. The
divergences are much worse than at NLO but this is again compensated by the (now even
more complicated) loop corrections.



From merged LO samples to matching with PS

Extra material

A note of caution: the terms merging and matching are not always assigned the same meaning
in the literature. Keep an open mind and all should eventually be clear from the context.

There is no one “best” or unique way of doing this: the final result always contains

ambiguities and dependence on unphysical scales as long as we work to finite orders in
perturbation theory

* The main requirements for a good matching scheme are:

Avoid double counting (all emissions look the same: be they hard, or from the shower)
Avoid dead regions (i.e. kinematical regions unpopulated by radiation while they should
be)

One scheme is better than another one if it is a better approximation (in the sense that
both LO and NLO are imperfect, but NLO is clearly better than LO).



Common strategies for PS matching procedures Extra material

Follow the comparative study http://arxiv.org/pdf/0706.2569v2.pdf

A jet measure is defined and all relevant cross sections including jets are calculated for the
process under consideration. l.e. for the production of a final state X in pp-collisions, the
cross sections for the processes pp > X+ njetswithn=0,1, ..., N=N__, are evaluated.
Hard parton samples are produced with a probability proportional to the respective total
cross section, in a corresponding kinematic configuration following the matrix element.
The individual configurations are accepted or rejected with a dynamical, kinematics-
dependent probability that includes both effects of running coupling constants and of
Sudakov form factors. In case the event is rejected, step 2 is repeated, i.e. a new parton
sample is selected, possibly with a new number of jets.

The parton shower is invoked with suitable initial conditions for each of the legs. In some
cases, like, e.g. in the MLM procedure, this step is performed together with the step before,
i.e. the acceptance/rejection of the jet configuration. In all cases the parton shower is
constrained not to produce any extra jet; stated in other words: configurations that would
fall into the realm of matrix elements with a higher jet multiplicity are vetoed in the parton

shower step. .

The matching procedures discussed below differ mainly in:

* the jet definition used in the matrix elements;
* how acceptance/rejection of jet configurations from the matrix element is performed;
* Details of, and the jet vetoing inside, the parton showering.



Restate the problem Extra material

Let’s make it even more evident where’s the problem

* We need a separation parameter at parton level R, i.e. any two partons must have
R>R .. Itis needed, because if R, 20 then the partonic x-section is IR divergent.

* We also need a jet-level separation parameter (connected to jet definition, etc) Ry,
which separates jets from each other.

Clearly, only R is physical because it is related to the measurement; not R ..

Yet, it is easy to see that an unmatched sample has strong dependence on the value of R
by taking smaller and smaller values for R__ . the x-section grows unbounded.

part:

part

Basically our prediction strongly depends on an unphysical parameter. This is a problem.

Rpart sShould be smaller than R, (because otherwise we will have unpopulated regions — or
dead zones) which is undesirable.

The goal of the FO+PS matching procedure is to minimize the dependence on this parton
level cut
Ideally it should be independent of it, but this is never the case.

How to achieve this is not obvious. There are 3 main proposals.



Main LO + PS matching procedures Extra material

* Main algorithms:
e MLM (Mangano ‘02)
 CKKW (Catani, Kraus, Kuhn, Webber ‘01)
* Dipole (Lonnblad’02)

* Their approaches are: if two partons are very close (can happen when R, is small) we
somehow suppress or outright veto such event (a veto is a form of suppression).

* In MLM the parton level generation and shower are done without any intermediate checks.
* Only the final jets are checked for:
* mutual separation
* If each jet can be associated with one hard parton
e all jets and partons can be paired
* Any event where the above are not satisfied is vetoed.

* The R, sensitivity is reduced because if two partons are very close they will produce

jets that are close to each other and this is vetoed.
4

* In CKKW there are both parton-level and jet-level checks:
e Associate a Sudakov factor at each vertex. This is an exponential which dampens parton-
level events with small separation.
e PS emissions which are hard (off-jet) are vetoed.

* |Important: this gives a prescription for how to choose the value of the renormalization
scale at each vertex (i.e. for each emission)!



CKKW merging procedure Extra material

The separation of the matrix-element and parton-shower domains for different multi-jet
processes is achieved through a k| measure which controls the internal separation cut, also
called the merging scale;

The acceptance/rejection of jet configurations proceeds through a reweighting of the matrix
elements with analytical Sudakov form factors and factors due to different scales in a;

A vetoed parton-shower algorithm is used to guarantee that no unwanted hard jets are
produced during jet evolution.

The starting scale for the parton shower evolution of each parton is given by the scale where
it appeared first:

«<— shower from Q

<— shower from q

Fig. courtesy of B. Webber

0, shower from Q, not q



The Sudakov Formfactor Extra material

In our discussion of soft-gluon resummation (lecture 2) we encountered the Sudakov
formfactor

It was resumming soft emission from an independently evolving hard parton

It included both virtual (loop) and real emission corrections.

Separately, Real and Virtual corrections were divergent, but together they were finite.
We interpreted it as a probability for no resolved emission.

A-P splitting function
with azimuthal correlations

In the context of parton showers it reads: /
% ag(q?) [T
Aij(q1,q2) = exp —/2 POE / dZ/ doPij(z, ®)
¢ 4 T JQE/? 0

* Evolution of parton i from scale q, down to scale g, without resolved radiation
* Qgis ascale 1GeV, at which the shower terminates.

How does the shower work?
e Start with a hard parton i;
* Itis on-shell; we shift it off-shell and assign some virtuality Q (the initial scale) to the
parton (all momenta need to be reshuffled for this!).
* Solve the equation A(Q,q,) =R for q,, where R is a uniform random number.
* If q; < Q,: terminate the shower (no resolved emission was made)
* If g, >Q,: then splitting i=>j occurred.
* Repeat the above for the secondary parton j starting from a scale qj.



The MC@NLO approach Extra material

Frixione, Webber hep-ph/0204244

Combine NLO matrix element with a shower

* The NLO matrix element is formulated within the subtractions method we discussed
yesterday. The matrix elements either have an emission or not (virtual)

* The shower is based upon the Sudakov formfactor and describes emissions (0,1,2...) that
are independent of the matrix element emissions

* The goal is to ensure:

* No double counting (after all, emissions from matrix elements and Shower look the
same...)

* Simple interpretation: the definition of the observable enters through the shower;
the matrix elements only modify the weight of the shower (compared to the LO
case).

* Improved numerical convergence compared to a fixed order calculation



The MC@NLO approach Extra material

e Assume the following form:
TN

donmcanto(O) :WOS(O:xM)+/ dyWi(y)S(O,y) + ...

Zo

* A combination of sets of (0,1,...)-emission events with:

*  Weight W, W, to be determined by matching to a fixed order calculation

* Each emission is interfaced to a shower S(). The kinematics of the shower is dependent
on the real emission (i.e. the shower can emit only the energy left after the hard
emission is made)

* X, and xy, are the minimum/maximum energies available to radiate.

* Denote the energy of the real emission, if any, as y: x, <y < xy,.

e The Sudakov formfactor is:

A(zar, 70) = exp [—a /:M %P(z)] _1- a/:M %P(z) +0(a?)

0 < 0

e It drives the shower (i.e. shower contains all possible emissions with probability derived from
the Sudakov):
T dz

S(0,z(y)) = [1 — a/ ?P(z) + O(a2)] (0O —O(y)) < No emission from shower

0
4+ [a/ @p(xl) + @(a2)] 5(0 — O(y; 1)) 1emission from shower
g L1
+ O(a?) «—— 2 emissions from shower



The MC@NLO approach Extra material

LM

dovcanto(O) = WoS(0, z ) +/ dyWi(y)S(O,y) + ...

Zo

To determine the weights WO,W1 one expands MC@NLO and requires that to NLO it agrees
with the NLO result (derived within the subtraction method)

Vpole

doNLo = B +a ( + Vﬁn> + O(a?)

g

L dx 5
ta /0 R(z) + O(a?)

xH—z—:

X

= B+a (vﬁn + /01 du (R(z) — R(O))) + O(a?)

| €
The MC@NLO weights read: ! , \
Wo =B +a [vﬁn + / BPr) - R(O))]

0

Just a number ~ Born

X

R(x) — BP(x)

W1:a

Notice the “miracle”:

* Weights are similar to the NLO ones but the real emission counter-term got replaced by
the shower: R(0)==B = BP(x)

e This implies that the subtraction kinematics is the same as the one for the event.
Improved convergence; less negative weight events compared to fixed order calculation



The state of the art for FO + PS

NNLO + PS results have been derived for processes like Higgs, DY, etc.

e Within MINLO approach (2013): Hamilton, Nason, Re, Zanderighi
* GENEVA collaboration (2015): Alioli, Bauer, Berggren, Tackmann, Walsh

The MINLO approach is based on fully differential NLO calculation which has NNLO
normalization through reweighting.

The GENEVA result is based on the slicing method with N-jettiness variable.
Extensions beyond these (22 1) processes is unclear.

Expect lots of activity and hopefully new results.



PDF evolution and number of active flavors in the proton

* How to treat the heavy flavors (c,b,t) in the proton?

* It depends on the scale at which we measure the pdfs:

1 =u,d,s if p<me

t=u,d,s,c if m. < pu<my

1 =u,d,s,c,b if my < p<my

t=u,d,s,c,b,t if p>my
N ——

e Unlikely to need top quark pdf’s at the LHC but should be absolutely essential at a future 100
TeV hadron collider



PDF (and fragmentation functions) at different orders (LO NLO,...)
0=Y ff (dag?))
ij
0 = Zfzf] (4o’ +dorf})
O = Zfzfj (4o + dof}) +do )

Using the same data, we can extract pdf’s at LO, NLO, NNLO,...

Clearly, the change in perturbative cross-section gets “absorbed” by a change in the pdf.
Therefore, pdf’s at LO, NLO,... are different.

They should be used consistently in subsequent computations.



NNLO calculations



NNLO approaches (1)

@ First were Smith, van Neerven and cdbrell-Yan, e+e-] through mid-"90’s
@ Early modern work was analytic (elegant but couldn’t cope with less-inclusive observables)

[Higgs, Drell-Yan] Anastasiou, Dixon, Melnikov Petriello '01-04

@ Early numeric work based on sector decomposition (lead to tremendous progress;

implementation is process dependent) Binoth and Heinrich ‘04

[Higgs, Drell-Yan] Anastasiou, Melnikov, Petriello '03

€ Antenna subtraction (ongoing progress)

[e+e- 2 3 jets] Weinzierl '08-09
Gerhmann-De Ridder, Gehrmann, Glover, Heinrich ‘07

[dijets] Currie, Gehrmann-De Ridder, Gerhmann, Glover, Pires, Wells “13-15
[H+j] Chen, Gehrmann, Glover, Jacquier '14
[Z+]] Gehrmann-De Ridder, Gerhmann, Glover, Huss, Morgan '15

[tt (quarks)] Abelof, Gehrmann-De Ridder ‘14

¢

@ Colorful subtraction (promising development)
del Duca, Somogyi, Trocsanyi ‘05
[Higgs = bb] del Duca, Duhr, Somogyi, Tramontano, Trocsanyi '15
[e+e- =2 3j] del Duca, Duhr, Kardos, Somogyi, Trocsanyi ‘16
111



NNLO approaches (2)

@ g,-subtraction
» elegant and effortless for colorless final states:

Catani, Grazzini ‘07

lYY] Catani, Cieri, de Florian, Ferrara, Grazzini '11

[WY, Zy] Grazzini, Kallweit, Rathlev,Torre '13-15

[ZH] Ferrara, Grazzini, Tramontano ‘14

[WH] Ferrara, Grazzini, Tramontano '11-13

[WW] Gehrmann, Grazzini, Kallweit, Maierhoeffer,von Manteuffel,Pozzorini, Rathlev, Tancredi '14
[Z7] Cascioli, Gehrmann, Grazzini, Kallweit, Maierhoeffer, von Manteuffel,Pozzorini,

Rathlev, Tancredi, Weihs '14

» being developed for general final states:

Zhu, Li, Li, Shao, Yang ‘12
Catani, Grazzini, Torre '14
[tt-offdiagonal] Bonciani, Catani, Grazzini, Sargsyan, Torre ’15

@ N-jettiness (new and very promising development)

Gaunt, Stahlhofen, Tackmann, Walsh, '15
[Vj] Boughezal, Focke, Liu, Petriello "15-16
[Zj] Boughezal, Focke, Giele, Liu, Petriello "15
[Hj] Boughezal, Campbell, Ellis, Focke, Giele, Liu, Petriello "15
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[Yy] Campbell, Ellis, Li, Williams ‘16



NNLO approaches (3)

@ Sector-improved residue subtraction

Czakon ‘10-11

Czakon, Heymes ‘14

Boughezal, Melnikov, Petriello, '11
[tt] Barnreuther, Czakon, Fiedler, Heymes, Mitov '12-16
[Hj] Boughezal, Caola, Melnikov, Petriello, Schulze, '13-15
[B-decay] Caola, Czernecki, Liang, Melnikov, Szafron, '14
[t-decay] Brucherseifer, Caola, Melnikov, '13

@ Future developments within this approach:

» Independent implementation in a new code STRIPPER
Czakon, Heymes, van Hameren

» Process-independent (currently used for top production; adding top decay)
» Important stability and numerics-related improvements being implemented
» Linked to fastNLO: could output tables for any process

Britzger, Rabbertz, Sieber, Stober, Wobisch
v" Very useful for pdf studies
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NNLO: future needs and directions

@ Establishing a connection between various processes:
» Access all (many) processes under the same roof

@ NLOis a good lead (although should not be followed verbatim due to computational cost at
NNLO):

€ MICFM
€ MC@NLO
@ Powheg

@ Sherpa
® .

¥ Matching NNLO to showers and description of realistic final states

@ Exploring new frontiers (beyond 2-to-2)
@ (Some of) the NNLO methods can in principle cope with any-multiplicity processes.
€ Numerics is however another issue...

® However, no 2-loop amplitude is known beyond 2-to-2



And finally: the big picture (thanks to Fabio Maltoni)

The past:
Automatic Automatic
+
NLOLPS NLOEW+PS
BSM Merging N
framework at NLO NNLO+PS | PS@NLL
Merging and BSM at
matching:  New Loop NLOLPS
ME+PS  techniques
Automatic NLO+PS
LO

2008 2009

2002
1999

First (LO) Second (NLO)
industrial revolution industrial revolution ... and the future
Automatic ALMC
MC@NNLO 1 e RT0

New Two Loop
techniques pgNIL

Today

2017
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LHC applications



Drell-Yan, W and Z

* These processes are the best known ones at hadron colliders

* See program FEWZ Latest version of FEWZ http://arxiv.org/pdf/1208.5967.pdf

* Known fully differentially through NNLO in QCD for all processes

 For Drell-Yan also NLO EW included.

* Relevance of these processes:

e Standard calibration tool for detectors.

* Were proposed for LHC luminosity measurement due to the very good theory control.

* Searches for Z’ and related bSM processes

 The W+ and W- asymmetries allow direct access to the flavor asymmetries of the proton
pdf’s. «

* Uncertainties at percent level.

 W/Z + jet now also known at NNLO (several groups)
* DY/W/Z also merged with PS’s



W and Z + jet @ NNLO

* V+jet @ NNLO is needed to describe the V P; at NNLO

* H; distribution for W+jet:

7TeV CMS W

RB, Liu, Petriello 1602.05612

o = \/Mg,ﬁ;Z(p:;‘)z

<1 NLO

EE NNLO

200

400 600 800 1000 1200

1400 1600

I I I I
400 600 800 1000 1200
H; [GeV]

I I
1400 1600

7TeV ATLAS W
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W and Z + jet @ NNLO

* V+jet @ NNLO is needed to describe the V P; at NNLO

* H; distribution for Z+jet:

RB, Liu, Petriello 1602.05612
TTeVCMSZ | | 0!
[ NLO

7TeV ATLAS Z

=1 NLO

[ o .
Mo = \/4“!f' + Z(P&I})Z

100 200 300 400 500 600 700

theory/data

I I I
400 500 600

Hy [GeV]

i I
100 200 300
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Di-photon @ NNLO

MCFM: http://arxiv.org/pdf/1603.02663v2.pdf

The main background to Higgs = yy

NNLO (and beyond) makes a dramatic difference
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Di-photon @ NNLO

MCFM: http://arxiv.org/pdf/1603.02663v2.pdf
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Higgs production

The slow convergence of the perturbative expansion in Higgs production prompted work
beyond NNLO QCD.

_ o &ij(z)) —m_%’ _m_%l 6ij(z)  wC? = as\F )

Expansion around the soft limit (normally n=1):

~ 6ij(2)] (o1 + G52y + (1= 2) 555(2)] o)1 + O — 2)!

A deep expansion around the soft limit at N3LO is now known ,
See https://arxiv.org/abs/1602.00695

]

5

all

B e e S e S T S S S S S S S S S S S S R

ox (pb)

10 15 20 25 30 a5 122
truncation order in {1-z) expansion

o
C



Higgs production

* The (essentially) full N3LO result is a reason for joy!
See https://arxiv.org/abs/1602.00695

selup 1, EFT, 13 TeV

80
LO
20 NLO-
NNLO scale
N3LO AEFT,I{:
=
e NLO  (k=1) | £16.6%
" NNLO (k=2)| +8.8%
N3LO  (k=3) | £1.9%
1)
0
2.0 2.2 04 0. 0.8 18 12

e :"."'H-:"l)«:
e So far the choice of central scale was always tenuous.

* |t seems at N3LO it doesn’t mater as much (which is a very good news)
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Higgs + jet production

Now also H+j is known at NNLO See http://arxiv.org/pdf/1505.03893.pdf
* Needed to describe the Higgs P at NNLO

oty

o Y

- AL
1.8 poy 06
= 14 : —t 7 L0 €0 a0 100 120 140 160 1M
e o GeV

Figure 3: The transverse momentum of the leading jet at LO,
‘ PSR e ' = 2 ) NLO. and NNLO mn the strong coupling constant. The lower
I'."{.lup R x-'.\pu!ny e ‘3"‘_ Jeading ol 1‘0'4'\”)" “":’ mset shows the ratios of NLO over LO cross sections, and
NNLO in the strong coupling constant. The lower inset shows NNLO over NLO cross sections. Both shaded regions in the

the ratios of NLO over LO cross sections. and NNLO over ) i the b g ind I .
NLO cross sections. Bath shaded regions in the upper panel upper panel and the lower inset indicate the scalevanation
CTrors.

and the lower mnset indicate the scalesvariation errors.

TRNLO — |00 See http://arxiv.org/pdf/1504.07922v1.pdf
NLO —— |
Lo 7000
| 6000 N . .
I 3 * Dramatic reduction of scale dependence
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; ;4000
; NNPDF2.3, 8 TeV — 3000
4b 6b 8b 160 1é0 14‘10 160 léO 260 2é0 24‘10
o [GeV]

Figure 2: Dependence of the total LO, LO and NNLO cross-
sections on the unphysical scale y. See text for details. 124



Dijet production

° Major hadron Colhder process: See http://arxiv.org/pdf/1407.5558.pdf

e bSM searches
* PDF’s

* Partially known at NNLO

< 10° T — T T e o
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Figure 2: Inclusive jet transverse energy distribution, do /dpr, for jets constructed with the anti-kr algo-
rithm with R = 0.7 and with pr > 80 GeV, |y| < 4.4 and /s = 8 TeV at NNLO (blue), NLO (red) and LO
(dark-green). The lower panel shows the ratios of different perturbative orders, NLO/LO, NNLO/LO and
NNLO/NLO.
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Top-pair production

10 CDF. |=4.6fb ——s Theory (scales + pdf) wmmmm
DO’ [=5 4fy | ——— Theory (scales) =
it 300 t CMS dilepton, 7TeV —v—
9 ATLAS and CMS, 7TeV ——
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Scale error at 3%; similar to parametric errors due to a,, m,,, pdf
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For more details see arXiv:1305.3892 126




Top-pair production

The scale variation in top production is small. Indicates good perturbative convergence.
Amazing parallel to Higgs production at N3LO!

O(M)/Ores(mt)_l[%]

10

s e e ; L0 — -

NLO —&—

3 NNLO
NNLO+NNLL

mt=173.3§GeV
Wo = My
NNPDF3.0

1/8

1/4 1/2 1 2 4
u/wg

From http://arxiv.org/pdf/1606.03350.pdf
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Top-pair production AFB asymmetry

* An excellent example why QCD matter: for a long time it was thought that no higher order
QCD corrections should be expected, thus making the discrepancy between CDF
measurement / SM theory more significant.

* However, NNLO QCD brings large corrections that helped to finally resolve the long standing
Tevatron AFB puzzle.

* A new DO measurement was also much closer to SM.

0.5 From http://arxiv.org/pdf/1411.3007.pdf
: Data —_——
pure QCD +——
0.2 QCD+EW
m
=7}
4 (@) 0. (@) 0
[0} 0.15 o ») | fax] (@) o) — ~ T T
g l — — — — 0.6 7NNLO E—
g e S A . o4 P
5 g 4
0.05 i
g9 PPbar — tt+X £ 0.2
(3 m.=173.3 @EV
0 MSTW2008 pdf 0
0 2 4 6 8 10
. -0.2
Scenarios m.=173.3 GeV
0.4 MSTW2008 pdf

FIG. 1: The inclusive asymmetry in pure QCD (black) and
QCD+EW][28] (red). Capital letters (NLO, NNLO) corre-
spond to the unexpanded definition (2), while small letters
(nlo, nnlo) to the definition (3). The CDF/D@® (naive) av-
erage is from Ref. [29]. Error bands are from scale variation
only. Our final prediction corresponds to scenario 10.

350 400 450 500 550 600 650 700 750
M., [GeV]
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Top-pair production

Top pair production is now under good control all the way into the TeV regime

From http://arxiv.org/pdf/1606.03350.pdf
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Top-pair production
* Top pair production is now under good control all the way into the TeV regime
* One could actually predict the relevant M, behaviour below 1 TeV with around O(1%)!
* Main restrictive factor for the future?

* PDF —this will be a major concern for the future!
* Possibly even m,,
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Top mass M, in GeV

Top-pair production: top-mass measurement

» The fate of the Universe might depend on 1 GeV in M

Cosmological implications:

» Higgs Inflation: Higgs = inflaton

For more details see arXiv:1310.0799

.‘f:h = _|f)H|_j -+ I{HH'H _ f\fHIH]J + :HIH R

top*

Bezrukov, Shaposhnikov '07-'08
De Simone, Hertzbergy, Wilczek’08

Strong dependence
on the top mass!

2GeV

171 GeV (m,) —0.1176
mn:}1-_:'.-3,7'(-:1;1'+3,a'(_:l_~\'(”” i )—1,4(_:{_«'(”“[”") ”):e

0.0020

» Higgs mass and vacuum stability in the Standard Model at NNLO.

Degrassi, Di Vita, Elias-Miro, Espinosa, Giudice, Isidori, Strumia ‘12

T T T T ; I i 180 [ T T T U " 10'7 T T T T ; 7I’/,__jj;,.f:}'j:::»lr:'{::-I:A T iold ]
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OM,,, is the
dominant uncertainty!

Higgs mass M, in GeV Higgs mass M, in GeV
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* And the current status:
* Thanks to Javier Fernandez (LHCP2016, Lund Sweden)

CMS + ATLAS m

LHCTOPWG

ATLAS

EXPERIMENT

(MQ)

top

- Analysis combined using BLUE,
ATLAS+CMS Preliminary LHCIOpWG m,, summary,/s = 7-8 TeV Sep 2015 .
e World Gomb,. Mar 2014, 7] accounts for correlations between
ot uncertsiny total siat all uncertainties.
Moy = 173.34 £ 0.76 (0.3 £ 0.67) GeV ey tofal (statt syst) 5 Rel
ATLAS, l+jets (*) F——e—ti 172.31+ 1.55 (0.75£ 1.35) 7TeV [1]
ATLAS, dilepton (*) |—+—-|——| 173.09+ 1.63 (0.64% 1.50) 7TeV [2] CMS combination :
CMS, l+jets et 173.49+ 1.06 (0.43+0.97) 7TeV [3]
CMS, dilepton — ot 172,50+ 1.52 (0.43+ 1.46) 7TeV [4] mtop =172.44 * 048 GeV
CMS, all jets I—-|—"—+—i 173.49+1.41 (0.69+1.23) 7 TeV [5]
LHC comb. (Sep 2013) s 173.29+ 0.95 (0.35+ 0.88) 7TeV [6]
World comb. (Mar 2014) H-H 173.34+ 0.76 (0.36+ 0.67) 1967 ToV 7] ATLAS combination:
ATLAS, |+jets H—— 172.33£1.27 (0.75£ 1.02) 7 TeV [8]
ATLAS, dilepton =t 173.79+1.41 (0.54+ 1.30) 7 TeV [8] (OLD) mtop = 172’99 * 0’91 Gev
ATLAS, all jets B+ 1751418 (1.4+1.2) 7 Tev [9] (N EW) m,,, = 172.84 + 0.70 GeV
ATLAS, single top Pt 172.2+2.1 (0.7£2.0) 8TeV [10] . P . .
ATLAS comb. (% 2000 i 172.99+ 0.91 (0.48+0.78) 7TeV (8] (not in the combination plOt)
CMS, l+jets HeHH 172.35+ 0.51 (0.16+0.48) 8 TeV [11]
CMS, dilepton =i 172.82+1.23 (019 1.22) 8TeV [11]
CMS, all jets o 172.32+ 0.64 (0.25: 0.59) 8 TeV 1] World combination:
CMS comb. (Sep 2015) HeH 172.44+ 0.48 (0.13: 0.47) 748 TeV [11]
/;/m:s-com-zma-naa [7] arXiv:1403.4427 mtop = 174'34 i 0'76 Gev
precision Of 03% [2] ATLAS-CONF-2013-077 [8] Eur.Phys.J.C (2015) 75:330
E [3] JHEP 12 (2012) 105 [9] Eur.Phys.J.C75 (2015) 158
(*) Superseded by results [4] Eur.Phys.J.C72 (2012) 2202 [10] ATLAS-CONF-2014-055
shulwn below the line | [5] Eur.Phys.J.C74 (2014) 2758 [11] CMS PAS TOP-14-022 l "
1 [T R (AN TR -1 Y NN N NN N N Y MR M N N Tota uncertaint iS now we
165 170 175 180 185 below 1 CoV y
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Some B-physics



CP violation

@ The CKM matrix is parametrize with 3 Real parameters + 1 phase

sin 019 = 0.22497 + 0.00069

—id
y C12C13 B 512€13 ; 513€ with sin By = 0.04229 + 0.00057
= —S819Co93 — (C19S893513€ C19C93 — 519593513€ S93C . .
CKM ) 12; 23_ ) 12; 29; 11;,5 _22 ZS B ;2 23 ;3 Jio 623613 sin @13 = 0.00368 4 0.00010
12023 12023213 12023 12023213 23¢13 5[0] =65.94+2.0.

€ Notice the mixing angles are small. Nicely reflected by the Wolfenstein parametrization

I A N
Vi~ x 1 a2] withh X~ 0.2 Thefull setof parametersis: A, A, p,n
A2 1
S12 = A = |Vus|
VIVaal® + [Vis 1 — A2/2 A AN(p—in)
Veb V= —A 1—\2/2 AN? + O\
_ 2 _
e 7 AN(1—p—in) —AN 1

s13¢° = AN} (p +in) = V5, 134



CP violation

@ Complex numbers appear only in at 1-3 and 3-1 elements; thus 3 generations needed to
have CP violation

@ Here is how CP arises: Weyl spinors

S N s« —i 17t 7 . R T
EYuk,u — yZJXQHw‘g] —+ yngQHTva where: \IleraC — (Xa w)

i 7r,.3 CP  _; T7t 74
Under CP: XoH Wy <= XoH vy

(CP)Lyvuku = yz‘jf(égﬁng + y;’}xéﬁ%

Therefore the Lagrangian is CP-inv if the Yukawa matrix y is real.

@ Parametrization-independent way to measure CP violation: the Jarlskog invariant:

. 2 : ~ 0 A2
Im [VZJVMV;‘@] =J E €ikm€jin with: J = C12€23C13512523513 S111 6KM ~ N A n
mn

@ It depends on all mixing angle; even if one is zero — no CP violation!
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How to access CKM? Flavor-changing currents (charged and neutral)

@ Compare the rates for some charged and some neutral current processes

Br(K™ — p'v) = 64% Br(Kp — p*p”) =7x107°

e .
Br(B~ — D) = 2.3% Br(B™ — K 07(7) =5 x 10

0 + ¥, £ F —4
Br(Di%KOMiy):g% Br(D" — K nTu~u™) <5 x 10

€ NC rates are super suppressed compared to the CC ones. Why?
@ Consider all mediators in turn:

@ Photon and gluon FCNC: gauge invariance: it is universal across families. True for all
unbroken symmetries

@ Higgs FCNS: structure of SM Yukawa. Interaction is ~ ¥;Q"(v + ih)D’ |, Therefore if we
diagonalize the mass matrix we automatically diagonalize the QhrD coupling. This
property is not automatic. Broken in a generic Higgs doublet, for example.

@ Z boson: its gauge symmetry is broken but no FCNC appear.

Ly =

_ 12
cos Oy [uLVUL% (5 -3 sin’ 9Q> VJLUL] 7

Since V,.V!, =1 then the Z boson couples the same to all generations!



GIM mechanism: suppression of FCNC at loop level
Glashow, lliopoulos, Maiani (1970)

@ Consider the rare weak radiative process b — sy BM = (3.36£0.23) x 107" for Ey = 1.6 GeV

Mediated by penguin diagrams like:

@ Mediated by W boson (plus possibly top and Higgs in the loop) as well as light quarks
@ One expects that by the decoupling theorem (since m,<<m,,)
@ If all quark masses were the same then: M Z +Vis =0 (by CKM unitarity)

@ However quark masses are non-universal. Therefore: M = g S Visf(my)

/L . . .
Inami—Lim function

@ In the decoupling limit:  f(m: < mw) oc m?/mg,

2 2
g M

@ Resulting GIM double suppression: M ~

1672 m3,

@ Funny trivia: M; ~m{ViaVis and M.~ m2V,4V.s are similar despite m>>m_(due to CKM)
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GIM mechanism: suppression of FCNC at loop level

@ How do we do calculations with this?
@ Even at LO one loop diagrams are present. We need to go to 3-4 loops at present ...

@ Effective Hamiltonian: replace the full SM with an effective Hamiltonian consisting of SM with
top quark and heavy EW gauge bosons integrated out. This shrinks the above diagrams to a
point.

@ This results in a EFT with many vertices. Their coefficients (Wilson Coefficients) depend on
the masses of the integrated heavy bosons. Their RG evolution is very important and leads to
resumming factors like (o In Mg, /mj)"

@ A typical perturbative calculation then happens in 3 steps:

(i) Matching: Evaluating C;(10) at the renormalization scale pg ~ My, m; by requiring
equality of the SM and effective theory Green’s functions at the leading order in
(external momenta)/( My, my).

(ii) Mixing: Calculating the operator mixing under renormalization, deriving the effective
theory Renormalization Group Equations (RGE) and evolving C;(u) from gy down to the
low-energy scale py, ~ my,.

(iii) Matrix elements: Evaluating the on-shell b — XPa'"~ amplitudes at j ~ my,. 12



GIM mechanism: suppression of FCNC at loop level

@ The effective Lagrangian reads: b :

AG

Leg = Laocnxaen(u, d, s,¢,b) + \/—

2
[V:;‘/tb > CiQi+Vy Vi Y CHQ — Q)
=1

Qi =
Qs =

(SpyuT*ur)(uy"Tby),
(Seypur)(ury*or),
Q1 = (SpyTcr)(ecy"T ),
Q2 = (SLyucr)(erybr),
Qs = (57ubr) 24(07"q).

(

(s

(

CID |

Qs = (57 T%br) @y Tq),

Qs = (50%u VueVusbr) 2g (@ v q),

Qo = (SLVum Vi Vus TbL) 2o g(@y 1129131 q),
Q7 = 1e=mw(5L0"bR)EF,,,

Qs = 1697r2mb(§LUWTabR)GZV- 139




Hadronic formfactors

€ Formfactor: a “bag” that contains inside all that we do not know theoretically.

@ They are subjected to various symmetries which restricts the number of independent FF’s

@ Idea: we want to calculate processes like: @ > @
Kt 70
@ A central role is played by the W boson
w Ve
@ It mediates the processes /

@ It is much heavier than the hadronic masses and therefore we can expand in m,/m,,.

@ Simplest example: W decay at LO
= (wlO|W) O = (y,W"v andthe observableis: T ~ / |A|* x d(phase space)

@ First process of interest: ™ — (v : : _
The hadronic matrix element factorizes

1
_ ccg JTRY) ccd

(mﬂ < Mw>

= (|0r*) 0 =0
g 372 010a")

Define “decay constant” (7|O|0) ~ fx

It absorbs all hadronic physics. It is just a number and we can measure it once and for all.



Hadronic formfactors

® The process m — /v in more detail
® The operator O that mediates (0|O|n™") should satisfy:

@ Annihilate the valence quarks of the pion. Therefore: O ~ ul'd

@ The matrix [ can be expanded in V,A,S,PT structures. Based on spin-parity considerations
it is the Axial part that contributes, i.e. (0|uy"vysd|m)

@ The decays constant can be now properly defined as:

(0|A¥|m) = —ip* f,  with:  f. ~ 131 MeV

u v
@ How is [, determined? From the same process: >/\If\//\<
d It
M = g T _ G% 2 42 2 mi ’
(m — pv) = _Mfwvud muiirvr,  and ['(m — pv) = 8—7T|Vud\ frmeme, (1 _ m_%)

Note the power of muon mass: “chirality/helicity suppression”. Pion is spin 0 while W is spin 1.
Thus a power of mass is needed to flip the spin of the final state leptons.



Hadronic formfactors

€ What about more complicated processes?

® ®
Kt 0
® Similar approach: © (»
1 1 wr "
A = (r°tv|O|KT) 0= OéWOH = (“gLWMVL”) 2. (“Uryusr”) ¢
wW w

1
* Factorize as usual to leading power in myy: ('/v|O|K™) = <EV|OAO>W<7T|(’)H|K+>
w

* Introduce forfmactors: (H,|O|H5) ~ F

@ Examplel: n — ptew.
) . . ¢g=p—17.
(pt (p))|dy"u|n(p)) ~ ap” + bp*  Only one kin variable: P=p+p? 2.9

Therefore: (" (p')|dv uln(p)) = f+(¢*)(p+ )" + f—(¢*)(p—p')*

@ Example 2: B> D*

(D**(pp, €)|[V*|B(pg)) = ig(¢*)e" e, (pp + PB)ats  with: 9(¢*) real.



