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Contents

• I	will	discuss	e+e- colliders	in	order	to	gain	insight	into	the	nature	of	parton-hadron	transitions

• I	will	then	move	to	hadron	colliders	where	we	will	use	QCD	in	all	it	generality	and	glory.

• No	discussion	of	DIS.	

• DIS	was	important	to	establish QCD;	to	understand QCD	we	will	stick	with	hadron	colliders.

NOTE:	the	lectures	are	for	experimental	and	theoretical	students.	They	are	light	on	proofs
and	derivations	and	try	not	to	be	overly	technical.	The	accent	is	on	“getting	the	gist	of	it”
and	on	helping	the	students	develop	understanding	about	how	SM	works	at	Colliders.
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Introduction:	why	care	about	strong	interactions?

Ø Because	we	mostly	use	hadron	colliders.	They	collide	hadrons	=	strongly	interacting	particles

Ø Because	most	of	the	particles	produced	and	observed	at	colliders	are	hadrons

Ø Because	we	can	manage perturbation	theory	and	it	really	works:

Ø there	are	3	constants	in	the	Standard	Model:

Ø the	fine	structure	constant	(it	is	small)

Ø The	Fermi	constant	(it	is	even	smaller)

Ø The	strong	coupling	constant	(large)	

ü The	effects	due	to	strong	interactions	are	by	far	the	largest	and	most	important	ones.

üWe	need	to	have	a	handle	on	them	for	any	meaningful	collider	phenomenology.
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Ø How	realistic	is	this	picture?

Ø As	it	turns	out,	it	is	overly	simplistic,	not	overly	complicated.
Ø The	above	picture	is	inherently	classical;	no	proper	quantum	effects	are	included	yet
Ø Inclusion	of	proper	quantum	effects	is	a	dramatic	complication,	that	is	not	yet	fully

achieved.

Overly	simplistic	dictionary:	classic	=	LO;	quantum	=	NLO	or	NNLO,	etc



QCD:	the	formal	bit

• QCD	is	a	SU(3)	gauge	theory.	The	strong	charge	is	called	color.
• The	QCD	Lagrangian reads:
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9.1. Basics

Quantum Chromodynamics (QCD), the gauge field theory that describes the
strong interactions of colored quarks and gluons, is the SU(3) component of the
SU(3)×SU(2)×U(1) Standard Model of Particle Physics.

The Lagrangian of QCD is given by

L =
∑

q

ψ̄q,a(iγµ∂µδab − gsγ
µtCabA

C
µ − mqδab)ψq,b −

1

4
FA

µνFA µν , (9.1)

where repeated indices are summed over. The γµ are the Dirac γ-matrices. The ψq,a are
quark-field spinors for a quark of flavor q and mass mq, with a color-index a that runs
from a = 1 to Nc = 3, i.e. quarks come in three “colors.” Quarks are said to be in the
fundamental representation of the SU(3) color group.

The AC
µ correspond to the gluon fields, with C running from 1 to N2

c − 1 = 8, i.e.
there are eight kinds of gluon. Gluons transform under the adjoint representation of the
SU(3) color group. The tCab correspond to eight 3 × 3 matrices and are the generators of
the SU(3) group (cf. the section on “SU(3) isoscalar factors and representation matrices”
in this Review with tCab ≡ λC

ab/2). They encode the fact that a gluon’s interaction with
a quark rotates the quark’s color in SU(3) space. The quantity gs is the QCD coupling
constant. Finally, the field tensor FA

µν is given by

FA
µν = ∂µAA

ν − ∂νAA
µ − gs fABCAB

µ AC
ν [tA, tB] = ifABCtC , (9.2)

where the fABC are the structure constants of the SU(3) group.

Neither quarks nor gluons are observed as free particles. Hadrons are color-singlet (i.e.
color-neutral) combinations of quarks, anti-quarks, and gluons.

Ab-initio predictive methods for QCD include lattice gauge theory and perturbative
expansions in the coupling. The Feynman rules of QCD involve a quark-antiquark-
gluon (qq̄g) vertex, a 3-gluon vertex (both proportional to gs), and a 4-gluon vertex
(proportional to g2

s). A full set of Feynman rules is to be found for example in Ref. 1.

Useful color-algebra relations include: tAabt
A
bc = CF δac, where CF ≡ (N2

c − 1)/(2Nc) =
4/3 is the color-factor (“Casimir”) associated with gluon emission from a quark;
fACDfBCD = CAδAB where CA ≡ Nc = 3 is the color-factor associated with gluon
emission from a gluon; tAabt

B
ab = TRδAB , where TR = 1/2 is the color-factor for a gluon to

split to a qq̄ pair.

The fundamental parameters of QCD are the coupling gs (or αs =
g2
s

4π
) and the quark

masses mq.

K.A. Olive et al. (PDG), Chin. Phys. C38, 090001 (2014) (http://pdg.lbl.gov)
August 21, 2014 13:18
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• - quark	fields.	They	carry	two	indices:
• Flavor:	q=u,d,s,c,b,t (6	flavors)
• Color:	a=1…3	

• - gauge	fields	(gluons).	They	also	carry	two	indices:
• Lorentz	index	
• Color	index:	C=1…8	(dimension	of	the	color	algebra)

• - eight	SU(3)	generators	(in	the	fundamental	(3x3)	representation).

• - the	structure	constants	of	the	algebra

• - the	ONLY	gauge	coupling	of	the	theory:
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from a = 1 to Nc = 3, i.e. quarks come in three “colors.” Quarks are said to be in the
fundamental representation of the SU(3) color group.

The AC
µ correspond to the gluon fields, with C running from 1 to N2

c − 1 = 8, i.e.
there are eight kinds of gluon. Gluons transform under the adjoint representation of the
SU(3) color group. The tCab correspond to eight 3 × 3 matrices and are the generators of
the SU(3) group (cf. the section on “SU(3) isoscalar factors and representation matrices”
in this Review with tCab ≡ λC

ab/2). They encode the fact that a gluon’s interaction with
a quark rotates the quark’s color in SU(3) space. The quantity gs is the QCD coupling
constant. Finally, the field tensor FA

µν is given by

FA
µν = ∂µAA

ν − ∂νAA
µ − gs fABCAB

µ AC
ν [tA, tB] = ifABCtC , (9.2)

where the fABC are the structure constants of the SU(3) group.

Neither quarks nor gluons are observed as free particles. Hadrons are color-singlet (i.e.
color-neutral) combinations of quarks, anti-quarks, and gluons.

Ab-initio predictive methods for QCD include lattice gauge theory and perturbative
expansions in the coupling. The Feynman rules of QCD involve a quark-antiquark-
gluon (qq̄g) vertex, a 3-gluon vertex (both proportional to gs), and a 4-gluon vertex
(proportional to g2

s). A full set of Feynman rules is to be found for example in Ref. 1.

Useful color-algebra relations include: tAabt
A
bc = CF δac, where CF ≡ (N2

c − 1)/(2Nc) =
4/3 is the color-factor (“Casimir”) associated with gluon emission from a quark;
fACDfBCD = CAδAB where CA ≡ Nc = 3 is the color-factor associated with gluon
emission from a gluon; tAabt

B
ab = TRδAB , where TR = 1/2 is the color-factor for a gluon to

split to a qq̄ pair.

The fundamental parameters of QCD are the coupling gs (or αs =
g2
s

4π
) and the quark

masses mq.
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QCD	is	symmetric	in	the	
6	quark	flavors.	They	
are	distinguished		only	
by	their	masses!
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QCD:	color

• Color	is	not	observed	(everyone	knows	that!).	So	how	do	we	then	choose	the	color	matrices?
• A	particular	representation	is	given	by	the	Gell-Mann	matrices.	
• All	that	is	important	are	their	commutation	relations	and	traces.

• CF and	CA :	the	first	Casimir	of	SU(3)	in	the	fundamental/adjoint	representation
• QCD	has	also	a	second	Casimir (which	rarely	appears).	A	prominent	place	is	the	Tevatron	AFB
• Some	useful	relations:

1 Introduction to SM. Where are the bound states?

Basic colour algebra for QCD (an SU(N) gauge theory with N = 3):

[T a
, T

b] = if

abc
T

c
,

{T a
, T

b} =
1

N

�

ab + d

abc
T

c
,

Tr(T a
T

b) = TR�
ab

, where TR =
1

2
,

Tr(T a) = 0 .

For the theory behind computation of colour factors see Ref. [1] [hep-ph/9802376]. For any

serious computation use the program FORM [2] (by Jos Vermaseren).

More relations among colour factors:

X

a,j

T

a
ijT

a
jk ⌘ (T · T )ik = CF �ik , CF =

N

2 � 1

2N
(= 4/3) ,

X
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abc
f
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X

abc
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N

�cd , d

aac = 0 ,
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c
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= � 1

4N
�bc ,

The above relations can be evaluated by adopting a particular representation of the

T -matrices (Gell-Mann matrices) but this is not needed.

2 Physics at e+e� colliders

2.1 Parton-hadron duality

2.2 Calculation of inclusive cross-sections: e

+
e

� ! hadrons

2.3 First di↵erential calculation; encountering many di�culties

• IR singularities

• Modelling of hadrons (as opposed to partons)
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• For	the	theory	behind	computation	of	colour factors	see	[hep-ph/9802376].	
• For	any	serious	computation	use	the	program	FORM	(by	Jos	Vermaseren). 7
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QCD:	color

• Some	examples	of	color	factors	for	Feynman	diagrams:CF CA (T aT b) =
TF δab TF = 1
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More	on	QCD

• QCD	allows	another	peculiar	term:

• This	term	involves	CP	violation	and	is	typically	set	to	zero.	We	know	it	is	small:

• This	terms	can	be	rotated	away	for	massless	quarks.	But	quarks	have	non-zero	masses	…

• Quantum	numbers	of	quarks:

2 9. Quantum chromodynamics

There is freedom for an additional CP-violating term to be present in the QCD

Lagrangian, θ
αs

8π
FA

µν F̃A µν , where F̃A µν is the dual of the gluon field tensor,
1

2
ϵµνσρFA σρ.

Experimental limits on the neutron electric dipole moment [2] constrain the coefficient of
this contribution to satisfy |θ| ! 10−10. Further discussion is to be found in Ref. 3 and in
the Axions section in the Listings of this Review.

This section will concentrate mainly on perturbative aspects of QCD as they relate
to collider physics. Related textbooks and reviews include Refs. 1,4–6. Aspects specific
to Monte Carlo event generators are reviewed in a dedicated section Chap. 40. Lattice
QCD is also reviewed in a section of its own Chap. 18, with additional discussion of
non-perturbative aspects to be found in the sections on “Quark Masses”, “The CKM
quark-mixing matrix”, “Structure Functions”, “Fragmentation Functions” and “Event
Generators” in this Review. For an overview of some of the QCD issues and recent results
in heavy-ion physics, see for example Refs. [7–9].

9.1.1. Running coupling :

In the framework of perturbative QCD (pQCD), predictions for observables are
expressed in terms of the renormalized coupling αs(µ2

R), a function of an (unphysical)
renormalization scale µR. When one takes µR close to the scale of the momentum
transfer Q in a given process, then αs(µ2

R ≃ Q2) is indicative of the effective strength of
the strong interaction in that process.

The coupling satisfies the following renormalization group equation (RGE):

µ2
R

dαs

dµ2
R

= β(αs) = −(b0α
2
s + b1α

3
s + b2α

4
s + · · ·) (9.3)

where b0 = (11CA − 4nfTR)/(12π) = (33 − 2nf )/(12π) is referred to as the 1-loop beta-

function coefficient, the 2-loop coefficient is b1 = (17C2
A − nfTR(10CA + 6CF ))/(24π2) =

(153 − 19nf )/(24π2), and the 3-loop coefficient is b2 = (2857 − 5033
9 nf + 325

27 n2
f )/(128π3)

for the SU(3) values of CA and CF . The 4-loop coefficient, b3, is to be found in Refs. 10,
11†. The minus sign in Eq. (9.3) is the origin of Asymptotic Freedom, i.e. the fact that
the strong coupling becomes weak for processes involving large momentum transfers
(“hard processes”), αs ∼ 0.1 for momentum transfers in the 100 GeV – TeV range.

The β-function coefficients, the bi, are given for the coupling of an effective theory in
which nf of the quark flavors are considered light (mq ≪ µR), and in which the remaining
heavier quark flavors decouple from the theory. One may relate the coupling for the
theory with nf + 1 light flavors to that with nf flavors through an equation of the form

α
(nf +1)
s (µ2

R) = α
(nf )
s (µ2

R)

(

1 +
∞
∑

n=1

n
∑

ℓ=0

cnℓ [α
(nf )
s (µ2

R)]n lnℓ µ2
R

m2
h

)

, (9.4)

† One should be aware that the b2 and b3 coefficients are
renormalization-scheme-dependent, and given here in the MS scheme, as discussed below.
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15. Quark model 1

15. QUARK MODEL

Revised August 2013 by C. Amsler (University of Bern), T. DeGrand (University of Colorado,
Boulder), and B. Krusche (University of Basel).

15.1. Quantum numbers of the quarks

Quantum chromodynamics (QCD) is the theory of the strong interactions. QCD is a quantum
field theory and its constituents are a set of fermions, the quarks, and gauge bosons, the gluons.
Strongly interacting particles, the hadrons, are bound states of quark and gluon fields. As gluons
carry no intrinsic quantum numbers beyond color charge, and because color is believed to be
permanently confined, most of the quantum numbers of strongly interacting particles are given
by the quantum numbers of their constituent quarks and antiquarks. The description of hadronic
properties which strongly emphasizes the role of the minimum-quark-content part of the wave
function of a hadron is generically called the quark model. It exists on many levels: from the
simple, almost dynamics-free picture of strongly interacting particles as bound states of quarks
and antiquarks, to more detailed descriptions of dynamics, either through models or directly from
QCD itself. The different sections of this review survey the many approaches to the spectroscopy
of strongly interacting particles which fall under the umbrella of the quark model.

Table 15.1: Additive quantum numbers of the quarks.

d u s c b t

Q – electric charge − 1
3

+ 2
3

− 1
3

+ 2
3

− 1
3

+ 2
3

I – isospin 1
2

1
2

0 0 0 0

Iz – isospin z-component − 1
2

+ 1
2

0 0 0 0

S – strangeness 0 0 −1 0 0 0

C – charm 0 0 0 +1 0 0

B – bottomness 0 0 0 0 −1 0

T – topness 0 0 0 0 0 +1

Quarks are strongly interacting fermions with spin 1/2 and, by convention, positive parity.
Antiquarks have negative parity. Quarks have the additive baryon number 1/3, antiquarks -1/3.
Table 15.1 gives the other additive quantum numbers (flavors) for the three generations of quarks.
They are related to the charge Q (in units of the elementary charge e) through the generalized
Gell-Mann-Nishijima formula

Q = Iz +
B + S + C + B + T

2
, (15.1)

where B is the baryon number. The convention is that the flavor of a quark (Iz , S, C, B, or T) has
the same sign as its charge Q. With this convention, any flavor carried by a charged meson has the
same sign as its charge, e.g., the strangeness of the K+ is +1, the bottomness of the B+ is +1,
and the charm and strangeness of the D−

s are each −1. Antiquarks have the opposite flavor signs.

K.A. Olive et al. (PDG), Chin. Phys. C38, 090001 (2014) (http://pdg.lbl.gov)
August 21, 2014 13:18

• Electric	charge:	

• Hypercharge:
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2 15. Quark model

The hypercharge is defined as

Y = B + S −
C − B + T

3
.

Thus Y is equal to 1
3

for the u and d quarks, – 2
3

for the s quark, and 0 for all other quarks.

15.2. Mesons

Mesons have baryon number B = 0. In the quark model, they are qq ′ bound states of quarks q
and antiquarks q ′ (the flavors of q and q′ may be different). If the orbital angular momentum of
the qq ′ state is ℓ, then the parity P is (−1)ℓ+1. The meson spin J is given by the usual relation
|ℓ− s| ≤ J ≤ |ℓ + s|, where s is 0 (antiparallel quark spins) or 1 (parallel quark spins). The charge
conjugation, or C-parity C = (−1)ℓ+s, is defined only for the qq̄ states made of quarks and their
own antiquarks. The C-parity can be generalized to the G-parity G = (−1)I+ℓ+s for mesons
made of quarks and their own antiquarks (isospin Iz = 0), and for the charged ud̄ and dū states
(isospin I = 1).

The mesons are classified in JPC multiplets. The ℓ = 0 states are the pseudoscalars (0−+)
and the vectors (1−−). The orbital excitations ℓ = 1 are the scalars (0++), the axial vectors
(1++) and (1+−), and the tensors (2++). Assignments for many of the known mesons are given
in Tables 15.2 and 15.3. Radial excitations are denoted by the principal quantum number n. The
very short lifetime of the t quark makes it likely that bound-state hadrons containing t quarks
and/or antiquarks do not exist.

States in the natural spin-parity series P = (−1)J must, according to the above, have s = 1
and hence, CP = +1. Thus, mesons with natural spin-parity and CP = −1 (0+−, 1−+, 2+−,
3−+, etc.) are forbidden in the qq̄ ′ model. The JPC = 0−− state is forbidden as well. Mesons
with such exotic quantum numbers may exist, but would lie outside the qq̄ ′ model (see section
below on exotic mesons).

Following SU(3), the nine possible qq̄ ′ combinations containing the light u, d, and s quarks are
grouped into an octet and a singlet of light quark mesons:

3 ⊗ 3 = 8 ⊕ 1 . (15.2)

A fourth quark such as charm c can be included by extending SU(3) to SU(4). However, SU(4)
is badly broken owing to the much heavier c quark. Nevertheless, in an SU(4) classification, the
sixteen mesons are grouped into a 15-plet and a singlet:

4 ⊗ 4 = 15 ⊕ 1 . (15.3)

The weight diagrams for the ground-state pseudoscalar (0−+) and vector (1−−) mesons are
depicted in Fig. 15.1. The light quark mesons are members of nonets building the middle plane in
Fig. 15.1(a) and (b).

Isoscalar states with the same JPC will mix, but mixing between the two light quark isoscalar
mesons, and the much heavier charmonium or bottomonium states, are generally assumed to be
negligible. In the following, we shall use the generic names a for the I = 1, K for the I = 1/2,
and f and f ′ for the I = 0 members of the light quark nonets. Thus, the physical isoscalars are
mixtures of the SU(3) wave function ψ8 and ψ1:

f ′ = ψ8 cos θ − ψ1 sin θ , (15.4)
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The	Standard	Model:	masses

• The	gluons	are	massless.	Exactlymassless	due	to	the	gauge	symmetry.
• Quark	masses	are	free	parameters	in	QCD.	In	the	SM	they	are	set	through	the	EW	sector

via	the	Yukawa	coupling	between	quarks	and	Higgs	(more	later).	

• Quark	masses	are	strange	concept	in	QCD.	
• QCD,	per	se,	does	not	need	masses.	QCD	dynamics	generates	most	of	the	hadronic masses.
• At	perturbative	level	the	Lagrangian mass	appear	as	“usual”	mass	(like	the	electron	mass).	
• This	point	is	subtle,	however.	Quark	masses	are	not	observables (unlike	me).	
• Quark	masses	for	light	quarks	are	defined	through	the	meson	masses.	Usually	running	

masses	are	used	(MSbar,	1S,	etc).
• For	top	quark	the	pole	mass	is	suitable	because	the	top	decays	before	hadronization.

We	will	keep	revisiting	the	issue	of	masses.

• The	EW	couplings	of	quarks	read	schematically:

10. Electroweak model and constraints on new physics 1

10. ELECTROWEAK MODEL AND

CONSTRAINTS ON NEW PHYSICS

Revised November 2013 by J. Erler (U. Mexico) and A. Freitas (Pittsburgh U.).

10.1 Introduction
10.2 Renormalization and radiative corrections
10.3 Low energy electroweak observables
10.4 W and Z boson physics
10.5 Precision flavor physics
10.6 Experimental results
10.7 Constraints on new physics

10.1. Introduction

The standard model of the electroweak interactions (SM) [1] is based on the gauge
group SU(2) × U(1), with gauge bosons W i

µ, i = 1, 2, 3, and Bµ for the SU(2) and
U(1) factors, respectively, and the corresponding gauge coupling constants g and
g′. The left-handed fermion fields of the ith fermion family transform as doublets

Ψi =

(
νi

ℓ−i

)
and

(
ui
d′i

)
under SU(2), where d′i ≡

∑
j Vij dj , and V is the Cabibbo-

Kobayashi-Maskawa mixing matrix. [Constraints on V and tests of universality are
discussed in Ref. 2 and in the Section on “The CKM Quark-Mixing Matrix”. The
extension of the formalism to allow an analogous leptonic mixing matrix is discussed in
the Section on “Neutrino Mass, Mixing, and Oscillations”.] The right-handed fields are
SU(2) singlets. In the minimal model there are three fermion families.

A complex scalar Higgs doublet, φ ≡
(

φ+

φ0

)
, is added to the model for mass generation

through spontaneous symmetry breaking with potential∗ given by,

V (φ) = µ2φ†φ +
λ2

2
(φ†φ)2. (10.1)

For µ2 negative, φ develops a vacuum expectation value, v/
√

2 = µ/λ, where v ≈ 246 GeV,
breaking part of the electroweak (EW) gauge symmetry, after which only one neutral
Higgs scalar, H, remains in the physical particle spectrum. In non-minimal models there
are additional charged and neutral scalar Higgs particles [3].

After the symmetry breaking the Lagrangian for the fermion fields, ψi, is

LF =
∑

i

ψi

(
i ̸∂ − mi −

miH

v

)
ψi

∗ There is no generally accepted convention to write the quartic term. Our numerical
coefficient simplifies Eq. (10.3a) below and the squared coupling preserves the relation be-
tween the number of external legs and the power counting of couplings at a given loop order.
This structure also naturally emerges from physics beyond the SM, such as supersymmetry.

K.A. Olive et al. (PDG), Chin. Phys. C38, 090001 (2014) (http://pdg.lbl.gov)
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−
g

2
√

2

∑

i

Ψi γµ (1 − γ5)(T+ W+
µ + T− W−

µ ) Ψi

− e
∑

i

Qi ψi γµ ψi Aµ

−
g

2 cos θW

∑

i

ψi γµ(gi
V − gi

Aγ5) ψi Zµ . (10.2)

Here θW ≡ tan−1(g′/g) is the weak angle; e = g sin θW is the positron electric charge;
and A ≡ B cos θW + W 3 sin θW is the photon field (γ). W± ≡ (W 1 ∓ iW 2)/

√
2 and

Z ≡ −B sin θW + W 3 cos θW are the charged and neutral weak boson fields, respectively.
The Yukawa coupling of H to ψi in the first term in LF , which is flavor diagonal in the
minimal model, is gmi/2MW . The boson masses in the EW sector are given (at tree
level, i.e., to lowest order in perturbation theory) by,

MH = λ v, (10.3a)

MW =
1

2
g v =

e v

2 sin θW
, (10.3b)

MZ =
1

2

√
g2 + g′2 v =

e v

2 sin θW cos θW
=

MW

cos θW
, (10.3c)

Mγ = 0. (10.3d)

The second term in LF represents the charged-current weak interaction [4–7], where
T+ and T− are the weak isospin raising and lowering operators. For example, the
coupling of a W to an electron and a neutrino is

−
e

2
√

2 sin θW

[
W−

µ e γµ(1 − γ5)ν + W+
µ ν γµ (1 − γ5)e

]
. (10.4)

For momenta small compared to MW , this term gives rise to the effective four-fermion
interaction with the Fermi constant given by GF /

√
2 = 1/2v2 = g2/8M2

W . CP violation
is incorporated into the EW model by a single observable phase in Vij .

The third term in LF describes electromagnetic interactions (QED) [8–10], and the
last is the weak neutral-current interaction [5–7]. The vector and axial-vector couplings
are

gi
V ≡t3L(i) − 2Qi sin2 θW , (10.5a)

gi
A ≡t3L(i), (10.5b)

where t3L(i) is the weak isospin of fermion i (+1/2 for ui and νi; −1/2 for di and ei) and
Qi is the charge of ψi in units of e.

The first term in Eq. (10.2) also gives rise to fermion masses, and in the presence of
right-handed neutrinos to Dirac neutrino masses. The possibility of Majorana masses is
discussed in the Section on “Neutrino Mass, Mixing, and Oscillations”.

August 21, 2014 13:18
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QCD:	how	we	compute	things
Ø …	using	Feynman	diagrams	and	rules	(or	by	using	one	of	the	many	programs	on	the	market)

Ø Given	the	process	we	want	to	compute	and	the	level	of	approximation	(LO,	NLO,	etc)	we:

Ø construct	the	full	set	of	Feynman	diagrams	[hint:	use	existing	software]
Ø square	them	:	(…)	x	(…)*
Ø integrate	over	loops	and	phase-space,	as	appropriate.	

11

ü Example:	top	quark	pair	production	at	hadron	colliders

Figure 2: Diagrams for the qq and gg Born amplitudes.

task. The isolation of these residues allows to carry out the complete cancellations of the relative
poles in D dimensions, leaving residual finite expressions which can then be evaluated exactly
directly in D = 4 dimensions. In this way one can avoid the calculation of the full D-dimensional
real-emission matrix elements. Furthermore, the four-dimensional real matrix elements that will
be required have been known in the literature for quite some time [6, 24].

4 Soft emission behaviour

We discuss in this section the factorization properties of the real-emission amplitudes in the soft-
emission limit. The factorization formulae presented here will be used in the following sections to
isolate the IR poles and cancel them against the singularities of the virtual processes.

4.1 Soft factorization in 3g amplitudes

We start by considering the case of decays into gluons. At the Born level, the relevant diagrams
are shown in fig. 2. The decay amplitude (before projection on a specific quarkonium state) can
be written as follows:

ABorn = (ab)ij (D1 + D3) + (ba)ij (D2 − D3) , (41)

where we introduced the short-hand notation:

(a . . . b)ij = (Ta . . . Tb)ij , (42)
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LO:	qq->tt

LO	gg->tt
Figure 4: Feynman diagrams contributing to the one-loop corrections to the process

qq → QQ[3S[8]
1 ].

mass and coupling constant renormalization. Two exceptions exist: the 1/v Coulomb singularity
in the virtual corrections, see eqs. (124, 128, 132), and the 1/ϵ infrared singularity which appears

in the 3P [1,8]
J → qqg real correction processes in eqs. (116, 120) (or in qq →3 P [1,8]

J g, as discussed in
the next section) cannot be eliminated via these standard mechanisms. Their removal is strictly
related with the NRQCD factorization approach to quarkonium production and decay. It is within
this approach that one finds a rigorous solution to this problem, previously dealt with in an empiric
way, by absorbing the Coulomb singularity into the Bethe-Salpeter wave function and cutting off
the infrared singularity with the binding energy of the quarkonium.

Within NRQCD, one can determine the short distance coefficients of the various operators
by performing a matching between cross sections calculated in perturbative QCD and perturba-
tive NRQCD. Since, by definition, the two theories are equivalent in the long distance regime,
all singularities of infrared origin appear equally in both calculations, and hence cancel in the
matching.

29

NLO:	qq->tt
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QCD	versus	QED:	twins	that	can	be	very	far	apart

Ø Perturbatively QCD	and	QED	are	very	similar.	In	fact	they	are	almost	identical	once	color	has			
been	handled:

The	transition	QCD	à QED: tA à 1;				fABC à 0;		CA à 0;	CF à 1.

Ø In	calculations	it	is	often	useful	to	compare	the	two,	or	to	think	of	the	abelian	limit	of	QCD.

Ø The	true	differences	first	appear	due	to	coupling	running	(not	obvious	in	the	Lagrangian):

• In	QED:	coupling	decreases	with	distance
• In	QCD:	coupling	increases	with	distance

Ø At	large	distances	(or	small	energies)	QCD	becomes	confining,	
i.e.	the	constituent	particles,	the	quarks,	cannot	be	separated.	

Ø In	observables	quarks	always	form	bound	states:	the	hadrons.

Ø No	quark	(or	gluon)	can	be	observed	alone.

Ø Formalize:	
• only	colorless	states	can	be	observed	(i.e.	hadrons	are	always	colorless).
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QCD	versus	QED:	twins	that	can	be	very	far	apart

Ø The	true	differences	first	appear	due	to	coupling	running:
Ø QED:	coupling	decreases	with	distance
Ø QCD:	coupling	increases	with	distance	(decreases	with	energy)

By	now	plenty	of	precision data	that	confirms	this.	A	triumph	for	QCD!	

Ø A	firm	prediction	of	the	theory:	the	coupling	must	be	process	independent.
Ø Its	running	too.	It	is	known	to	4	loops!
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Why	do	we	care	about	the	running	of	the	coupling?

Ø The	point	is	that	we	cannot	– at	least	not	yet	– calculate	cross-section	exactly.
ØWhat	we	do	is	an	approximated	calculation:	LO,	NLO,	etc.

Ø Imagine	we	perform	a	LO	calculation;	effectively	a	classical	result,	that	knows	nothing	about	
running	of	the	coupling.

Ø But	if	we	replace	the	coupling	constant	with	the	running	coupling,	we	effectively	add	some		
higher	order	quantum	effects that	improve	the	predictions

Ø If	we	do	a	higher	order	calculation,	say	at	NLO,	then	some	of	the	quantum	effects	are	already	
directly	included	so	the	extra	running-coupling	effects	become	less	needed.

The running strong coupling constant ↵s

( a ) ( b )

• To calculate the propagator loop correction in QCD, we do not
only have to consider quark loops (a), like electron loops in QED,
but also gluon loops (b). The quark loop will give rise to a positive
contribution to the beta function (screening) while the gluon loop
contribution will be negative (antiscreening), see also the discussion
on charge screening on page 6–4.

• The formula for the one-loop running coupling constant in QCD is

↵s(Q
2) =

↵s(µ2)

1 + �0 ↵s(µ2) ln(Q2/µ2)
with �0 =

11Nc � 2nf

12⇡

Here Nc is the number of colours (3) and nf is the number of
flavours (6 in the standard model).

• The second factor �2nf/12⇡ in �0 comes from diagram (a). It is
the same (modulo a colour factor) as the coe�cient �0 = �1/3⇡
in QED and causes screening. The first factor 11Nc/12⇡ comes
from diagram (b) and causes anti-screening.

• Clearly with Nc = 3 and nf = 6, the antiscreening wins over the
screening, with �0 > 0 and a slope �(↵s) = ��0↵2

s < 0. This
means that ↵s decreases with Q2 (! fig).

6–16

Ø Perturbative	computations	at	low	scales	are	meaningless!!!
Ø Running	of	the	coupling	is	computed	from	diagrams	like:

The QCD scale parameter ⇤

↵s(Q
2) =

↵s(µ2)

1 + �0 ↵s(µ2) ln(Q2/µ2)
with �0 =

11Nc � 2nf

12⇡

• Because �0 > 0 we find that ↵s ! 0 for Q2 ! 1. This vanishing
coupling is called asymptotic freedom and is responsible for the
fact that quarks behave like free particles at short distances (large
momentum transfers) as is observed in deep inelastic scattering
experiments.

• The expression for the running coupling constant can be simplified
when we define the QCD scale parameter ⇤ as follows

1

↵s(Q2)
=

1

↵s(µ2)
+ �0 ln

✓
Q2

µ2

◆
⌘ �0 ln

✓
Q2

⇤2

◆

The parameter ⇤ is thus equal to the scale where the first term
on the right-hand side vanishes, that is, the scale where ↵s(µ2)
becomes infinite. Now we may write

↵s(Q
2) =

1

�0 ln(Q2/⇤2)

• Experimentally, the value of ⇤ is found to be about 300 MeV, but
the scale parameter is nowadays out of fashion because it cannot
be defined unambiguously beyond 1-loop order. Instead, it is now
common practise to not quote a value for ⇤, but a value for ↵s at
the mass of the Z (! fig). This is unambiguous at all orders.

• At Q2 values close to ⇤, the coupling constant becomes large and
perturbative QCD breaks down.

6–18

Λ ≅ 200	MeV
β0		≅ 11NC	- 2NF

Figure 2: Diagrams for the qq and gg Born amplitudes.

task. The isolation of these residues allows to carry out the complete cancellations of the relative
poles in D dimensions, leaving residual finite expressions which can then be evaluated exactly
directly in D = 4 dimensions. In this way one can avoid the calculation of the full D-dimensional
real-emission matrix elements. Furthermore, the four-dimensional real matrix elements that will
be required have been known in the literature for quite some time [6, 24].

4 Soft emission behaviour

We discuss in this section the factorization properties of the real-emission amplitudes in the soft-
emission limit. The factorization formulae presented here will be used in the following sections to
isolate the IR poles and cancel them against the singularities of the virtual processes.

4.1 Soft factorization in 3g amplitudes

We start by considering the case of decays into gluons. At the Born level, the relevant diagrams
are shown in fig. 2. The decay amplitude (before projection on a specific quarkonium state) can
be written as follows:

ABorn = (ab)ij (D1 + D3) + (ba)ij (D2 − D3) , (41)

where we introduced the short-hand notation:

(a . . . b)ij = (Ta . . . Tb)ij , (42)
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mass and coupling constant renormalization. Two exceptions exist: the 1/v Coulomb singularity
in the virtual corrections, see eqs. (124, 128, 132), and the 1/ϵ infrared singularity which appears

in the 3P [1,8]
J → qqg real correction processes in eqs. (116, 120) (or in qq →3 P [1,8]

J g, as discussed in
the next section) cannot be eliminated via these standard mechanisms. Their removal is strictly
related with the NRQCD factorization approach to quarkonium production and decay. It is within
this approach that one finds a rigorous solution to this problem, previously dealt with in an empiric
way, by absorbing the Coulomb singularity into the Bethe-Salpeter wave function and cutting off
the infrared singularity with the binding energy of the quarkonium.

Within NRQCD, one can determine the short distance coefficients of the various operators
by performing a matching between cross sections calculated in perturbative QCD and perturba-
tive NRQCD. Since, by definition, the two theories are equivalent in the long distance regime,
all singularities of infrared origin appear equally in both calculations, and hence cancel in the
matching.

29



QCD:	quarks	or	hadrons?

• We	defined	the	Standard	Model	but	we	didn’t	see	anywhere	strongly	interacting	particles	like	
• Proton
• Neutron
• Mesons

• These	are	not	less	important;	after	all,	the	LHC	collides	protons!

• This	brings	us	to	the	main	problem:	namely,	how	to	describe	bound	states.

• We	imagine	that	hadrons	(like	the	proton)	are	bound	states	of	quarks	and	gluons.
• We	cannot	describe	this	from	first	principles	(due	to	the	confining	nature	of	QCD)

(lattice	gauge	theory	aims	at	solving	QCD	numerically and	non-perturbatively)

• Some	understanding	exists:	we	know	how	to	describe	bound	states	in	
• Non-relativistic	QM
• QED	(hydrogen	atom,	positronium)	[Bethe,	Salpeter ‘51]

• A	lot	of	scientificmodeling	is	involved	in	the	description	of	the	production	and	decay	of
strongly	interacting	bound-states	at	Colliders	and	this	would	be	a	major	subject	for	the
remainder	of	these	lectures.

Scientificmodeling	means	we	preserve	the	predictivity of	the	theory,	
not	just	model	what	we	can’t	calculate! 15
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QCD:	quarks	or	hadrons?

üLet’s	build	some	intuition	first

ü The	process	of	forming	a	bound	state:
ü Imagine	a	cloud	of	protons,	just	sitting	in	space.
ü An	electron	flies	in.
üWhat	can	happen?	

• An	electron	goes	out,	likely	deflected	from	its	original	path
• A	bound	state	is	formed.

ü On	the	other	hand,	we	can	answer	less	detailed	questions	without	additional	effort.	

• Here	is	a	good	example:	what	is	the	amount	of	bound	states	to	be	produced?
• Answer:	the	same	as	the	net amount	of	electrons	(Nin – Nout).	Thus	no	need	to	calculate	
bound	states!

ü This	is	an	example	of	inclusive	observable	(i.e.	we	are	not	interested	in	the	details…	)
ü Inclusive	observables	are	encountered	often.	They	are	very	useful.	Get	to	know	them!

Detailed	calculation	required	in	order	to	predict	the	details.
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First	QCD	calculation:

e+e- à hadrons
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e+	e- colliders
• The	cross-sections	for	various	SM	process	at	e+e- colliders	as	a	function	of	the	collider	energy

6 44. Plots of cross sections and related quantities

σ and R in e+e− Collisions
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Figure 44.6: World data on the total cross section of e+e− → hadrons and the ratio R(s) = σ(e+e− → hadrons, s)/σ(e+e− → µ+µ−, s).
σ(e+e− → hadrons, s) is the experimental cross section corrected for initial state radiation and electron-positron vertex loops, σ(e+e− →
µ+µ−, s) = 4πα2(s)/3s. Data errors are total below 2 GeV and statistical above 2 GeV. The curves are an educative guide: the broken one
(green) is a naive quark-parton model prediction, and the solid one (red) is 3-loop pQCD prediction (see “Quantum Chromodynamics” section of
this Review, Eq. (9.7) or, for more details, K. G. Chetyrkin et al., Nucl. Phys. B586, 56 (2000) (Erratum ibid. B634, 413 (2002)). Breit-Wigner
parameterizations of J/ψ, ψ(2S), and Υ(nS), n = 1, 2, 3, 4 are also shown. The full list of references to the original data and the details of
the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. Corresponding computer-readable data files are available at
http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, May 2010.)
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Figure 1: (a) The basic processes of the Standard Model: e+e− annihilation to pairs
of fermions and gauge bosons. The cross sections are given for polar angles between
100 < θ < 1700 in the final state. (b) Elastic/inelastic Compton scattering and γγ
reactions.

√
s is the invariant eγ and γγ energy. The polar angle of the final state

particles is restricted as in (a); in addition, the invariant µ+µ− and qq masses in the
inelastic Compton processes are restricted to Minv > 50 GeV.
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Note	the	resonance
structures!
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• LEP	
• CERN	(1989	to	2000)
• √s	=	89	to	206	GeV
• 4	points:	Aleph,	Delphi,	L3,	Opal.
• 27	km	tunel now	houses	the	LHC
• Legacy:	validated	the	SM

1 Introduction: Data Samples

The Stanford Linear Collider, SLC, was the first electron-positron collider operating
at centre-of-mass energies at and around the Z0 pole. From the startup in 1989 to the
final data collected in 1998, around 20 pb−1 of integrated luminosity was accumulated,
in very large part by the SLD detector. Although the data sample is modest when
compared to that from LEP, the power to probe the Standard Model is greatly enhanced
by the substantial electron beam polarisation, typically 75% in the later years of SLC
operation. This unique feature of the Z0 data collected by SLD results in the most
precise single measurement of the weak mixing angle, as described below.

The large electron-positron collider, LEP, sited at CERN, also started taking data
in 1989, and each of the four experiments collected approximately 160 pb−1 of data
at and around the Z0 peak in the years up to 1995, corresponding to a total of more
than 15 million observed Z0 decays. A several year programme to increase the acceler-
ating voltage resulted in data-taking above the threshold for W+W− production from
1996 to 2000. At these energies substantially increased luminosities were also possible,
resulting in approximately 700 pb−1 of data being collected in this “LEP-2” phase of
operation. As illustrated in figure 1, the cross-section for W-pair production is three
orders of magnitudes lower than that at the Z peak, so that W-pair events collected are
numbered in thousands rather than millions.
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Fig. 1. Hadronic e+e− annihilation cross-section from the B factories to LEP-2.
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• B-physics
• BaBar (SLAC	linac)
• Belle	(KEK,	Japan)
• Operational	till	late	2000’s.
• Asymmetric	e+e- colliders	in	the	10	GeV range.	Mostly:	e+e- ->	ϒ(4S)	->	B+B- or	B0B0
• Legacy:	CP	violation	in	B-sector;	unprecedented	precision	in	B-physics.	
• Future	upgrade	Belle	II	(to	be	operational	sometime	during	LHC	Run	2)

e+e- colliders	come	in	two	shapes:	circular	and	linear.	Some	past/present/future	experiments

• Stanford	Linear	Collider	(SLC)
• 1990’s	(same	as	LEP)
• SLD	detector
• 2	miles	linear	accelerator	exists	since	1966
• Legacies:	Studies	of	Z-boson;	discovery	of	charm	and	tau.

• ILC,CLIC
• Proposed	future	colliders	with	c.m.	energy	250-1000	GeV
• Precision	Higgs/top	studies.	BSM	searches	and	identification	of	possible	TeV BSM	physics.
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QCD:	time	to	get	our	hands	dirty!

üWe	are	ready	to	do	an	inclusive	calculation	in	QCD

e+	e- à hadrons	

(i.e.	find	the	probability	that	by	scattering	e+	e- pairs,	we	produce	any hadron)

ü This	is	an	example	of	inclusive	observable.	We	do	not ask:
• what	kind	of	hadrons	are	produced?
• what	is	their	distribution
• what	is	their	multiplicity
• etc.

ü Essentially,	this	is	just	a	counting	experiment.
And	an	important	one!

Make	sure	you	understand	
this	well!

Quark	– hadron	duality:	in	very inclusive	observables,	quarks	and	hadrons	are	the	same	thing

Note	this	keyword
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QCD	@	e+	e- à hadrons:	main	features	

ü The	lowest	order	Feynman	diagrams	(Born	process):

• e+e- annihilation	proceeds	through	the	exchange	of:
• (at	low	energy):	a	virtual	photon
• (at	higher	energy):	also	a	Z-boson

• Main	feature	of	this	reaction	is	that	(typically*)	the	center	of	mass	frame	for	the
hadronic final	state	coincides	with	the	lab	frame	(i.e.	the	detector).	

• Since	we	can	easily	modify	the	energy	of	the	reaction,	we	can	achieve	a	great	deal	of	control	
over	the	produced	final	state.

• The	produced	hadronic final	state	originating	form	the	“decaying”	gauge	boson	is	in	a	color
singlet	state.	This	is	very	important:	it	implies	that	the	hadronic system	has	no	strong	
interactions	with	the	“outside	world”.	

Ø The	above	points	are	the	MAIN	difference	w/r	to	hadron	colliders!

* Unless	a	real	photon	is	emitted	prior	to	the	gauge	boson	producing	the	hadronic state.
* Then	we	speak	of	Initial	State	Radiation	(ISR).
* This	highly	antiquated	terminology	still	in	use	today	at	hadron	colliders.
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QCD:	e+	e- à hadrons	

ü The	lowest	order	Feynman	diagrams	(Born	process):

From	here	we	can	experimentally	constrain:	
• the	electric	charge	of	quarks
• the	number	of	colors
• the	number	of	quark	generations

ü The	R-ratio	(very	well	measured	observable;	insensitive	to	the	details	of	hadronization).

QCD

QED

• We	will	not	dwell	on	the	precise	expressions	for	the	EW	couplings.	They	are	not	relevant	for	
our	subsequent	discussion.	If	interested,	huge	textbook	literature	available	on	this.
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QCD:	e+	e- à hadrons	

ü The	one-loop	quantum	corrections:

ü In	dimensional	regularization,	i.e.	in	d=4-2ε	dimensions,	and	after	UV	renormalization:

üOooops!	The	result	is	divergent	(when	εà 0)	and	so	is	meaningless	!!!

ü This	is	not	a	mistake	but	an	indication	of	a	serious	deficiency!	We	must	be	doing	something	
very	wrong.

ü Let’s	re-analyze	the	whole	setup.

ü Any	ideas?	Or	questions	up	to	here?



24

QCD:	back	to	e+	e- à hadrons	

ü The	one-loop	quantum	corrections

ü need	to	be	supplemented	by	real-radiation	ones:

Q:	But	why	should	this	work?

• One	way	to	see	why	this	works,	is	to	recall	the	definition		of	R:

• True	only	at	Born	Level.	At	higher	orders	we	have	to	allow	for	all	possible	combinations,
not	just	qq!



25

QCD:	back	to	e+	e- à hadrons	

ü The	one-loop	quantum	corrections

ü need	to	be	supplemented	by	real-radiation	ones:

Nice!	The	sum	of	the	two	is	now	finite	J

• The	key	concept	here	is	the	notion	if	inclusiveness:	two	final	states	might	be	formally	
different	but	if	we	cannot	distinguish	them	experimentally,	then	they	are	effectively	the	
same!
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QCD:	back	to	e+	e- à hadrons	

ü The	following	equation	is	remarkable	also	because	it	demonstrates	the	existence	of	3	colors!

NC =	number	of	quark	colors	(NC=3)

Experimental evidence for colour II

• This plot shows, as a function of
p
s, measurements of the ratio

R =
�(e+e� ! hadrons)

�(e+e� ! µ+µ�)
= Nc

X

i

e2i = 3
X

i

e2i

• The data are consistent with Nc = 3 and certainly excludeNc = 1.

• Remark: There is quite some structure in this plot, in particular
around the thresholds of heavy quark production where qq̄ pairs
are produced with little relative momentum so that they can form
bound states, like the J/ family (cc̄) at about 3 GeV, and the ⌥
family (bb̄) at about 10 GeV.

2–31

ü Data	consistent	with	NC=3;	excludes	NC=1

M.	Botje,	
“Lectures	on	QCD”
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More	on	the	IR	singularities

ü There	are	two	types	of	IR	singularities:
• Soft
• Collinear

ü They	are	very	significant	physically;	appear	everywhere.	Let’s	understand	them	well.

• Soft	singularity:	due	to	emission	(real	or	virtual)	of	a	soft	massless	gauge	boson	
(photon	or	gluon)	with	vanishing	energy.

• Collinear	singularity:	due	to	emission	(real	or	virtual)	of	a	massless	gauge	boson	
(photon	or	gluon)	with	a	momentum	parallel	to	the	emitting	massless	quark.

ü Technically,	these	singularities	are	due	to		vanishing	propagators.	
ü The	singularities	are	regulated,	say	dimensionally,	and	then	when	you	integrate	over	them

(in	the	loop	or	over	the	phase	space)	explicit	poles	are	generated.

Diverging	propagators
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Go	into	the	deep:	augment	the	formal	theory	with	physics	intuition
Infra	Red	(IR)	singularities

üWhere	do	these	singularities	come	from?

üWhat	does	their	presence	indicate?	(i.e.	what	are	they	trying	to	tell	us?)

ü So,	a	state	is	not	a	simple	concept	after	all.	It	can	contain	many	“basic”	states.	We	always			
have	to	sum	over	all	allowed	states.	The	biggest	complication	in	collider	phenomenology!	

ü Infrared	safety:	only	infrared	safe	observables	are	meaningful.	

• A	state	with	a	soft	gluon	is	indistinguishable	from	a	state	without	it.	
• Note:	this	is	conceptual	limitation!	Detectors	have	finite	resolution.
• A	profound	consequence:	if	we	allow	one	soft	gluon,	we	should	allow	arbitrary	many.	
• This	leads	to	resummation	(more	later)

• A	state	with	a	gluon	collinear	to	the	emitting	particle	is	indistinguishable	from a	state	without	it.
We	can	have	many	collinear	gluons.	
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Go	into	the	deep:	augment	the	formal	theory	with	physics	intuition
Infra	Red	(IR)	singularities

• Question:
• OK	…	this	is	all	fine…	but	do	we	need	to	care	about	these	emissions?
• After	all	we	cannot	see	them	or	detect	them	even	if	there	is	a	large	number	of	them!

• The	answer	is	yes,	we	need	to	care	about	them	very	much.
• The	reason	is	that	although	the	individual	emissions	are	very	soft/collinear	the	probability

for	their	emission	becomes	very	large	(formally	infinite)	as	can	be	seen	from	the	
divergent	propagator	above.		

• Another	reason	specific	to	QCD:	soft	gluons	may	carry	zero	energy	but	they	carry	a	unit	
of	color	charge!	Therefore	soft	gluon	emission	has	dramatic	effect	on	the	color	flow	in	the	
whole	process!

• The	implications	of	soft/collinear	emissions	are,	therefore,	global	and	very	significant.
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Definition	of	a	final	state

ü So,	a	state	is	not	a	simple	concept	after	all.	It	can	contain	many	“basic”	states.	We	always		
have	to	sum	over	all	allowed	states:	the	biggest complication	in	collider	phenomenology!	

We	noted	that:

1. Definition	of	observable	must	be	independent	of	the	perturbative	order
2. Definition	of	a	final	state	does	depend	on	the	perturbative	order

Example:	Higgs	boson	production

• Inclusive	Higgs	production	(i.e.	H+anything)
Anything	=	(0,H,HH,g,ggggg,qqgg,	etc.)

• Born	level:	anything	=	0		Leading	Order	(LO)
• First	correction:	anything	=	g Next-to-Leading	Order	(NLO)
• Second	correction:	anything	=	(gg,qq)		Next-to-Next-to-Leading	Order	(NNLO)
• …

Note:	
1. The	emitted	particles	are	not	only	soft	or	collinear;	they	can	be	anything	(e.g.	hard).
2. When	we	integrate	over	them,	there	is	always	a	region	where	they	become	soft/collinear.	
3. This	leads	to	divergences.	They	cancel	when	all	states	are	included.
4. IR	safety	implies	we	always	need	to	include	at	least	soft/collinear	radiation.	



31

Differential	observables	
(i.e.	identified	particles	in	the	final	state)



32

Collinear	factorization.	Partons	and	hadrons.

ü Up	to	here	we	didn’t	pay	any	attention	to	the	distinction	quarks/gluons/hadrons.
ü The	reason	was	we	chose to	work	only	with	very	inclusive observables.	
üMost	interesting	observables	are	not	fully	inclusive.	They	are	differential observables.
ü For	differential	observables	we	need	to	distinguish	between	quarks/gluons	and	hadrons.	

Some	terminology:
ü Parton:	a	quark	or	a	gluon,	i.e.	an	object	that	we	can	treat	perturbatively

ü Hadronization:	the	process	of	forming	a	hadron.	It	is	initiated	by	an	energetic	parton.

ü Fragmentation	≈	Hadronization

Why	things	change	when	we	go	to	differential	observables?

Idea:	at	the	differential	level	we	start	to	ask	questions	
about	the	nature	and	structure	of	the	final	state!

Example:	what	is	the	momentum	of	the	parton?	

• But	that	supposes	we	can	distinguish	the	partons	from	each	other.	
• We	now	know	this	is	not	IR	safe.
• So	we	expect	new	divergences	to	appear

Fabio MaltoniFabio Maltoni  TASI 2013, Boulder CO

1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 

Sherpa artist

21
Monday 10 June 2013
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Collinear	factorization.	Partons	and	hadrons.

üWe	saw	that	once	real	and	virtual	corrections	to	an	inclusive	observable	are	added,	the	IR		
divergences	cancel.

ü But	what	happens	when	we	look	at	differential distributions?	

If	you	compute	the	NLO	corrections	to	the	energy	distribution	of	a	quark	(x=normalized	energy)
it	is	still	divergent	(but	now	only	a	single	power	of	ε).	The	result	reads:

o P:	the	Altarelli-Parisi splitting	function	(at	1	loop;	known	to	3	loops)
o Notice	– their	integral	is	zero	(these	are	not	functions	but	distributions)
o there	are	also	functions	for	any	splitting	(qàq,	qàg,	gàq,gàg)

Good!	We	reproduced	what	we	already	know	from	the	inclusive	calculation
(that	the	differential	distribution	is	divergent,	but	the	total	inclusive	one	is	finite)

APPENDIX A. SOME SUPPLEMENTARY RESULTS 126

A.4 Plus Prescription

Here we discuss some properties of the so-called plus prescription [f(x)]+ defined

through:
∫ 1

0
[f(x)]+g(x)dx =

∫ 1

0
f(x) (g(x) − g(1))dx (A.18)

where g is a sufficiently regular function, while the function f typically is non-

integrable in the point x = 1. The plus prescriptions are strictly distributions; for

x < 1 they can be thought as the function itself i.e.:

[f(x)]+ = f(x) for x < 1.

Those distributions appear through the following identity:

lim
ϵ→0

(x − xmin)2ϵ

(1 − x)1+2ϵ
= −

1

2ϵ
δ(1 − x) +

1

(1 − x)+
+ O(ϵ). (A.19)

One can prove it by multiplying both sides with a test function, use the definition

(A.18) and then compare the terms multiplying the different powers of ϵ. The

lower limit can be any number xmin : 0 ≤ xmin < 1. In the massless case, mb = 0,

one needs the identity (A.19) including the term linear in ϵ, the latter being:
(

ln(1 − x)

1 − x

)

+

−
ln(x)

1 − x
.

Using Eq.(A.18), one can easily prove the following important distributional

identities:

[f(x)]+ g(x) = f(x)g(x) −
(

g(1)
∫ 1

0
f(y)dy

)

δ(1 − x),

[f(x)g(x)]+ = [f(x)]+ g(x) −
(
∫ 1

0
[f(y)]+ g(y)dy

)

δ(1 − x),

[f(x)]+ g(x) = [f(x)]+ g(1) + f(x) (g(x) − g(1)) . (A.20)

All of these identities are applicable to functions f, g for which the identities

themselves make sense. As an example, using the above relations, one can write

Check:
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Collinear	factorization.	Fragmentation	functions.
• What	to	do	with	the	remaining	singularity	(since	it	doesn’t	just	cancel)?
• The	issue	stems	from	the	fact	that	what	we	are	calculating	does	not	correspond	to	what	we	

are	measuring!

• We	calculate	partons
• We	measure	hadrons

• So,	this	must	be	it!	We	just	have	incomplete	calculation	and	QCD	reminds	us	we	are	not	
done!

à OK:	how	do	we	describe	the	hadrons	then?

• Hadrons	are	non-perturbative	objects
• This	means	we	cannot	describe	them	in	perturbation	theory
• Non-perturbative	phenomena	are	described	by	QCD - we	believe	- but:	
• We	cannot	solve	QCD	non-perturbatively (a	big	open	question;	lattice	calculations	may	help)

• Therefore	we	have	to	model	the	parton ->	hadron	transition

Perturbative,	finite
(singularities	removed	by	hand).

Non-perturbative.
Extract	from	experiment.

The	only	good	way	we	know	is	based	on	factorization

versus
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Collinear	factorization.	Fragmentation	functions.

ü How	do	we	model	the	fragmentation	functions	Dq->H(x)?

• They	are	non-perturbative
• process	independent	i.e.	universal
• Therefore,	can	be	extracted	from	experiment
• They	only	depend	on	q and	H.

ü Few	more	things	to	note:

• fragmentation	functions	are	not	observables
• they	are	not	unique:	depend	on	the	definition	of	the	counterterms
• usually	in	the	MS-bar	scheme.

• Fragmentation	of	massive	quarks	(charm,	bottom)	requires	additional	perturbative	component	
for	resummation	of	ln(m)	terms.	
• This	was	the	resolution	of	the	b-production	puzzle	at	Tevatron ~20	years	ago.

The	way	to	think	about	the	collinear	divergences	is	that	they	are	not	real	divergences;	
They	are	just	artifacts	of	our	idealized	picture	that	the	process	of	producing	a	hadron	goes	
through	an	on-shell	massless	parton.
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The	bottom	line	on	fragmentation	functions

• Fragmentation	functions	are	relevant	at	any	collider.	They	are	best	measured	at	e+e-

• The	proper	definition	is	(at	e+e- colliders):

20. Fragmentation functions in e
+

e
−, ep and pp collisions 1

20. FRAGMENTATION FUNCTIONS

IN e
+

e
−, ep AND pp COLLISIONS

Revised August 2013 by O. Biebel (Ludwig-Maximilians-Universität, Munich, Germany),
D. de Florian (Dep. de F́ısica, FCEyN-UBA, Buenos Aires, Argentina), D. Milstead
(Fysikum, Stockholms Universitet, Sweden), and A. Vogt (Dep. of Mathematical Sciences,
University of Liverpool, UK).

20.1. Introduction to fragmentation

The term ‘fragmentation functions’ is widely used for two conceptually different (albeit
related) sets of functions describing final-state single particle energy distributions in
hard scattering processes (see Refs. [1,2] for introductory reviews, and Refs. [3,4] for
summaries of experimental and theoretical research in this field).

The first are cross-section observables such as the functions FT,L,A(x, s) in semi-
inclusive e+e− annihilation at center-of-mass (CM) energy

√
s via an intermediate photon

or Z-boson, e+e− → γ/Z → h +X , given by

1

σ0

d 2σh

dx d cos θ
=

3

8
(1 + cos2 θ)Fh

T (x, s) +
3

4
sin2 θ Fh

L(x, s) +
3

4
cos θ Fh

A (x, s) . (20.1)

Here x = 2Eh/
√

s ≤ 1 is the scaled energy of the hadron h (in practice the approximation
x ≃ xp = 2ph/

√
s or x ≃ p/pmax is often used), and θ is its angle relative to the

electron beam in the CM frame. Eq. (20.1) is the most general form for unpolarized
inclusive single-particle production via vector bosons [5]. The transverse and longitudinal
fragmentation functions FT and FL represent the contributions from γ/Z polarizations
transverse or longitudinal with respect to the direction of motion of the hadron. The
parity-violating term with the asymmetric fragmentation function FA arises from the
interference between vector and axial-vector contributions. Normalization factors σ0 used
in the literature range from the total cross section σtot for e+e− → hadrons, including all
weak and QCD contributions, to σ0 = 4πα2Nc/3s with Nc = 3, the lowest-order QED
cross section for e+e− → µ+µ− times the number of colors Nc . LEP1 measurements of
all three fragmentation functions are shown in Fig. 20.1.

Integration of Eq. (20.1) over θ yields the total fragmentation function Fh = Fh
T + Fh

L ,

1

σ0

dσh

dx
= Fh(x, s) =

∑

i

∫ 1

x

dz

z
Ci(z, αs(µ),

s

µ2 )Dh
i (

x

z
, µ2) + O(

1√
s
) (20.2)

with i = u, ū, d, d̄, . . . , g. Here the second set of functions mentioned in the first
paragraph has been introduced, the parton fragmentation functions (or fragmentation
densities) Dh

i . These functions are the final-state analogue of the initial-state parton
distribution functions (pdf) addressed in Section 19 of this Review. Due to the different
sign of the squared four-momentum q2 of the intermediate gauge boson these two sets of
fragmentation distributions are also referred to as the timelike (e+e− annihilation, q2 > 0)
and spacelike (deep-inelastic scattering (DIS), q2 < 0) parton distribution functions. The
function Dh

i (z, µ2) describes the probability that the parton i fragments into a hadron h

K.A. Olive et al. (PDG), Chin. Phys. C38, 090001 (2014) (http://pdg.lbl.gov)
August 21, 2014 13:17

• Ci:	coefficient	functions.	They	are	process	dependent	but	purely	perturbative.	Can	be	
computed	at	LO,	NLO,	NNLO	(all	3	known)	,	…	It	is	standard	to	define	them	in	Msbar scheme.

• The	FF	Di
h is	process	independent.	However	its	definitions	in	NOT	unambiguous!

• The	way	Di
h is	extracted	is:

• Take	some	experimental	data	(i.e.	LHS	of	the	above	equation)
• Compute	perturbatively Ci
• Extract	Di

h.	Usually	one	assumes	some	functional	form	for	Di
h and	then	fits	its	

parameters.	A	typical	example	is:

20. Fragmentation functions in e
+

e
−, ep and pp collisions 11

of the energy dependence of average particle multiplicities also applies to hadron-hadron
and nucleus-nucleus collisions for both full and central rapidity multiplicities. Evidence
for this universality is given by the good agreement for the energy dependence of
Eq. (20.11) when fit to the p(p) data as shown in Fig. 20.6.

20.4. Fragmentation models

Although the scaling violation can be calculated perturbatively, the actual form of
the parton fragmentation functions is non-perturbative. Perturbative evolution gives
rise to a shower of quarks and gluons (partons). Multi-parton final states from leading
and higher order matrix element calculations are linked to these parton showers using
factorization prescriptions, also called matching schemes, see Ref. 123 for an overview.
Phenomenological schemes are then used to model the carry-over of parton momenta
and flavor to the hadrons. Implemented in Monte Carlo event generators (see Section
40 of this Review), these schemes have been tuned using e+e− data and provide good
description of hadron collisions as well, thus providing evidence of the universality of the
fragmentation functions.

20.5. Quark and gluon fragmentation functions

The fragmentation functions are solutions to the evolution equations Eq. (20.4), but
need to be parametrized at some initial scale µ2

0 (usually around 1 GeV2 for light
quarks and gluons and m2

Q for heavy quarks). A usual parametrization for light hadrons

is [132–138]

Dh
i (x, µ2

0) = Nxα(1 − x)β
(

1 + γ(1 − x)δ
)

, (20.12)

where the normalization N , and the parameters α, β, γ and δ in general depend on the
energy scale µ2

0, and also on the type of the parton, i, and the hadron, h. Frequently the
term involving γ and δ is left out [134–137]. Heavy flavor fragmentation into heavy mesons
is discussed in Sec. 20.9. The parameters of Eq. (20.12) (see [132–137]) are obtained
by performing global fits to data on various hadron types for different combinations of
partons and hadrons in e+e−, lepton-hadron and hadron-hadron collisions.

Sets of fragmentation functions are available for pions, kaons, protons, neutrons, etas,
Lambdas and charged hadrons [132–138].

Data from e+e− annihilation present the cleanest experimental source for the
measurement of fragmentation functions, but can not contribute to disentangle quark
from antiquark distributions. Since the bulk of the e+e− annihilation data is obtained at
the mass of the Z-boson, where the electroweak couplings are roughly the same for the
different partons, it provides the most precise determination of the flavor-singlet quark
fragmentation. Flavor tagged results [139], distinguishing between the light quark, charm
and bottom contributions are of particular value for flavor decomposition, even though
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directly comparable DIS and e+e− results, where p∗ is the particle’s momentum in the
current region of the Breit frame.

20.2. Scaling violation

The simplest parton-model approach would predict scale-independent x-distributions
(‘scaling’) for both the fragmentation function Fh and the parton fragmentation functions
Dh

i . Perturbative QCD corrections lead, after factorization of the final-state collinear
singularities for light partons, to logarithmic scaling violations via the evolution equations

∂

∂ lnµ2 Di(x, µ2) =
∑

j

∫ 1

x

dz

z
Pji(z, αs(µ

2))Dj(
x

z
, µ2) , (20.4)

where the splitting functions Pij(z, αs(µ2)) describe in leading order the probability to
find parton i with a longitudinal momentum fraction z in parton j. Usually this system of
equations is decomposed into a 2×2 flavour-singlet sector comprising gluon and the sum
of all quark and antiquark fragmentation functions, and scalar (‘non-singlet’) equations
for quark-antiquark and flavour differences. The singlet splitting-function matrix is now
Pji , rather than Pij as for the initial-state parton distributions, since Dj represents the
fragmentation of the final parton.

The splitting functions in Eq. (20.4) have perturbative expansion of the form
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where the leading-order (LO) functions P (0)(z) [11,12] are the same as those for the
initial-state parton distributions. The next-to-leading order (NLO) corrections P (1)(z)
have been calculated in Refs. [13–17] (there are well-known misprints in the journal
version of Ref. 14). Ref. 17 also includes the spin-dependent case. These functions are
different from, but related to their space-like counterparts, see also Ref. 18. These
relations have facilitated recent calculations of the next-to-next-to-leading order (NNLO)

quantities P
(2)
qq (z) and P

(2)
gg (z) in Eq. (20.5) [19,20]. The corresponding off-diagonal

quantities P
(2)
qg and P

(2)
gq were recently obtained in Ref. 21 by using similar relations

supplemented with constrains from the momentum sum rule Eq. (20.3) [20] and the
supersymmetric limit. An uncertainty, which does not affect the logarithmic behaviour at

small and large momentum fractions, still remains on the P
(2)
qg kernel. All these results

refer to the standard MS scheme, with the exception of Ref. 16, with a fixed number
nf of light flavours. The NLO treatment of flavour thresholds in the evolution has been
addressed in Ref. 22.

The QCD parts of the coefficient functions for FT,L,A(x, s) in Eq. (20.1) and the total

fragmentation function Fh
2 ≡ Fh in Eq. (20.2) are given by
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• Fragmentation	functions	satisfy	sum	rules	(the	momentum	of	the	incoming	parton is	
conserved	when	summed	over	all	final	state	hadrons)
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Figure 20.1: LEP1 measurements of total transverse (FT ), longitudinal (FL),
and asymmetric (FA) fragmentation functions [6–8]. Data points with relative errors
greater than 100% are omitted.

carrying a probability that the parton i fragments into a hadron h carrying a fraction z
of the parton’s momentum. Beyond the leading order (LO) of perturbative QCD these
universal functions are factorization-scheme dependent, with ‘reasonable’ scheme choices
retaining certain quark-parton-model (QPM) constraints such as the momentum sum rule

∑

h

∫ 1

0
dz z Dh

i (z, µ2) = 1 . (20.3)

The dependence of the functions Dh
i on the factorization scale µ2 is discussed in Section

20.2. Like in Eq. (20.2) and below, this scale is often taken to be equal to the factorization
or renomalization scale, but this equivalence is not required in the theory.

The second ingredient in Eq. (20.2), and analogous expressions for the functions
FT,L,A , are the observable-dependent coefficient functions Ci. At the zeroth order in the
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• Fragmentation	functions	depend	on	the	partonic fraction	“z”	but	also	on	an	energy	scale.
This	scale	dependence	can	be	predicted	within	pQCD (time-like	evolution):
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where: Altarelli-Parisi
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(Timelike)	DGLAP	equation

20. Fragmentation functions in e
+

e
−, ep and pp collisions 13

10
-2

10
-1

1

10

10
-1

π++π−

x Di(x, M2)x Di(x, MZ

s

u(x 10)

x

DSS07
AKK08
HKNS07

c

g(x 10)

x

10
-2

10
-1

1

10

10
-1

1

Figure 20.7: Comparison of up, strange, charm and gluon NLO fragmentation
functions for π+ + π− at the mass of the Z. The different lines correspond to the
result of the most recent analyses performed in Refs. [132,133,137].

20.6. Identified particles in e
+

e
− and semi-inclusive DIS

A great wealth of measurements of e+e− fragmentation into identified particles exists.
A collection of references for data on fragmentation into identified particles is given on
Table 50.1 of this Review. Representative of this body of data is Fig. 20.8 which shows
fragmentation functions as the scaled momentum spectra of charged particles at several
CM energies.

Quantitative results of studies of scaling violation in e+e− fragmentation have been
reported in [6,39,146,147]. The values of αs obtained are consistent with the world
average (see review on QCD in Section 9 of this Review).

Many studies have been made of identified particles produced in lepton-hadron
scattering, although fewer particle species have been measured than in e+e− collisions.
References [148–155] and [156–162] are representative of the data from fixed target and
ep collider experiments, respectively.

QCD calculations performed at NLO provide an overall good description of the HERA
data [53,54,58,157,163,164] for both SIDIS [165] and the hadron transverse momentum
distribution [49] in the kinematic regions in which the calculations are predictive.

Fig. 20.9(a) compares lower-energy fixed-target and HERA data on strangeness
production, showing that the HERA spectra have substantially increased multiplicities,
albeit with insufficient statistical precision to study scaling violations. The fixed-target
data show that the Λ rate substantially exceeds the Λ rate in the remnant region, owing
to the conserved baryon number from the baryon target. Fig. 20.9(b) shows neutral and
charged pion fragmentation functions 1/N · dn/dz, where z is defined as the ratio of the
pion energy to that of the exchanged boson, both measured in the laboratory frame.
Results are shown from HERMES and the EMC experiments, where HERMES data have
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Some	examples:

Note:	for	light	flavor	
fragmentation	the	FF’s
are	peaked	at	low-x
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More	on	fragmentation	functions

• Heavy	quark	fragmentation	functions	are	peculiar.	We	suppose	that	the	non-perturbative
transition	b->B	is	initiated	only	by	the	corresponding	heavy	flavor	“b”.	Same	for	charm…

• Then	the	perturbative	part	can	be	computed	perturbatively and	it	reads:

Q Q

Q, q

Q

FIG. 1: Examples of diagrams that contribute to perturbative fragmentation of a heavy quark Q → Q + X at O(α2
s
). The

dashed vertical line indicates the intermediate (i.e. real emission) state that has to be considered; q denotes light quark flavor.

of that quark can be written as:

dσQ

dz
(z, Q, m) =

∑

a

∫ 1
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dx

x

dσ̂a

dx
(x, Q, µ)Da/Q

( z

x
,

µ

m

)
+ O

(
m

Q

)p

. (2)

Here, the sum runs over all partons (i.e. quarks, antiquarks and gluons) that can be produced in the hard process

and µ denotes the factorization scale. The coefficient function dσ̂a/dx is the differential cross-section for producing

a massless parton a as in Eq.(1) and with collinear singularities subtracted in the MS scheme (recall that Γab are

universal collinear subtraction terms that depend only on the QCD time-like splitting functions). Important feature

of Eq.(2) is that power corrections (m/Q)p, i.e. all terms vanishing in the strict limit m/Q → 0, are neglected. We

next explain what is the effect of these terms and why we may want to neglect them.

There are basically two reasons why such power corrections are omitted. The first one is that the non-logarithmic

terms do not have universal origin and are therefore not controlled by a Renormalization Group (RG) equation. They

are instead process dependent and must be calculated perturbatively in any particular process. The second reason

has to do with the size of these terms. Clearly, when Q >> m, such terms will have negligible numerical effect. Of

importance will be only the logarithmic terms that are resumed with the help of Eq.(2) and terms that are finite in

the limit m/Q → 0 (often referred to as constant term). A very important implication of the PFF formalism is that

while the constant term cannot be predicted and must be obtained from a process-dependent, fixed order calculation,

it is sufficient to do that calculation in a massless fashion, i.e. by setting m = 0 from the outset. Of course, it is also

possible to encounter situation where the condition Q >> m does not really hold. In such situations one may want

to consider a “mix” of resummation and fixed order calculation of the power suppressed term. We will come back to

that point in Section (IV).

The functions Da/Q(x, µ/m) in Eq.(2) are the perturbative fragmentation functions [1]. They satisfy the DGLAP

evolution equation and can be fully reconstructed from it, if the initial condition at a scale µ = µ0 is known. When

we take µ0 ∼ m the initial condition Dini
a cannot contain large logarithms and can be derived from fixed order

perturbative calculations. Next we describe their derivation.

III. DERIVATION OF THE INITIAL CONDITION

The most obvious way for the evaluation of the initial condition for the PFF is by de-convoluting Eq.(2). In

such approach one needs to calculate separately the corresponding differential distributions for massless and massive

quark production to fixed perturbative order in some process. Historically, such approach was used in [1] to derive

the initial condition at NLO in αs:
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where	Q	is	a	heavy	quark	(on-shell)	with	mass	m.	

• The	FF	Da/Q satisfies	DGLAP	evolution	equation.	Its	boundary	condition	can	be	evaluated	
perturbatively at	some	low	scale	μ0 ≈	m:
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importance will be only the logarithmic terms that are resumed with the help of Eq.(2) and terms that are finite in

the limit m/Q → 0 (often referred to as constant term). A very important implication of the PFF formalism is that

while the constant term cannot be predicted and must be obtained from a process-dependent, fixed order calculation,

it is sufficient to do that calculation in a massless fashion, i.e. by setting m = 0 from the outset. Of course, it is also

possible to encounter situation where the condition Q >> m does not really hold. In such situations one may want

to consider a “mix” of resummation and fixed order calculation of the power suppressed term. We will come back to

that point in Section (IV).

The functions Da/Q(x, µ/m) in Eq.(2) are the perturbative fragmentation functions [1]. They satisfy the DGLAP

evolution equation and can be fully reconstructed from it, if the initial condition at a scale µ = µ0 is known. When

we take µ0 ∼ m the initial condition Dini
a cannot contain large logarithms and can be derived from fixed order

perturbative calculations. Next we describe their derivation.

III. DERIVATION OF THE INITIAL CONDITION

The most obvious way for the evaluation of the initial condition for the PFF is by de-convoluting Eq.(2). In

such approach one needs to calculate separately the corresponding differential distributions for massless and massive

quark production to fixed perturbative order in some process. Historically, such approach was used in [1] to derive

the initial condition at NLO in αs:

Dini
a/Q

(
z,

µ0

m

)
=

∑

n=0

(
αs(µ0)

2π

)n

d(n)
a

(
z,

µ0

m

)
. (3)

with:

d(0)
a (z) = δaQδ(1 − z),

d(1)
a=Q

(
z,

µ0

m

)
= CF

[
1 + z2

1 − z

(
ln

(
µ2

0

m2(1 − z)2

)
− 1

)]

+

,

3
d(1)

a=g

(
z,

µ0

m

)
= TR

(
z2 + (1 − z)2

)
ln

(
µ2

0

m2

)
,

d(1)
a̸=Q,g

(
z,

µ0

m

)
= 0, (4)

Such approach is however too impractical beyond NLO. Next we describe a better, process independent approach

for the derivation of the initial condition. This approach was first proposed in [2] and further elaborated upon in [3]

where it was also applied for the derivation of all components of the PFF at order α2
s.

The method is based on the observation that in any process, collinearly enhanced terms are produced only from

diagrams with real radiation in the external legs. Applying this observation together with power counting arguments

and using the factorization of phase-space and matrix elements in the collinear limit, one can derive an explicit

expression for the fragmentation function in Eq.(2). For example, the contributions at NNLO from real gluon

radiation or quark-antiquark pair emission take the form [3]:

D̃(z) =
1

z

∫
[dq1][dq2] W δ

(
1 − z −

(nq1)

(pn)
−

(nq2)

(pn)

)
. (5)

Here, [dq] is the phase space for each of the two emitted particles with momenta q1 and q2 and W stands for the

appropriately projected square of the matrix element for the “process” q(p) → q + a(q1) + b(q2) with the decaying

particle having off-shell momentum p. The “splitting” function W is given by ∼ Tr
[
̸nV coll(p, q1, q2, n; m)

]
in the

case when the decaying parton is a quark and by ∼ gµνV coll
µν (p, q1, q2, n; m) for decaying gluon. Note that in the

calculation of the matrix V coll we assign to the decaying particle not the usual spinor or polarization vector but

a propagator as appropriate for particle with momentum p, p2 ̸= m2 and mass zero or m depending on its flavor

and spin. An important ingredient to the factorization program is that one works in a physical gauge defined with

the help of an auxiliary light-like vector n. This vector is arbitrary with the only requirement that its dot product

with the hard momentum p is non-zero i.e. p.n ̸= 0. The delta function appearing in Eq.(5) simply represents the

constraint defining the observed fraction of the energy. Its argument can be easily understood in terms of the usual

Sudakov parametrization.

Similar expression exists for the virtual corrections as well. In this case the only change with respect to Eq.(5)

is in the argument of the delta function and in the phase-space for real emission for one of the particles. Examples

for the two types of contributions to the heavy quark Q initiated component of PFF are given on Fig.1, and for the

gluon initiated component are shown on Fig.2.

Another unusual feature of this construction (compared to the usual single particle decay kinematics) is that the

contributions ∼ δ(1 − z) that contain the pure virtual corrections arise from diagrams with a cut through a single

line (compared to two lines in the heavy particle decay case). We do not have to consider such diagrams in our

derivation since all contributions ∼ δ(1 − z) can be completely fixed from the flavor conservation condition:

∫ 1

0
dz

(
Dini

Q/Q(z) − Dini
Q/Q

)
= 1. (6)

Because the integration range of all integrals covers the full one- or two-particle real emission phase space, we can

exploit for their evaluation methods and techniques that have become by now standard. We apply the IBP identities

[4] constructed from the vectors p and n and the integration momenta along the lines of the approach in [5]. We

apply the Laporta algorithm [6] implemented in the program AIR [7]. We have reduced the problem to the evaluation

of about 40 master integrals. For their evaluation we have made use of differential equation derived from the IBP

identities.

IV. APPLICATIONS

The formalism described in the previous Sections is indispensable in not-completely inclusive observables where

heavy flavored hadrons (typically mesons) are measured. Such observables are more complicated and at the same

4

The	NNLO	term	d(2) also	known.

The	non-perturbative	part	is	fitted	from	data

18 20. Fragmentation functions in e
+

e
−, ep and pp collisions

Measurements performed by the COMPASS collaboration on deuteron targets show
results compatible with zero for both asymmetries [224–226].

20.9. Heavy quark fragmentation

It was recognized very early [229] that a heavy flavored meson should retain a large
fraction of the momentum of the primordial heavy quark, and therefore its fragmentation
function should be much harder than that of a light hadron. In the limit of a very heavy
quark, one expects the fragmentation function for a heavy quark to go into any heavy
hadron to be peaked near x = 1.

When the heavy quark is produced at a momentum much larger than its mass,
one expects important perturbative effects, enhanced by powers of the logarithm of
the transverse momentum over the heavy quark mass, to intervene and modify the
shape of the fragmentation function. In leading logarithmic order (i.e., including all
powers of αs log mQ/pT ), the total (i.e., summed over all hadron types) perturbative
fragmentation function is simply obtained by solving the leading evolution equation for
fragmentation functions, Eq. (20.4), with the initial condition at a scale µ2 = m2

Q given

by DQ(z, m2
Q) = δ(1 − z) and Di(z, m2

Q) = 0 for i ̸= Q (here Di(z), stands for the
probability to produce a heavy quark Q from parton i with a fraction z of the parton
momentum).

Several extensions of the leading logarithmic result have appeared in the literature.
Next-to-leading-log (NLL) order results for the perturbative heavy quark fragmentation
function have been obtained in [230]. The resummation of the dominant logarithmic
contributions at large z was performed in [44] to next-to-leading-log accuracy. Fixed-order
calculations of the fragmentation function at order α2

s in e+e− annihilation have appeared
in [231] while the initial condition for the perturbative heavy quark fragmentation
function has been extended to NNLO in [232].

Inclusion of non-perturbative effects in the calculation of the heavy-quark fragmentation
function is done by convoluting the perturbative result with a phenomenological non-
perturbative form. Among the most popular parametrizations we have the following:

Peterson et al. [233] : Dnp(z) ∝
1

z

(

1 −
1

z
−

ϵ

1 − z

)−2

, (20.13)

Kartvelishvili et al. [234] : Dnp(z) ∝zα(1 − z) , (20.14)

Collins&Spiller [235] : Dnp(z) ∝
(

1 − z

z
+

(2 − z)ϵC
1 − z

)

×

(1 + z2)

(

1 −
1

z
−

ϵC
1 − z

)−2

(20.15)

Colangelo&Nason [236] : Dnp(z) ∝(1 − z)αzβ (20.16)

Bowler [237] : Dnp(z) ∝z
−(1+bm2

h,⊥
)

(1 − z)a exp

(

−
bm2

h,⊥

z

)

(20.17)
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into B hadrons at
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s ≈ 91 GeV [258].
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Peaked	at	large-x
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Physics	at	hadron	colliders
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Collinear	factorization.	Parton	distribution	functions.

ü Recall	the	factorized	form	of	the	cross-section	in	e+e- collisions:

ü Even	for	fully	inclusive		observables	collinear	singularities	remain.	
They	are	associated	with	the	Initial	hadron	à parton transition.

ü This	non-perturbative	transition	is	described	by	parton distribution	functions.
ü They	are	very	similar	to	fragmentation	functions	but	are	not	the	same!
ü Extracted	from	experiment
ü Universal	(i.e.	process	independent)
ü Scheme	dependent	(typically	MS-bar)

üWe	encounter	conceptually	the	same	story	when	we	consider	hadrons	in	the	initial	state

(ç Drell-Yan-type	process)
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Hadron	colliders:	the	basics

The ”Jet” observation function has to have the following property:

F
(n+1)

O (p
1

, . . . , pn, pn+1

) = F
(n)
O (p

1

, . . . , pn), if pn+1

! 0

F
(n+1)

O (p
1

, . . . , pn, pn+1

) = F
(n)
O (p

1

, . . . , pn + pn+1

), if pn||pn+1

7 Physics at hadron colliders

How do we go from e+e� to hadron colliders? Just invert the diagram (and a bit more).

7.1 Parton distributions of the proton

7.2 Kinematical variables

The natural kinematical variables at hadron colliders are dictated by a) the cylindrical ge-

ometry of the beam-detector system and b) the fact that the initial state momentum (along

the z-direction) is unknown.

pµ = (E, px, py, pz)

= (mT cosh(y), pT sin(�), pT cos(�),mT sinh(y))

where we have introduced:

p2T = p2x + p2y (transverse momentum) ,

mT =
q

p2T +m2 (transverse mass) ,

y =
1

2
ln

✓
E + pz
E � pz

◆
(rapidity) .

An easier to measure variable is the pseudorapidity:

⌘ = � ln tan(✓/2) with ⌘ = y
��
m=0

.

In general we have:

y = ln

q
m2 + p2T cosh2 ⌘ + pT sinh ⌘

q
m2 + p2T

, and : ⌘ = y
��
m=0

.

• The pseudorapidity is easy to measure directly, in terms of the angle ✓.

• Rapidity di↵erences are boost invariant.

7.3 Major hadron collider processes

8 Resummation

Factorisation = Evolution = Resummation

– 5 –

Extra	material
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Hadron	colliders:	differences	w/r	to	e+e-

ü Partonic fraction	“z”	versus	“x”:	
ü In	fragmentation	we	have	q	->	H	(i.e.	H	carries	fraction	0	<	z	<	1	of	the	momentum	of	q)
ü In	PDF’s	we	have	H	->	q	(i.e.	q	carries	fraction	0	<	x	<	1	of	the	momentum	of	H)
ü Thus	z	and	x	are	“related”	as	z	<--->	1/x	(careful,	this	is	kinematically forbidden!)

ü The	initial	partonic state	momentum	is	not	known	in	hadronic collisions.	This	is	easy	to	see:
Let	the	two	protons	have	3-momenta	P	and	–P.	The	initial	state	partons	have	3-momenta
x1P	and	–x2P.	Since	the	partonic fractions	x1 and	x2 can	be	as	low	as	zero,	then	the	
momentum	of	the	initial	state	can	be	very	large	or	very	small,	symmetric	or	very	asymmetric
i.e.	boosted	along	the	beam	direction.	

ü The	final	state	is	not	evolving	on	its	own.	In	hadron-hadron	collisions	there	are	spectators.
The	final	state	resulting	from	the	hard	collision	(i.e.	what	we	care	about)	can	interact
with	the	beam	remnants.

4

C. Cut diagram notation, initial and final states

To construct our cross sections for any given out state with momenta {q} from an in state with momenta {p} =
{pA, pB}, we take the absolute square of the sum of covariant diagrams G{p}→{q}, as they contribute to the S-matrix.
We will use the term ‘out state’ to refer to a specific contribution to the inclusive cross section, to distinguish it
among the class of ‘final states’, which will refer to any state that includes the produced pair of heavy quarks (or
other high-pT particles). We are thus treating the tops as perturbatively-produced rather than as part of the parton
distributions, and for definiteness we are neglecting single-top production, although our analysis applies as well to
this case.
The basic, parton model contribution to the cross section for pair production is represented as in Fig. 1 in cut

diagram notation, where the vertical dotted line (the “cut”) identifies the out state. In the figure, a tt̄ pair with

FIG. 1: Born cut diagram. The oval blobs are related to the parton distributions and the circle with a cross represents the
hard scattering.

momenta pt and pt̄ emerges from a hard scattering in both the amplitude (to the left of the vertical line) and complex
conjugate amplitude (to the right) in proton-(anti)proton scattering with in state momenta pA and pB, and with

P− = p−A + p−B . (11)

As usual, the hard scattering is initiated by “active” partons, of flavors a and b, whose momenta are taken proportional
to the momenta of the incoming hadrons,

q̂µ = xq p
µ
H = xq

(

p+H ,
p2H,⊥

2p+H
, pH,⊥

)

, H = A,B , (12)

where, as usual, 0 < xq ≤ 1 and where generally we will use the notation q̂ to refer to an on-shell momentum. In
our discussion below, we consider cut digarams like Fig. 1 and its generalization to higher loops, Fig. 2 as LCOPT
diagrams, in which all vertices are ordered. The ordering in the complex conjugate amplitude is opposite to that
in the amplitude, so that the cut diagram as a whole describes forward scattering, with a sequence of states in the
amplitude beginning with the in state of the process and culminating with the out state, followed by a sequence of
states in the complex conjugate that take us back to the in state.
In Fig. 1 and below we have simplified our representation by denoting the collection of spectators for pA and pB

by l and l′, respectively, and showing them in the figure as double lines. Our arguments below will not depend on
the x+-ordering of the spectator interactions. Nonperturbative information, such as proton structure, is encoded in
the initial state functions, and in the distributions of spectators. In Fig. 1 there is no rescattering of the pair with
spectators, and there is thus only a single final state, identical to the out state with the quark pair.
The generic form of higher-order cut diagrams that include soft final state interactions of the outgoing pair is

illustrated by Fig. 2. In the case shown in the figure, there are four final states, as indicated by the vertical lines. 1

Combining all cuts in a partonic c.m. frame, we can write the contribution to the cross section from an arbitrary

1 If a gluon momentum is collinear or hard it becomes a part of the parton distribution functions and/or a participant in the hard
scattering process.

5

1 2 3 40

FIG. 2: Generic higher-order diagram. The oval blobs are related to the parton distributions and the round blob with a cross
represents the hard scattering. The momenta refer to the discussion of the initial state labelled 0 in connection with Eq. (20).

region in momentum space, Πab in which the hard scattering is initiated by parton a from A and b from B, as

2p+t
dσ(Πab)

AB→tt̄+X

d3pt
=

∑

orderings T of Πab

∫

∏

loops {l}

d2l⊥dl
+

∏

lines{k}

θ(k+)

2k+

∫ 1

0
dx δ

(

x−
xap

−
A + xbp

−
B

P−

)

× I(T )∗
ab/AB(x, q

′
a, q

′
b, pA, pB)F

(T )
ab (x, xapA, xbpB, pt) I(T )

ab/AB(x, qa, qb, pA, pB) , (13)

where now the sum over x+ orderings and products over loops and lines refers to the entire cut diagram, including
the final states. We have introduced the integration variable x to quantify the minus momentum available for the
top pair and soft radiation in terms of the on-shell minus momenta of partons of momentum qa and qb, whose large
momentum components are defined as in Eq. (12) above. Notice that the corresponding dependence in the complex
conjugate amplitude is independent, although in the limit of zero final state momentum transfer to the pair, q′a = qa
and q′b = qb. Dependence on loop momenta {l} is implicit. The function I(T )

ab/AB in Eq. (13) represents the effects of

all initial states in the amplitude and I(T )∗
ab/AB in the complex conjugate amplitude. As noted above, initial states are

precisely those states that do not include the top pair for the particular ordering, T . The perturbative order of the
Is will not play a role in our arguments on final states, nor do we have to assume that we have summed over the full
set of states necessary to cancel non-factoring initial state interactions [1–4].
The function F (T ) represents the product of denominators from the remaining, final states, which do include the

quark pair, along with the momentum-conserving delta function associated with the out state. We shall also include
in F the short-distance factors that describe the production of the top pair, which we denote by H in the amplitude
(to the left of the cut) and H∗ to the right. In LCOPT, these factors are given by denominators that are highly
off-shell.

D. Leading regions, initial state jets and final state interactions

We wish to study the effects of final-state interactions at leading power in the large scales of the problem, all of the
order of the top mass. These contributions come from so-called “leading regions” [1], where in covariant perturbation
theory, subsets of virtual lines are near the mass shell. These are regions (subspaces) where the integrands of loop
momenta are singular and where momentum integrals are either pinched between coalescing singularities or forced
to end-points [23, 27]. In LCOPT, of course, all lines are treated as on-shell, but the characterization of regions still
holds. In the following, we will use extensively the logarithmic nature of (gauge invariant combinations of) integrals in
gauge theory leading regions [1]. This implies that a cancellation in an integrand at the singular surface will suppress
the integrand near the leading region, making its contribution finite.
In leading regions, a subdiagram of the full cut diagram has all loop momenta (including phase space loops) nearly

parallel to the incoming hadron A, another to hadron B, and another subdiagram has all line momenta nearly zero.
These are referred to respectively as jet-A, jet-B and soft subdiagrams, which include the “spectator” lines of Figs.
1 and 2. Notice that lines of the out state appear in the jet and soft subdiagrams in general. Such a leading region
contains a subspace of the total loop momentum and phase space at which all the jet and soft lines are exactly on
shell. This subspace will sometimes be identified below as its corresponding “pinch surface” [23]. At the pinch surface,

These	are	mostly	small	but	can	be	significant	sometimes.	
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Collinear	factorization	in	all	its	glory

ü Two	pdf’s	for	LHC	collisions	(1	for	DIS)

ü One	fragmentation	function	for	each	observed	final	state	hadron
No	need	for	it	if	we	have	gauge	bosons,	Higgs,	jets.

üWe	sum	over	all	possible	partons	in	the	initial/final	state

üThe	factorization	formula	does	not	automatically	apply	to	every	process
ü For	some	never	been	proven,
üFor	other	may	not	apply	(or	remainders	changes)

ü It	is	not	exact.	It	misses	terms	that	are	small

ü Q	is	a	“typical”	scale.	A	hard	scale	which	is	large.	That’s	why	we	can	neglect	the	remainder.

ü There	is,	of	course,	scheme	dependence	(how	collinear	singularities	are	factorized).	Msbar …

ü The	schemed	dependence	only	means	that	what	is	meaningful	is	the	LHS	and	
not	any	one	term	on	the	RHS	

Some	hadron
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Factorization	and	factorization	scales

• We	saw	that	factorization	is	useful	because	it	offers	the	right	way	to	interpret	IR	
singularities	in	hard	scattering	cross-sections	with	initial/final	state	identified partons.

? Question:	why	at	hadron	colliders	– even	for	fully	integrated	over	final	state	– we	still	have	
leftover	collinear	singularities?

• It	turns	out	there	is	much	more	to	factorization	than	the	above!

Every	factorization	leads	to	the	appearance	of	a	factorization	scale

• This	actually	makes	sense:	“factorization”	means	we	separate	long-distance	from	short-
distance	physics.	But	where	is	the	formal	separation	boundary?	For	this	we	need	to	introduce	
a	scale	– called	factorization	scale	μF – which	tells	us	what	is	long- and	what	short-distance.	
The	theory	does	not	tell	us	what	the	value	of	this	scale	is.

• And	how	could	it?	Such	scale	is	unphysical	– it	is	a	formality,	an	artifact	– of	our	formal	
separation	(recall:	when	we	factorize	we	neglect	terms	that	are	“small”,	i.e.	factorized	
expressions	are	not	exact	but	approximately	exact).	

• If	the	factorization	scale	is	unphysical	then	observables	should	not	depend	on	it!	This	is	
important	requirement	that	has	profound	implications!
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DGLAP	evolution	equation
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi:	1970’s

• The	space-like	evolution	equation	(for	hadron	colliders)	reads:

Another very common approach, used for instance by the Particle Data Group [11],
is to expand the solution in inverse powers of LΛ ≡ ln(µ2

r/Λ2) where Λ is the QCD scale
parameter. Up to N3LO this expansion yields [12]

as(µ
2
r) =

1

β0LΛ
−

1

(β0LΛ)2
b1 ln LΛ +

1

(β0LΛ)3

[
b2
1

(
ln2 LΛ − ln LΛ − 1

)
+ b2

]

+
1

(β0LΛ)4

[

b3
1

(
− ln3 LΛ +

5

2
ln2 LΛ + 2 lnLΛ −

1

2

)
− 3b1b2 lnLΛ +

b3

2

]

. (2.5)

Eq. (2.5) solves the evolution equation (2.2) only up to higher orders in 1/LΛ. As explained
in section 2.4, this is an unwanted feature for the N -space evolution which especially
bedevils direct comparisons to x-space evolution programs. Therefore the use of Eq. (2.5)
is not a standard option in the present evolution package.
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Here µ represents the factorization scale, and for the moment we put µr = µ. fi(x, µ2)
stands for the number distributions of quarks, antiquarks and gluons in a hadron, where x
represents the fraction of the hadron’s momentum carried by the parton. Summation over
the parton species j is understood, and ⊗ stands for the Mellin convolution. Eq. (2.6)
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• The	splitting	functions	have	perturbative	expansion	(now	known	to	3	loops)	and	satisfy	some	
all-order	relations:

• This	is	a	matrix	equation	which	mixes	all	quark	flavors,	all	antiquarks	and	the	gluon.	We	need	
to	quasi-diagonalize to	solve	it.	It	is	useful	to	think	in	terms	of	the	flavor	symmetry	of	all	
quarks	(they	are	all	massless!).	There	is	one	combination	which	transforms	as	the	gluon	
(flavor	singlet)	and	it	cannot	be	decoupled	from	the	gluon:

with L ≡ ln(µ2/µ2
r). If L is a fixed number, then also in Eq. (2.8) the coefficients of ak

s (µ
2
r)

depend only on x, and the algorithms described below are applicable. In other words, the
program is not designed to deal with choices like µ2

r = M2 + µ2 where M is some mass
scale. Note, however, that no such restriction is in place between physical scales and µ.

The order m in Eq. (2.7) (denoted by NPORD) and the ratio µ2/µ2
r (denoted by FR2) are

initialization parameters of the evolution package. The values m = 0, 1 and 2 are available
at present for the standard MS factorization scheme. An extension to m = 3 — based
on future partial results or even Padé estimates for P (3)

ij — may be useful for uncertainty
estimates in special cases, e.g., in determinations of as from structure functions [15].

2.3 The flavour decomposition

It is convenient to decompose the system (2.6) as far as possible from charge conjuga-
tion and flavour symmetry constraints alone. The gluon-quark and quark-gluon splitting
functions are flavour independent

Pgq ≡ Pgqi
= Pgq̄i

, Pqg ≡ nf Pqig = nf Pq̄ig . (2.9)

Any difference qi−qj and qi−q̄j of quark and (anti-)quark distributions therefore decouples
from the gluon density g. Hence the combination maximally coupling to g is the flavour-
singlet quark distribution

qs =

nf∑

r=1

(qr + q̄r) (2.10)

evolving according to

d

d lnµ2

(
qs

g

)

=

(
Pqq Pqg

Pgq Pgg

)

⊗

(
qs

g

)

. (2.11)

The singlet quark-quark splitting function Pqq is specified in Eq. (2.15) below.

In order decouple the non-singlet (difference) combinations, we make use of the general
structure of the (anti-)quark (anti-)quark splitting functions,

Pqiqk
= Pq̄iq̄k

= δikP
v

qq + P s
qq

Pqiq̄k
= Pq̄iqk

= δikP
v

qq̄ + P s
qq̄ . (2.12)

In general (beyond NLO), Eq. (2.12) leads to three independently evolving types of non-
singlet combinations. The flavour asymmetries q±

ns and the total valence distribution qv
ns,

q±
ns,ik = qi ± q̄i − (qk ± q̄k) , qv

ns =

nf∑

r=1

(qr − q̄r) , (2.13)

respectively evolve with

P ±
ns = P v

qq ± P v
qq̄ ,

P v
ns = P v

qq − P v
qq̄ + nf(P

s
qq − P s

qq̄) ≡ P −
ns + P s

ns . (2.14)
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5The	quark	singlet	evolves	with:	

Finally the singlet splitting function (2.15) can be expressed as

Pqq = P +
ns + nf(P

s
qq + P s

q̄q) ≡ P +
ns + Pps . (2.15)

In the expansion in powers of as, the flavour-diagonal (‘valence’) quantity P v
qq in Eq. (2.12)

starts at first order. P v
qq̄ and the flavour-independent (‘sea’) contributions P s

qq and P s
qq̄ —

and hence the ‘pure-singlet’ term Pps in Eq. (2.15) — are of order a2
s . A non-vanishing

P s
ns ∼ P s

qq − P s
qq̄ in Eq. (2.14) occurs for the first time at the third order.

For the evolution of the flavour asymmetries in Eq. (2.13) we use the basis

v±
l =

k∑

i=1

(qi ± q̄i) − k(qk ± q̄k) (2.16)

with k = 1, . . . , nf and the usual group-theoretical notation l = k2 − 1. After performing
the evolution, the individual quark and antiquark distributions can be recovered using

qi + q̄i =
1

nf

qs −
1

i
v+

i2−1 +

n
f∑

k=i+1

1

k(k − 1)
v+

k2−1 (2.17)

where v+
0 ≡ 0, together with the corresponding equation for the differences qi − q̄i.

2.4 The N -space solutions

In the next two sections we describe the algorithm employed for the solution of the evolu-
tion equations in Mellin-N space. Thus we now switch to the moments of all x-dependent
quantities,

a(N) =
∫ 1

0
dx xN−1 a(x) . (2.18)

The advantage of this transformation is that is turns the Mellin convolutions into simple
products,

[a ⊗ b](N) = a(N) b(N) , (2.19)

which greatly simplifies all further manipulations. The disadvantage of working in N -space
is that all quantities have to be known for complex values of N for the final transformation
back to x-space. The resulting limitations of the program are discussed in section 3.

As discussed above, we restrict ourselves to situations where the scale µ enters the
right-hand side of Eq. (2.8) only through the (monotonous) coupling as ≡ as(µ2

r = κµ2).
Hence we can switch to as as the independent variable. Using a matrix notation for the
singlet system (2.11), the combination of Eqs. (2.2) and (2.7) yields

∂q(N, as)

∂as
= {βNmLO(as)}

−1
P NmLO(N, as) q(N, as)

= −
1

β0as

[
P (0)(N) + as

(
P (1)(N) − b1P

(0)(N)
)

+ a2
s

(
P (2)(N) − b1P

(1)(N) + (b2
1 − b2)P

(0)(N)
)

+ . . .
]

q(N, as)

= −
1

as

[
R0(N) +

∞∑

k=1

ak
s Rk(N)

]
q(N, as) . (2.20)

6

See	http://arxiv.org/pdf/hep-ph/0408244v1.pdf for	more	details	
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DGLAP:	initial	conditions

ü An	example:	the	NNPDF2.3	pdf set	(one	of	several	major	sets	of	pdfs)

ü The	width	of	the	curves	indicates	the	uncertainty

NNPDF is hosted by Hepforge, IPPP Durham

Neural Network Parton Distribution Functions
Members:
Richard D. Ball1, Valerio Bertone2, Stefano Carrazza3, Christopher S. Deans1, Luigi Del Debbio1, Stefano Forte3, Alberto
Guffanti4, Nathan P. Hartland1, José I. Latorre5, Juan Rojo6, Maria Ubiali7

1School of Physics and Astronomy, University of Edinburgh, JCMB, KB, Mayfield Rd, Edinburgh EH9 3JZ, Scotland
2PH Department, TH Unit, CERN, CH-1211 Geneva 23, Switzerland
3Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano, Italy
4Niels Bohr International Academy & Discovery Center, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
5Departament d'Estructura i Constituents de la Matèria, Universitat de Barcelona,Diagonal 647, E-08028 Barcelona, Spain
6Rudolf Peierls Centre for Theoretical Physics, University of Oxford 1 Keble Road, Oxford OX1 3NP, United Kingdom
7University of Cambridge, The Cavendish Laboratory, JJ Thomson Avenue Cambridge CB3 0HE, United Kingdom

• Left:	scale	Q=3GeV
• Right:	scale	Q=100	GeV
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More	on	the	factorization	and	renormalization	scales
• The	most	controversial	topic.	Ever.
• (as	we	discussed	already)	Factorization	scale	separates	long- from	short-distance	physics
• The	renormalization	scale	is	unrelated;	this	is	simply	the	scale	at	which	the	running	coupling	

is	evaluated.	Usually	the	two	are	taken	to	be	equal.	But	they	need	not	be.
• An	observable	is	formally	independent	of	these	scales.	However	this	is	only	true	if	we	can	

compute	the	full	perturbative	series.	In	such	case,	the	sum	of	all	terms	(and	each	term	is	
scale	dependent)	becomes	scale-independent.

• In	reality,	we	only	compute	the	perturbative	expansion	to	some	fixed	order	(LO	or	NLO	or	
NNLO,	etc).	This	means	that	due	to	the	missing	higher	order	terms		the	cancellation	of	the	
scale	independence	is	spoiled	and	the	final	predicted	result	does	depend	on	these	scales.	
Here	is	an	example	(for	factorization	and	renormalization	scales	being	equal):

• Clearly,	the	more	terms	we	add	in	the	perturbative	expansion,	the	smaller	the	dependence	
on	these	scales.

• This	is	verified	in	all	known	cases	where	higher-order	perturbative	calculations	have	been	
made.

• Scale	variation	is	the	standard	procedure	for	establishing	the	error	due	to	missing	higher	
order	terms.	It	is	not	based	on	hard	science	but	can	be	verified	with	NNLO	calculations.

• One	systematic	approach	is	BLM.	[Brodsky,	Lepage,	Mackenzie	’83]

Figure 2: Example graphs with contributions from both the ultrasoft (gluons depicted with wavy lines) and potential
(gluons depicted with dashed lines) regions. The crosses denote effective interactions, the structure of which is
irrelevant to the argument of the text.

denominator containing a combination of a potential and an ultrasoft momentum, the ultrasoft
momentum will be (multipole) expanded. Therefore, the denominators containing potential three-
momenta will not depend on the direction of any external three-momentum (unlike denominators
containing an ultrasoft three-momentum). In consequence, rotational invariance implies that all
integrals with an odd number of potential three-momenta in the numerator vanish. Thus, given
a term with a specified power of β, the next higher-order contribution will be suppressed by a
relative factor of β2, smaller than the terms we seek.

Next, regarding the subleading soft-gluon couplings to the initial state, the relevant expan-
sion is one in transverse momentum. The effective Lagrangian for the corrections to the eikonal
approximation is given in soft-collinear effective theory by ξ̄

(

xµ
⊥nν

− Wc gF us
µνW †

c

) n̸+

2 ξ for quarks
[32, 33], and similar terms involving transverse derivatives or factors of x⊥ for the couplings to
collinear gluons, and of soft quarks. None of these terms can contribute a beta-suppressed term,
since the initial-state momenta in Fig. 2 can always be chosen to have zero transverse momen-
tum, implying that loop integrals with transverse-momentum factors in the numerator vanish by
arguments similar to those applied to the heavy-quark couplings. This completes the proof, that
we have correctly taken into account all possible sources of singular terms in the expansion of the
cross sections for heavy-quark pair production at NNLO by including the extra terms from the
non-Coulomb potentials.

Note that some of the cuts of Fig. 2 correspond to three-particle colour correlations at the
amplitude level, for which the infrared divergence structure has recently been given in Ref. [13].
The latter work shows that the infrared-singular three-particle correlations may not vanish in
the limit β → 0 in the amplitude, but that they do in the virtual contributions to the total
cross section at NNLO in the particular case of top quarks because of colour projections [12, 13].
Our arguments above prove that there are no contributions to the lnβ terms from three-particle
correlations in both, the virtual and real corrections. This holds independent of particular colour
representations for purely kinematic reasons.

3. Results

Next we present the main result of this paper, namely the expansion of the two-loop partonic cross
section close to the partonic threshold β = 0. As we emphasized above, our result is complete up to

the so-called constant terms2 C(2)
qq̄ , C(2)

gg,1, C(2)
gg,8. Their derivation requires a dedicated calculation

that goes beyond the scope of the present work. Setting µR = µF = µ, the result for the total
cross-section close to threshold reads:

σij,I(β, µ, m) = σ(0)
ij,I

{

1 +
αs(µ2)

4π

[

σ(1,0)
ij,I + σ(1,1)

ij,I ln

(

µ2

m2

)]

(4)

+

(

αs(µ2)

4π

)2 [

σ(2,0)
ij,I + σ(2,1)

ij,I ln

(

µ2

m2

)

+ σ(2,2)
ij,I ln2

(

µ2

m2

)]

+ O(α3
s)

}

,

2This standard terminology is somewhat misleading in this process. Due to the non-trivial β dependence of the
Born cross section, the contribution of the “constant” term to the cross section is, in fact, proportional to β.

4
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Resummation
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Resummation:	why	large	logs?

• While	we	managed	to	dispose	of	all	IR	singularities	present	in	fixed	order	calculations,	as	it	
turns	out,	we	haven’t	removed	all	traces	of	them!

• Upon	cancellation	of	soft	singularities,	or	upon	the	factorization	of	the	collinear	ones,	finite	
but	numerically	large	remainders	remain	in	the	perturbative	results.

• These	terms	are	of	logarithmic	nature,	i.e.	they	look	like	Log[s],	and	s<<1.	Such	logs	are	thus	
large.

• The	problem	is	not	just	in	the	fact	that	these	terms	are	large;	after	all,	all	kinds	of	numbers	
appear	in	perturbative	calculations;	some	are	big	and	some	are	small	(e.g.	Pi^2~10	which	is	
large)	without	deep	underlying	reason.

• The	problem	is	that	such	terms	~Log[s]	appear	systematically	to	all	orders	in	the	perturbative	
expansion.
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Resummation:	why	large	logs?

Finally we get:

O

✓
N,

Q2

m2

,↵S

◆
= C (N, 1,↵S) · E (N, 1,↵S) ·D (N, 1,↵S) · exp

"Z Q2

m2
�(↵S(µ))

dµ

µ

#
.

Let s be some small parameter, s << 1, while s > 0. Denote L = log(s). Let O be some

observable with the following perturbative expansion:

O = O(0) + ↵S (a
1

L+ . . . ) + ↵2

S

�
a
2

L2 + b
1

L+ . . .
�
+O(↵3

S)

Basically, at each order of ↵S we get higher and higher accompanying powers of L.

The maximum power of L is di↵erent for soft and collinear logs. For the example above,

for each power of ↵n
S we get terms like:

• ↵n
SL

n (Leading Logs, or LL) ,

• ↵n
SL

n�1 (Next-to-Leading Logs or NLL) ,

• ↵n
SL

n�2 (Next-to-Next-to-Leading Logs or NNLL) , etc.

Therefore, what we call leading log is not just one term, but a series of terms to all orders

in ↵S : ↵SL+ (↵SL)2 + (↵SL)3 + . . . .

This is significant, because (if we restrict ourselves to LL for now) the perturbative

expansion of the observable O is actually in two parameters:

O(↵S ,↵SL) =
1X

k,n

ok,n↵
k
S(↵SL)

n

Recall that ↵S ⇠ 0.1 ⌧ 1 and ↵SL = O(1). Thus since ↵SL � ↵S we e↵ectively have:

O(↵S ,↵SL) =
1X

n

on(↵SL)
n

This is the problem: we are trying to compute O in an expansion which is not convergent at

all! This implies that while we can compute, at least in principle, any fixed order expansion of

O(↵S) this makes no sense at all because the expansion is not convergent. Thus perturbation

theory fails.

The only way to restore the predictivity of the theory is to resum all terms ⇠ (↵SL)n, to

all orders in ↵S .

Once this is done at the LL level, we have remaining the next subleasing expansion (which

now becomes the dominant one), i.e. the NLL one in (↵SL)n/L. The story here is the same.

These have to be resummed, too. And so on and so forth.

– 7 –

Extra	material
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How	factorization	leads	to	resummation

• The	above	argument	captures	most	relevant	features;	in	reality	there	are	complications.

7.3 Major hadron collider processes

8 Resummation

Factorisation = Evolution = Resummation

Let’s consider the following very simplified expression for some observable in e+e�:

O(x) = C(x, µF )⇥D(x, µF ) + small terms ,

and since the observable O is independent of µF we have:

µF
d

dµF
(O(x)) = 0 .

This implies that:

µF
d

dµF
C(x, µF ) = � = �µF

d

dµF
D(x, µF ) .

Above � is an integration constant, known as “anomalous dimension”. We can easily integrate

the above to make the scale dependence of D explicit:

D(x, µF ) ⇠ exp


�

Z µF

d lnµF

�
⇠ (µF )

� ⇥D(x, 1) .

The above equation indicates that the scale dependence of D can be predicted - even if D is

non-perturbative!

To get rid of the convolution we can go to Mellin space:

f(N) =

Z
1

0

xN�1f(x)dx

In this space a convolution is turned into simple product:

f ⌦ g(x) �! f(N)g(N)

Let’s be more careful now and put all together:

O

✓
N,

Q2

m2

,↵S

◆
= C

✓
N,

Q2

µ2

F

,↵S

◆
·D

✓
N,

µ2

F

m2

,↵S

◆
(8.1)

9 Parton showers

10 Practicalities

10.1 Scales and scale settings

10.2 Decays of unstable particles: Narrow width approximation

10.3 HEP computational software

10.4 Integral convolution

The convolution of two smooth functions f(x) and g(x) is defined as:

f ⌦ g(z) =

Z
1

0

dx

Z
1

0

dyf(x)g(y)�(z � xy) =

Z
1

z

dx

x
f(x)g(z/x) (10.1)

– 6 –
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How	factorization	leads	to	resummation

• Problem:	the	product	“X”	is	usually	a	convolution,	not	multiplication.	This	fails	the	above	
argument.

• Solution:	go	from	momentum “x”	space	to	Mellin moment “N”	space.

7.3 Major hadron collider processes

8 Resummation

Factorisation = Evolution = Resummation

Let’s consider the following very simplified expression for some observable in e+e�:

d�

dO
= C(O,µF )⇥D(µF ) + small terms ,

and since the observable d�/dO is independent of µF we have:

µF
d

dµF

✓
d�

dO

◆
= 0 .

This implies that:

µF
d

dµF
C(O,µF ) = � = �µF

d

dµF
D(µF ) .

Above � is an integration constant, known as “anomalous dimension”. We can easily integrate

the above to make the scale dependence of D explicit:

D(µF ) ⇠ exp


�

Z µF

d lnµF

�
⇠ (µF )

� ⇥D(1) .

The above equation indicates that he scale dependence of D can be predicted - even if D is

non-perturbative!

To get rid of the convolution we can go to Mellin space:

f(N) =

Z
1

0

xN�1f(x)dx

In this space a convolution is turned into simple product:

f ⌦ g(x) �! f(N)g(N)

9 Parton showers

10 Practicalities

10.1 Scales and scale settings

10.2 Decays of unstable particles: Narrow width approximation

10.3 HEP computational software

10.4 Integral convolution

The convolution of two smooth functions f(x) and g(x) is defined as:

f ⌦ g(z) =

Z
1

0

dx

Z
1

0

dyf(x)g(y)�(z � xy) =

Z
1

z

dx

x
f(x)g(z/x) (10.1)

– 6 –

• The	dependence	on	μF is	through	dimensionless	ratios	μF/Q	for	some	kinematical	variable	Q	
(or	some	mass).

• The	μF dependence	also	enters	through	the	running	coupling	…

• The	main	point	is:

expresses	the	major	wisdom:	factorization	leads	to	evolution!	

7.3 Major hadron collider processes

8 Resummation

Factorisation = Evolution = Resummation

Let’s consider the following very simplified expression for some observable in e+e�:

O(x) = C(x, µF )⇥D(x, µF ) + small terms ,

and since the observable O is independent of µF we have:

µF
d

dµF
(O(x)) = 0 .

This implies that:

µF
d

dµF
C(x, µF ) = � = �µF

d

dµF
D(x, µF ) .

Above � is an integration constant, known as “anomalous dimension”. We can easily integrate

the above to make the scale dependence of D explicit:

D(x, µF ) ⇠ exp


�

Z µF

d lnµF

�
⇠ (µF )

� ⇥D(x, 1) .

The above equation indicates that the scale dependence of D can be predicted - even if D is

non-perturbative!

To get rid of the convolution we can go to Mellin space:

f(N) =

Z
1

0

xN�1f(x)dx

In this space a convolution is turned into simple product:

f ⌦ g(x) �! f(N)g(N)

Let’s be more careful now and put all together:

O

✓
N,

Q2

m2

,↵S

◆
= C

✓
N,

Q2

µ2

F

,↵S

◆
·D

✓
N,

µ2

F

m2

,↵S

◆
(8.1)

9 Parton showers

10 Practicalities

10.1 Scales and scale settings

10.2 Decays of unstable particles: Narrow width approximation

10.3 HEP computational software

10.4 Integral convolution

The convolution of two smooth functions f(x) and g(x) is defined as:

f ⌦ g(z) =

Z
1

0

dx

Z
1

0

dyf(x)g(y)�(z � xy) =

Z
1

z

dx

x
f(x)g(z/x) (10.1)
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How	factorization	leads	to	resummation

• Let’s	go	back	and	collect	what	we	found	so	far	(and	be	more	careful	about	the	arguments):

7.3 Major hadron collider processes

8 Resummation

Factorisation = Evolution = Resummation

Let’s consider the following very simplified expression for some observable in e+e�:

O(x) = C(x, µF )⇥D(x, µF ) + small terms ,

and since the observable O is independent of µF we have:

µF
d

dµF
(O(x)) = 0 .

This implies that:

µF
d

dµF
C(x, µF ) = � = �µF

d

dµF
D(x, µF ) .

Above � is an integration constant, known as “anomalous dimension”. We can easily integrate

the above to make the scale dependence of D explicit:

D(x, µF ) ⇠ exp


�

Z µF

d lnµF

�
⇠ (µF )

� ⇥D(x, 1) .

The above equation indicates that the scale dependence of D can be predicted - even if D is

non-perturbative!

To get rid of the convolution we can go to Mellin space:

f(N) =

Z
1

0

xN�1f(x)dx

In this space a convolution is turned into simple product:

f ⌦ g(x) �! f(N)g(N)

Let’s be more careful now and put all together:

O

✓
N,

Q2

m2

,↵S

◆
= C

✓
N,

Q2

µ2

F

,↵S

◆
·D

✓
N,

µ2

F

m2

,↵S

◆
(8.1)

9 Parton showers

10 Practicalities

10.1 Scales and scale settings

10.2 Decays of unstable particles: Narrow width approximation

10.3 HEP computational software

10.4 Integral convolution

The convolution of two smooth functions f(x) and g(x) is defined as:

f ⌦ g(z) =

Z
1

0

dx

Z
1

0

dyf(x)g(y)�(z � xy) =

Z
1

z

dx

x
f(x)g(z/x) (10.1)

– 6 –

• Q		is	some	large	scale
• m	is	some	small	(but	perturbative)	scale
• N	is	some	kinematic	variable	(rather	its	Mellin conjugate)

• The	factorization	scale	dependence	enters	exactly	as	above;	this	follows	from	the	differential	
equations	we	solved.

• How	is	the	evolution	useful?	Rewrite	it	as:

7.3 Major hadron collider processes

8 Resummation

Factorisation = Evolution = Resummation

Let’s consider the following very simplified expression for some observable in e+e�:

O(x) = C(x, µF )⇥D(x, µF ) + small terms ,

and since the observable O is independent of µF we have:

µF
d

dµF
(O(x)) = 0 .

This implies that:

µF
d

dµF
C(x, µF ) = � = �µF

d

dµF
D(x, µF ) .

Above � is an integration constant, known as “anomalous dimension”. We can easily integrate

the above to make the scale dependence of D explicit:

D(x, µF ) ⇠ exp


�

Z µF

d lnµF

�
⇠ (µF )

� ⇥D(x, 1) .

The above equation indicates that the scale dependence of D can be predicted - even if D is

non-perturbative!

To get rid of the convolution we can go to Mellin space:

f(N) =

Z
1

0

xN�1f(x)dx

In this space a convolution is turned into simple product:

f ⌦ g(x) �! f(N)g(N)

Let’s be more careful now and put all together:

O

✓
N,

Q2

m2

,↵S

◆
= C

✓
N,

Q2

µ2

F

,↵S

◆
·D

✓
N,

µ2

F

m2

,↵S

◆
(8.1)

Rewrite the above equation as:

O

✓
N,

Q2

m2

,↵S

◆
= C

✓
N,

Q2

µ2

F

,↵S

◆
· E

✓
N,

µ2

F

µ2

0

,↵S

◆
·D

✓
N,

µ2

0

m2

,↵S

◆
(8.2)

– 6 –

• Above	μF and	μ0 are	two	distinct	factorization	scales.	
• Choose:	μF ≈	Q	and	μ0	≈	m	
• Then	the	functions	C	and	D	have	no	large	ratios	of	scales:	C(N,1)	and	D(N,1).
• C(N,1)	can	be	computed	perturbatively (in	this	case	perturbation	theory	works	at	its	best)
• D(N,1)	does	not	depend	on	any	scales	– just	on	one	kinematic	variable	and	can	be	extracted	

from	data.
• The	only	remaining	piece	is	E.	It	is	perturbative.	It	is	process-independent.	It	only	depends	on	

the	anomalous	dimension	and	the	strong	coupling.	It	depends	on	the	ratio	of	two	very	
different	scales.

Extra	material
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How	factorization	leads	to	resummation

• Let’s	go	back	and	collect	what	we	found	so	far	(and	be	more	careful	about	the	arguments):

7.3 Major hadron collider processes

8 Resummation

Factorisation = Evolution = Resummation

Let’s consider the following very simplified expression for some observable in e+e�:

O(x) = C(x, µF )⇥D(x, µF ) + small terms ,

and since the observable O is independent of µF we have:

µF
d

dµF
(O(x)) = 0 .

This implies that:

µF
d

dµF
C(x, µF ) = � = �µF

d

dµF
D(x, µF ) .

Above � is an integration constant, known as “anomalous dimension”. We can easily integrate

the above to make the scale dependence of D explicit:

D(x, µF ) ⇠ exp


�

Z µF

d lnµF

�
⇠ (µF )

� ⇥D(x, 1) .

The above equation indicates that the scale dependence of D can be predicted - even if D is

non-perturbative!

To get rid of the convolution we can go to Mellin space:

f(N) =

Z
1

0

xN�1f(x)dx

In this space a convolution is turned into simple product:
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✓
N,

Q2

µ2

F

,↵S

◆
·D

✓
N,

µ2

F

m2

,↵S

◆
(8.1)

Rewrite the above equation as:

O

✓
N,

Q2

m2

,↵S

◆
= C

✓
N,

Q2

µ2

F

,↵S

◆
· E

✓
N,

µ2

F

µ2

0

,↵S

◆
·D

✓
N,

µ2

0

m2

,↵S

◆
(8.2)

– 6 –
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8 Resummation

Factorisation = Evolution = Resummation
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If we now use the evolution equation we can solve for E (we choose µF = Q and µ
0

= m):
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and	E(N,1)	can	be	computed	perturbatively.

• The	above	equation	is	very	general	

• In	particular,	if	the	anomalous	dimension	depends	on	the	kinematics	(i.e.	N)	we	get	the	
DGLAP	evolution	equation;	the	anomalous	dimension	are	the	AP	splitting	functions!

• There	is	more:	rewriting	the	above	result	the	way	we	did,	allows	us	to	remove	any	large	log	
from	our	results	(will	explain	later):Finally we get:

O
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Q2

m2

,↵S

◆
= C (N, 1,↵S) · E (N, 1,↵S) ·D (N, 1,↵S) · exp

"Z Q2

m2
�(↵S(µ))

dµ

µ

#
.

9 Parton showers

10 Practicalities

10.1 Scales and scale settings

10.2 Decays of unstable particles: Narrow width approximation

10.3 HEP computational software

10.4 Integral convolution

The convolution of two smooth functions f(x) and g(x) is defined as:

f ⌦ g(z) =

Z
1

0

dx

Z
1

0

dyf(x)g(y)�(z � xy) =

Z
1

z

dx

x
f(x)g(z/x) (10.1)

10.5 Loop and Phase space integrals

One central identity in dealing with phase space integrals:

x�1+" =
1

"
�(x) +

1X

n=0

"n

n!


lnn(x)

x

�

+

(10.2)

11 Recap: what did we learn?

• Approximations, approximations, approximations

• Do not be afraid of approximations

• Working approximately is not a sign of weakness or inferiority; it is a grand mastery!

• We use many schemes, approximations and modelling at intermediate stages. Nonethe-

less everything we do is fully consistent and observables are eventually scheme- and

modelling-independent.
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We	close	the	circle:	Factorization	è Evolution	è Resummation

Extra	material
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Resummation:	collinear	logs

• The	logs	are	two	types:
• Collinear	
• Soft

• Collinear	logs	are	simpler;	they	originate	from	small	masses.	Imagine	we	have	a	small	mass	
m.	By	small	we	mean	not	the	absolute	size	of	m	but	relative	to	other	hard	scales	in	the	
problem.	Let	Q	be	one	such	scale	and	m<<Q.	Let	also	assume	that	all	other	kinematical	scales	
(if	present)	are	also	large	and	of	the	order	of	Q.	

• Thus:		s=m^2/Q^2<<1					and							L=Log[m^2/Q^2]>>1	.
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Here is how the exponentiation works:

Recall:

L = ln

✓
m2

Q2

◆

e�0↵SL =

✓
m2

Q2

◆�0↵S

9 Monte Carlo techniques

Let f(x) be some probability density function (we imagine it corresponds to some di↵erential

distribution). Within an analytical integration approach we can ask what is the value

F (a, b) =

Z b

a
f(x)dx

In e↵ect this is a bin. Clearly this is only well defined if a 6= b and therefore we cannot ask, or

predict, what is the measured value of F in a single point F (a, a). Alternatively, we cannot

ask, or predict, single events.

Yet single events happen all the time at colliders.

MC convergence for N events behaves

⇠ 1p
N

10 Fixed order calculations: LO

d�

dO
=

X

ij=g,u,ū,...

Z
fi(x1)fj(x2)

2s

����Mij(p1, p2 ! q1, . . . , qn)

����
2

�

✓
O�FO(q1, . . . , qn)

◆
d�(q1, . . . , qn)dx1dx2

where:

p1 = x1P1 ; p2 = x2P2

d�(q1, . . . , qn) = (2⇡)4�4(p1 + p2 � q1 · · ·� qn)
d3q1

(2⇡)32E1
. . .

d3qn�1

(2⇡)32En�1

(10.1)

d�(q1, . . . , qn) =
d3q1

(2⇡)32E1
. . .
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= J(z1, . . . , z3(n�1))dz1 . . . dz3(n�1)
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dO
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Z
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����
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�

✓
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◆
d�(q1, . . . , qn)dx1dx2
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Recall: Therefore: Well-behaving	
function!
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Resummation:	soft	logs

• The	soft	logs	are	trickier.

• We	get	up	to	two	powers	of	logs	per	power	of	αS.
• Soft	logs	are	more	entangled.	They	“exponentiate”	not	just	as	simple	numbers	(like	the	

collinear	logs)	but	rather	as	color	matrices.

>>	Exponentiation	is	synonymous	to	resummation	<<	

• For	soft	logs	the	small	parameter	“s”	is	not	a	fixed	parameter	(like	the	mass	was)	but	is	a	
kinematical	variable!

• Therefore,	s	can	be	small	in	some	kinematical	configurations	but	large	in	others!

• To	understand	soft	logs	one	first	have	to	identify	the	kinematical	configurations	where	
they	can	emerge.	How	do	we	do	that?

• This	is	done	on	a	case	by	case	basis,	separately	for	each	process	and	observable.

• These	are	configurations	that	are	close	to	the	edge	of	phase	space.	In	such	
configurations	the	emission	of	hard	radiation	is	impossible	since	in	this	kinematical	
corner	there	is	simply	no	energy	available	for	radiating	anything	but	a	soft	gauge	boson.
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Resummation:	soft	logs

• Examples

• Drell-Yan																													(s-partonic c.m.	energy;	Q	mass	of	the	lepton	pair)

• Inclusive	Higgs	production

• Inclusive	top	pair	production																											,		m- mass	of	top	quark

• Top	quark	pair	invariant	mass

• In	all	cases	the	“soft	limit”	is	when	z->1.	The	large	logs	are	Logn[1-z]/(1-z).	In	Mellin space						
z<->N	this	corresponds	to	Logn(N)	(for	N->∞).

• What	this	implies	is	that	in	all	cases,	when	z->1,	all	the	energy	available	to	the	system	is	
barely	enough	to	produce	the	required	final	state,	and	very	little	energy	left	for	extra	
radiation.

• The	total	energy	available	for	radiation	is	Erad=(1-z)√s	->	0.

2

II. THRESHOLD RESUMMATION AT FIXED KINEMATICS

In this section, we review the threshold resummation formalism of Ref. [5], which is adapted to semi-inclusive
reactions characterized by fixed partonic scattering kinematics, as in for example,

f1(p1) + f2(p2) → fa(pa) + fb(pb) , (1)

where fi(pi) denotes a parton of flavor fi and momentum pi. We have shown a 2 → 2 process, but final states with
more than two particles are also possible, so long as all invariants pi · pj are large. The formalism we sketch in this
section applies to processes involving light quarks and gluons, and also to the production of heavy quarks. In the
latter case, we can also study the inclusive cross section, for which threshold resummation has been developed from a
related point of view [4]. In Section III we will derive resummed inclusive cross sections for heavy quark production
from their semi-inclusive forms.

A. Factorization near partonic threshold

Our starting point for the resummation of observables involving initial and/or final state hadrons is the formalism
of Ref. [5]. To be specific, we restrict our discussion to the 2 → 2 processes of Eq. (1), although many of our
considerations can be directly generalized. For the production of a pair of particles with mass m, the kinematics can
be described by the invariant mass M and rapidity y of the partonic final state and the pair center-of-mass rapidity
difference η̂. Assuming that m ≫ ΛQCD, this cross section can be written in standard factorized form as

M4 dσh1h2→QQ̄

dM2dydη̂
=
∑

f

∫ 1

τ
dz

∫

dxa

xa

dxb

xb
φf/h1

(xa, µ2)φf̄/h2
(xb, µ

2)

× δ

(

z − τ

xaxb

)

δ

(

y − 1

2
ln

xa

xb

)

× ωff̄→QQ̄

(

z, η̂,
M2

µ2
,
m2

µ2
, αs(µ

2)

)

, (2)

where we have normalized the cross section so that all quantities are dimensionless. The purpose of threshold
resummation is to organize plus distributions in the variable

z =
τ

xaxb
=

M2

xaxbS
, (3)

with xa and xb the usual fractional momenta. Partonic threshold is defined as the limit z → 1, at which the incoming
partons provide just enough energy to produce the observed final state. The mismatch between real gluon emission
and virtual corrections gives rise to singular distributions at z = 1. These distributions appear in the nth order
expansion of the perturbative function ωff̄→QQ̄ up to the level of αn

s [ln2n−1(1 − z)/(1 − z)]+.
In Ref. [5], it was observed that as z → 1, partonic cross sections can be factorized into a set of universal factors

associated with the incoming and outgoing partons of the underlying process, along with process-dependent factors
that describe the coherent interactions of those partons, at short and long distances. The resummed dependence in
1 − z is conveniently generated by taking Mellin moments with respect to z, schematically,

σ(N) =

∫ 1

0
dzzN−1σ(z)

=

∫ 1

0
dze−(N−1)(1−z)σ(z) + O(1/N) . (4)

For example, in the inclusive Drell-Yan process, the corresponding kinematical variable is z = Q2/s, where s is the
partonic c.m. energy [3]. For resummation of the total inclusive cross section of heavy quark pair production at hadron
colliders the corresponding variable is z = 4m2/s where m is the mass of the top quark. Another example relevant
for this paper is the invariant mass M2

tt̄ = (pt + pt̄)
2 distribution of a top quark-antiquark pair; the relevant partonic

variable is z = M2
tt̄/s. In any case we assume that the partonic variable is defined such that threshold kinematics is

attained in the limit z → 1. In moment space this corresponds to the limit N → ∞. The analysis of Ref. [5] exploits
factorization near threshold, according to which the cross section can be written as a convolution in an appropriate

Finally we get:

O

✓
N,

Q2

m2

,↵S

◆
= C (N, 1,↵S) · E (N, 1,↵S) ·D (N, 1,↵S) · exp

"Z Q2

m2
�(↵S(µ))

dµ

µ

#
.

Let s be some small parameter, s << 1, while s > 0. Denote L = log(s). Let O be some

observable with the following perturbative expansion:

O = O(0) + ↵S (a
1

L+ . . . ) + ↵2

S

�
a
2

L2 + b
1

L+ . . .
�
+O(↵3

S)

Basically, at each order of ↵S we get higher and higher accompanying powers of L.

The maximum power of L is di↵erent for soft and collinear logs. For the example above,

for each power of ↵n
S we get terms like:

• ↵n
SL

n (Leading Logs, or LL) ,

• ↵n
SL

n�1 (Next-to-Leading Logs or NLL) ,

• ↵n
SL

n�2 (Next-to-Next-to-Leading Logs or NNLL) , etc.

Therefore, what we call leading log is not just one term, but a series of terms to all orders

in ↵S : ↵SL+ (↵SL)2 + (↵SL)3 + . . . .

This is significant, because (if we restrict ourselves to LL for now) the perturbative

expansion of the observable O is actually in two parameters:

O(↵S ,↵SL) =
1X

k,n

ok,n↵
k
S(↵SL)

n

Recall that ↵S ⇠ 0.1 ⌧ 1 and ↵SL = O(1). Thus since ↵SL � ↵S we e↵ectively have:

O(↵S ,↵SL) =
1X

n

on(↵SL)
n

This is the problem: we are trying to compute O in an expansion which is not convergent at

all! This implies that while we can compute, at least in principle, any fixed order expansion of

O(↵S) this makes no sense at all because the expansion is not convergent. Thus perturbation

theory fails.

The only way to restore the predictivity of the theory is to resum all terms ⇠ (↵SL)n, to

all orders in ↵S .

Once this is done at the LL level, we have remaining the next subleasing expansion (which

now becomes the dominant one), i.e. the NLL one in (↵SL)n/L. The story here is the same.

These have to be resummed, too. And so on and so forth.

Examples for kinematic soft log variables:

z = m2

H/s
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of Ref. [5]. To be specific, we restrict our discussion to the 2 → 2 processes of Eq. (1), although many of our
considerations can be directly generalized. For the production of a pair of particles with mass m, the kinematics can
be described by the invariant mass M and rapidity y of the partonic final state and the pair center-of-mass rapidity
difference η̂. Assuming that m ≫ ΛQCD, this cross section can be written in standard factorized form as

M4 dσh1h2→QQ̄
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=
∑
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where we have normalized the cross section so that all quantities are dimensionless. The purpose of threshold
resummation is to organize plus distributions in the variable

z =
τ

xaxb
=

M2

xaxbS
, (3)

with xa and xb the usual fractional momenta. Partonic threshold is defined as the limit z → 1, at which the incoming
partons provide just enough energy to produce the observed final state. The mismatch between real gluon emission
and virtual corrections gives rise to singular distributions at z = 1. These distributions appear in the nth order
expansion of the perturbative function ωff̄→QQ̄ up to the level of αn

s [ln2n−1(1 − z)/(1 − z)]+.
In Ref. [5], it was observed that as z → 1, partonic cross sections can be factorized into a set of universal factors

associated with the incoming and outgoing partons of the underlying process, along with process-dependent factors
that describe the coherent interactions of those partons, at short and long distances. The resummed dependence in
1 − z is conveniently generated by taking Mellin moments with respect to z, schematically,

σ(N) =

∫ 1

0
dzzN−1σ(z)

=

∫ 1

0
dze−(N−1)(1−z)σ(z) + O(1/N) . (4)

For example, in the inclusive Drell-Yan process, the corresponding kinematical variable is z = Q2/s, where s is the
partonic c.m. energy [3]. For resummation of the total inclusive cross section of heavy quark pair production at hadron
colliders the corresponding variable is z = 4m2/s where m is the mass of the top quark. Another example relevant
for this paper is the invariant mass M2

tt̄ = (pt + pt̄)
2 distribution of a top quark-antiquark pair; the relevant partonic

variable is z = M2
tt̄/s. In any case we assume that the partonic variable is defined such that threshold kinematics is

attained in the limit z → 1. In moment space this corresponds to the limit N → ∞. The analysis of Ref. [5] exploits
factorization near threshold, according to which the cross section can be written as a convolution in an appropriate



58

Resummation:	how	to	resum	soft	logs?

• The	way	to	describe	soft	gluon	radiation	(i.e.	the	system	in	the	“soft	limit”)	is	to	work	in	the	
eikonal approximation.

• In	this	approximation	we	take	the	so	called	Born	configuration	and	treat	it	semi-classically.		

• We	think	the	basic	Born-level	particles	follow	their	classical	trajectories	as	if	no	radiation	
takes	place,	and	on	top	of	this	we	add	radiation	which	does	not	exert	any	back-reaction	on	
the	hard	emitting	particles	(called	eikonals).

• In	effect	we	need	to	compute	the	S-matrix	in	the	eikonal approximation.	This	is	much	easier.	

• Think	about	it	this	way:	the	theory	is	rather	complicated	in	general.	But	once	we	approach	a	
singular	limit	then	everything	simplifies.	Why?	Because	close	to	a	singularity	the	whole	
dynamics	is	dominated	by	the	leading	power	in	the	singular	variable	and	everything	else	is	
strongly	suppressed.

• In	other	words,	close	to	the	z->1	limit	(or	N->∞)	the	cross-section	is	dominated	by	its	most	
singular	term	and	it	naturally	can	be	furthered	factorized.	An	example	follows:

Extra	material
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Resummation:	how	to	resum	soft	logs?

• Resummation	in	top	pair	production	(the	most	complex	case	you	may	consider)

2

II. THRESHOLD RESUMMATION AT FIXED KINEMATICS

In this section, we review the threshold resummation formalism of Ref. [5], which is adapted to semi-inclusive
reactions characterized by fixed partonic scattering kinematics, as in for example,

f1(p1) + f2(p2) → fa(pa) + fb(pb) , (1)

where fi(pi) denotes a parton of flavor fi and momentum pi. We have shown a 2 → 2 process, but final states with
more than two particles are also possible, so long as all invariants pi · pj are large. The formalism we sketch in this
section applies to processes involving light quarks and gluons, and also to the production of heavy quarks. In the
latter case, we can also study the inclusive cross section, for which threshold resummation has been developed from a
related point of view [4]. In Section III we will derive resummed inclusive cross sections for heavy quark production
from their semi-inclusive forms.

A. Factorization near partonic threshold

Our starting point for the resummation of observables involving initial and/or final state hadrons is the formalism
of Ref. [5]. To be specific, we restrict our discussion to the 2 → 2 processes of Eq. (1), although many of our
considerations can be directly generalized. For the production of a pair of particles with mass m, the kinematics can
be described by the invariant mass M and rapidity y of the partonic final state and the pair center-of-mass rapidity
difference η̂. Assuming that m ≫ ΛQCD, this cross section can be written in standard factorized form as

M4 dσh1h2→QQ̄

dM2dydη̂
=
∑
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τ
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∫
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φf/h1

(xa, µ2)φf̄/h2
(xb, µ

2)
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where we have normalized the cross section so that all quantities are dimensionless. The purpose of threshold
resummation is to organize plus distributions in the variable

z =
τ

xaxb
=

M2

xaxbS
, (3)

with xa and xb the usual fractional momenta. Partonic threshold is defined as the limit z → 1, at which the incoming
partons provide just enough energy to produce the observed final state. The mismatch between real gluon emission
and virtual corrections gives rise to singular distributions at z = 1. These distributions appear in the nth order
expansion of the perturbative function ωff̄→QQ̄ up to the level of αn

s [ln2n−1(1 − z)/(1 − z)]+.
In Ref. [5], it was observed that as z → 1, partonic cross sections can be factorized into a set of universal factors

associated with the incoming and outgoing partons of the underlying process, along with process-dependent factors
that describe the coherent interactions of those partons, at short and long distances. The resummed dependence in
1 − z is conveniently generated by taking Mellin moments with respect to z, schematically,

σ(N) =

∫ 1

0
dzzN−1σ(z)

=

∫ 1

0
dze−(N−1)(1−z)σ(z) + O(1/N) . (4)

For example, in the inclusive Drell-Yan process, the corresponding kinematical variable is z = Q2/s, where s is the
partonic c.m. energy [3]. For resummation of the total inclusive cross section of heavy quark pair production at hadron
colliders the corresponding variable is z = 4m2/s where m is the mass of the top quark. Another example relevant
for this paper is the invariant mass M2

tt̄ = (pt + pt̄)
2 distribution of a top quark-antiquark pair; the relevant partonic

variable is z = M2
tt̄/s. In any case we assume that the partonic variable is defined such that threshold kinematics is

attained in the limit z → 1. In moment space this corresponds to the limit N → ∞. The analysis of Ref. [5] exploits
factorization near threshold, according to which the cross section can be written as a convolution in an appropriate
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where fi(pi) denotes a parton of flavor fi and momentum pi. We have shown a 2 → 2 process, but final states with
more than two particles are also possible, so long as all invariants pi · pj are large. The formalism we sketch in this
section applies to processes involving light quarks and gluons, and also to the production of heavy quarks. In the
latter case, we can also study the inclusive cross section, for which threshold resummation has been developed from a
related point of view [4]. In Section III we will derive resummed inclusive cross sections for heavy quark production
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considerations can be directly generalized. For the production of a pair of particles with mass m, the kinematics can
be described by the invariant mass M and rapidity y of the partonic final state and the pair center-of-mass rapidity
difference η̂. Assuming that m ≫ ΛQCD, this cross section can be written in standard factorized form as
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where we have normalized the cross section so that all quantities are dimensionless. The purpose of threshold
resummation is to organize plus distributions in the variable

z =
τ

xaxb
=

M2

xaxbS
, (3)

with xa and xb the usual fractional momenta. Partonic threshold is defined as the limit z → 1, at which the incoming
partons provide just enough energy to produce the observed final state. The mismatch between real gluon emission
and virtual corrections gives rise to singular distributions at z = 1. These distributions appear in the nth order
expansion of the perturbative function ωff̄→QQ̄ up to the level of αn

s [ln2n−1(1 − z)/(1 − z)]+.
In Ref. [5], it was observed that as z → 1, partonic cross sections can be factorized into a set of universal factors

associated with the incoming and outgoing partons of the underlying process, along with process-dependent factors
that describe the coherent interactions of those partons, at short and long distances. The resummed dependence in
1 − z is conveniently generated by taking Mellin moments with respect to z, schematically,

σ(N) =

∫ 1

0
dzzN−1σ(z)

=

∫ 1

0
dze−(N−1)(1−z)σ(z) + O(1/N) . (4)

For example, in the inclusive Drell-Yan process, the corresponding kinematical variable is z = Q2/s, where s is the
partonic c.m. energy [3]. For resummation of the total inclusive cross section of heavy quark pair production at hadron
colliders the corresponding variable is z = 4m2/s where m is the mass of the top quark. Another example relevant
for this paper is the invariant mass M2

tt̄ = (pt + pt̄)
2 distribution of a top quark-antiquark pair; the relevant partonic

variable is z = M2
tt̄/s. In any case we assume that the partonic variable is defined such that threshold kinematics is

attained in the limit z → 1. In moment space this corresponds to the limit N → ∞. The analysis of Ref. [5] exploits
factorization near threshold, according to which the cross section can be written as a convolution in an appropriate
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latter case, we can also study the inclusive cross section, for which threshold resummation has been developed from a
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be described by the invariant mass M and rapidity y of the partonic final state and the pair center-of-mass rapidity
difference η̂. Assuming that m ≫ ΛQCD, this cross section can be written in standard factorized form as

M4 dσh1h2→QQ̄

dM2dydη̂
=
∑

f

∫ 1

τ
dz

∫

dxa

xa

dxb

xb
φf/h1

(xa, µ2)φf̄/h2
(xb, µ

2)

× δ

(

z − τ

xaxb

)

δ

(

y − 1

2
ln

xa

xb

)

× ωff̄→QQ̄

(

z, η̂,
M2

µ2
,
m2

µ2
, αs(µ

2)

)

, (2)

where we have normalized the cross section so that all quantities are dimensionless. The purpose of threshold
resummation is to organize plus distributions in the variable

z =
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, (3)

with xa and xb the usual fractional momenta. Partonic threshold is defined as the limit z → 1, at which the incoming
partons provide just enough energy to produce the observed final state. The mismatch between real gluon emission
and virtual corrections gives rise to singular distributions at z = 1. These distributions appear in the nth order
expansion of the perturbative function ωff̄→QQ̄ up to the level of αn

s [ln2n−1(1 − z)/(1 − z)]+.
In Ref. [5], it was observed that as z → 1, partonic cross sections can be factorized into a set of universal factors

associated with the incoming and outgoing partons of the underlying process, along with process-dependent factors
that describe the coherent interactions of those partons, at short and long distances. The resummed dependence in
1 − z is conveniently generated by taking Mellin moments with respect to z, schematically,
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=

∫ 1

0
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For example, in the inclusive Drell-Yan process, the corresponding kinematical variable is z = Q2/s, where s is the
partonic c.m. energy [3]. For resummation of the total inclusive cross section of heavy quark pair production at hadron
colliders the corresponding variable is z = 4m2/s where m is the mass of the top quark. Another example relevant
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2 distribution of a top quark-antiquark pair; the relevant partonic
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tt̄/s. In any case we assume that the partonic variable is defined such that threshold kinematics is

attained in the limit z → 1. In moment space this corresponds to the limit N → ∞. The analysis of Ref. [5] exploits
factorization near threshold, according to which the cross section can be written as a convolution in an appropriate

• The	cross-section	
factorizes	as:

3

momentum component of the soft radiation associated with a set of functions [9]. In threshold resummation for
hadronic collisions, this component is the energy, E∗

i , of each final-state particle in the center-of-mass frame of the
hard collision. That is, for any threshold resummation at hadronic collisions, we can identify

1 − z =
∑

particles i

2E∗
i√
s

, (5)

where the partonic variable s ≡ xaxbS equals M2 at threshold, with M the invariant mass of the observed pair of heavy
particles. The cross section then factorizes into simple products in the corresponding moment space. Dependence on
the moment variable enters only through the transform, and is therefore always in the form N/M , up to corrections
that decrease as powers of N .

As a result of this analysis, the partonic cross section takes a factorized form in moment space, which we can
represent as

ωP

(

N, η̂,
M2

µ2
,
m2

µ2
, αs(µ

2)

)

= J1(N, αs(µ
2)) . . . Jk(N, M/µ, m/µ, αs(µ

2))

× Tr

[

H
P

(

M2

µ2
,
m2

µ2
, η̂, αs(µ

2)

)

S
P

(

N2µ2

M2
,
M2

m2
, η̂, αs(µ

2)

)]

+ O(1/N) , (6)

where the label P refers to a particular partonic process, for example qq̄ → tt̄, with q a light flavor. The Mellin
moment N is conjugate to the kinematical variable z. As shown, the various functions appearing in Eq. (6) depend
on other kinematical variables and masses as well as the factorization and renormalization scales. These functions
depend on the specific process. Below, we will give them more explicitly in the specific examples considered here. We
will refer to the factors Ji appearing in Eq. (6) as the jet functions for the underlying process. They are color diagonal
functions that describe the factorized dynamics of initial and/or final state hard partons, whether massive or massless,
and as such are independent of the details of the hard subprocess. Jet functions for initial-state partons absorb the
collinear subtractions necessary to define the hard scattering function ω in Eq. (6), so that they are infrared safe. Jet
functions for final-state partons are automatically infrared safe for the differential and inclusive cross sections that
we discuss here. The formalism can be extended as well to a variety of jet observables and to single-hadron cross
sections. The number k of such functions in Eq. (6) corresponds to the number of hard colored partons in the process
being considered.

The functions H and S appearing in Eq. (6) are known as hard and soft functions, respectively. They are both
matrices in the space of tensors that describe the exchange of color at short distances [5]. Examples for quark-
antiquark scattering are color singlet or octet in the s- or t-channel. We will denote these tensors in boldface, and
their product is traced over the combinations of color tensors in the amplitude and its complex conjugate. In the limit
N → ∞ the hard function H is free of logarithmic dependence on N ; it is obtained from a dedicated, process-specific
calculation.

B. Moment-dependence and the soft anomalous dimension matrix

The soft function S contains terms due to wide-angle soft emissions and thus contributes a single power of ln(N)
per loop. It is also process dependent, and in the general case is dependent on the four-velocities {βi} of the partons
that take part in the hard scattering. For processes involving four or more colored hard partons it is a matrix in
the space of color tensors. Assuming fixed-angle scattering, the soft function depends on the scalar products of these
velocities, in addition to a single overall scale, which we will take to be M , the invariant mass of the pair for the
case of heavy quark production. For a massive quark of velocity βq, we shall set β2

q = m2
q/M

2, and for most of this
discussion, treat this ratio as a number of order unity.

As noted above, all N -dependence is of the form N/M . As a result, in the dimensionless soft function, N -dependence
appears only in the combination M/(Nµ). In Ref. [5], it was shown that the N -dependence of the soft function
S(N, . . . ) entering the cross section Eq. (6) can be made explicit in terms of a “soft anomalous dimension matrix”,

• The	most	important	ingredient	is	
the	so-called	“soft	function”	which	
we	derive	by	computing	the	S-matrix
in	the	eikonal approximation.
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ΓS . Making the natural choice, µ = M , we have
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, (7)

where the second expression is accurate to next-to-next-to leading logarithms (i.e. terms ∼ αn
s lnn−1 N in the cross

section) for N̄ = NeγE , with γE the Euler constant. Throughout this paper αs = αs(µ2) is the standard MS coupling
evolving with NL light flavors. Decoupling of the heavy flavor will simplify our results significantly. The relation
between the bare αb

s and renormalized couplings reads

αb
sSϵ = αs(µ

2)

[

1 − β0

4ϵ

αs(µ2)

π
+ O(α2

s)

]

, (8)

where Sϵ = (4π)ϵ exp(−ϵγE) and β0 = (11/3)CA − (4/3)TF NL. The color factors in an SU(N)-gauge theory are
CA = N , CF = (N2 − 1)/(2N) and TF = 1/2.

The structure of Eq. (7) follows from the renormalization group equation satisfied by the soft function
S(N2µ2/M2, . . . ), where ΓS plays the role of a matrix of anomalous dimensions [5]. The function S(1, . . . ) plays
the role of a boundary condition, which is chosen to be the soft function at unit N , that is, with unit weight. In
general, this factor contributes a single ln(N) starting from two loops, which is due, however, entirely to the presence
of N in the scale of the running coupling in its one-loop expression. To determine this contribution one need only
calculate the soft function in Eq. (6) through one loop.

At N = 1, the computation of the soft function is given by a total eikonal cross section, subtracted for eikonal
jet functions to eliminate collinear enhancements [5]. In the formalism of Ref. [5], virtual corrections are pure
counterterms, because the corresponding eikonal diagrams are scaleless and vanish in dimensional regularization. In
the full soft function, however, the hard scale sets a maximum total energy for the soft function at N = 1, and
the corresponding integrals are not scaleless. Their infrared poles are cancelled by the virtual diagrams, but finite
corrections may remain.

In summary, the soft function S at N = 1 takes the form

S
(

1, βi · βj , αs

(

M2/N2
))

= S
(0) +

αs

(

M2/N2
)

π
S

(1) (1, βi · βj) + . . . , (9)

where S(0) is a constant diagonal matrix independent of the coupling and S(1) (1, βi · βj) is free of dependence on N ,
but can depend on the eikonal velocities that define the soft function. Explicit expressions for S(0) relevant to heavy
quark production can be found in [10]. We will give the one-loop correction below, after specifying a scheme that
defines the soft function unambiguously. At this stage, we note that to compute the soft function fully at next-to-
next to leading logarithm it is necessary to compute the two-loop anomalous dimension matrix and the one-loop soft
function.

C. The form factor scheme

The soft function is not unique, but is ambiguous at the level of single logarithmic contributions that can be
absorbed into the jet functions. These ambiguities, must be proportional to the unit matrix in the color exchange
space (since the jet functions are diagonal in color). To resolve this ambiguity one has to specify a prescription for
the definition of the anomalous dimension matrix ΓS , which we discuss next.

• Do	you	see	the	exponents?	They	produce	the	LL,	NLL,	etc
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Resummation:	the	Sudakov formfactor

• Jet	functions	read

6

D. Jet functions for incoming partons

We start with the jet function Jin for an initial state hard parton (quark or gluon) which is basic for all hadron
collider processes. To this end, we can use the well known results from Drell-Yan vector boson or Higgs boson
production. In these reactions, Eq. (6) takes the form

σP (N, Q) =
[

JP
in(N, Q)

]2
H(Q)S(N, Q) + O(1/N) , (13)

for P ∈ (q ↔ DY, g ↔ Higgs). In the two processes, the hard scale Q is simply the virtuality of the outgoing color
singlet vector boson in DY or the mass of the Higgs boson. Since in these two reactions exactly two hard colored
partons are involved, the hard and soft functions are just 1 × 1 matrices, i.e. the color structure is trivial. Upon
setting ln(µ2/s) = 0 in the results of Ref. [13], it follows that the soft-anomalous dimension matrix vanishes through
two-loops (and possibly to all orders [13, 14, 15, 16]). Therefore, in Drell-Yan and Higgs boson production we have
simply S(N, Q) = 1. Thus, the jet function Jin is simply the square root of the corresponding Sudakov factors, see
for example Refs. [22, 23]:

lnJP
in(N, Q) =

1

2

∫ 1

0
dx

xN−1 − 1

1 − x

{

∫ (1−x)2Q2

µ2

F

dq2

q2
2 AP

(

αs

[

q2
])

+ DP

(

αs

[

(1 − x)2Q2
])

}

. (14)

The functions AP , P = (q, g) and DP , P = (q, g) are currently known through three loops ([24, 25] and [22, 26, 27]
respectively). The factorization scale µF appearing in Eq. (14) is related to the factorization of the non-perturbative
parton distributions, assumed to be defined in the MS scheme. Utilizing a perturbative distribution function [28, 29, 30]
one can also extend that result to processes initiated by massive partons [18].

The derivation of the jet functions for final state hard partons is more involved since these depend on the definition
of the observable. Similarly to Drell-Yan/Higgs, one can use the vanishing of the soft anomalous dimension matrix
(and thus the absence of non-trivial soft-gluon correlations) in any process involving two hard colored partons in order
to extract various jet factors. For example, jet functions for “observed” outgoing hard partons (fragmentation) can
be derived from semi-inclusive e+e− annihilation to hadrons [31, 32, 33, 34]. Extension to the massive case can be
done in a fashion similar to the case of Drell-Yan discussed above.

Of particular interest to us in this work are observables with inclusive final states; a very well known example is
inclusive DIS [3, 23] which can be treated similarly to Drell-Yan and e+e−, as discussed above. We are furthermore
interested in processes with non-trivial color correlations, like the resummation of soft-gluons at NNLL in tt̄ hadro-
production. In order to calculate all jet factors that enter that observable we need to first specify the soft anomalous
dimension matrix in this process which is done in section IV. The calculation of the final state jet factors and the
final result for the cross section are relegated to section V.

Finally we would like to comment on the process independence of the various jet factors discussed above. In
principle, the presence of a process dependent hard scale Q indicates process dependence of the whole result. What is
process independent is the functional form of the corresponding jet functions, while the dependence of the hard scale
should be thought of as a sort of functional argument related to the phase-space for soft-gluon radiation available in
the given process. Therefore in different processes the “argument” of the jet functions will in general be different but
their functional form stays the same.

III. FROM DIFFERENTIAL TO INCLUSIVE CROSS SECTIONS

The resummed partonic hard scattering function ωP (z) at fixed invariant mass is found from its moments with
respect to z = M2/s, with M the pair invariant mass and s the partonic center of mass energy squared. The fully
inclusive hard scattering cross section is then found by integrating over M , or equivalently, over z, and the result is
a function of

ρ ≡ 4m2

s
(15)

only. We must also integrate over the center-of-mass scattering angle (equivalently, η̂ above), but as we shall see, this
does not affect our reasoning, and we suppress this integral for simplicity of notation. In expressing our results, we
will find it useful to note that the ratio of pair and particle masses obeys the relation

4m2

M2
=

ρ

z
. (16)

Real	radiation Virtual	corrections	(i.e.	no-emission	probability)

• Jet	functions	are	process	independent	and	can	be	extracted,	for	example,	from	Drell-Yan	
and/or	Higgs	production	and	hadron	colliders.

• The	jet	function	describes	the	independent	evolution	of	an	initial	hard,	well-separated,	
parton	(quark	or	gluon).

• It	contains	both	real	emissions	and	pure	virtual	corrections.	

• Note	the	virtual	piece.	It	can	be	interpreted	as	no-emission	probability.	It	is	a	fundamental	
ingredient	in	parton	showers	and	many	higher-order	calculations!	

• In	reality,	the	R	and	V	pieces	are	separately	divergent	(when	zà1,	i.e.	soft	emissions).	The	
proper	definition	of	no-emission	probability	requires	virtual	+	unresolved	soft	emissions,	
which	is	finite.	We	will	return	to	it	later.

Extra	material
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Resummation:	final	comments
• What	is	the	moral	of	the	story?	There	is	hardly	any	other	subject	in	our	field	which	stirs	more	

emotions	and	controversies	than	the	application	of	soft-gluon	resummation.

• Everyone	agrees	that	in	principle	it	is	needed.	But	there	is	no	clear	guidance	when	it	is	
useful.	

• In	particular,	since	it	is	orders	of	magnitude	easier	to	do	an	NNLL	resummation	that	a	full	
NNLO	calculation,	often	we	are	tempted	to	expand	the	NNLL	exponent	up	to	the	NNLO	terms	
(in	αS).	Such	expansion	produces	some	of	the	terms	that	would	be	found	in	a	full	NNLO	
calculation.	This	way	we	have	some approximation	to	the	full	NNLO.

• This	approach	is	now	simply	known	as	approximate	NNLO.

• Is	this	approach	useful?	
• My	personal	impression	is	that	it	rarely is.	

1. The	formulation	of	the	approximation	is	by	itself	ambiguous,
2. In	a	number	of	important	cases	this	approximation	fails	to	be	close	to	the	full	result.	

• In	general	this	approximation	may	only	be	expected	to	be	good	if	the	soft	terms	are	
dominant	in	the	full	NNLO.	This	is	rarely,	if	ever,	the	case	at	hadron	colliders.	

• And	a	word	about	quasi-collinear	logs	Log[m/Q]:	LEP	studies	of	b-production	have	shown	the	
resummation	of	these	logs	is	important	at	Z-pole	energies,	i.e.	Log[mb/mZ]	is	large	enough	
and	needs	to	be	resummed.	
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Soft	gluon	Resummation:	examples

• The	best	example	I	know	of	that	shows	how	important	soft-gluon	resummation	is	the	
reduction	in	the	size	of	the	relative	theory	error	of	the	tt total	cross-section	as	a	function	of	
the	collider	energy

• As	the	collider	energy	gets	smaller	there	is	less	and	less	energy	for	radiation
• In	this	region	the	difference	between	fixed	order	and	resummed	calculations	becomes	

apparent.
6 M. CZAKON, P. FIEDLER, A. MITOV AND J. ROJO
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Fig. 3. – The relative scale uncertainty of the tt̄ cross-section, computed as a function of the
LHC collider energy at fixed order (NLO and NNLO) and including with soft-gluon resummation
(NLL and NNLL).

for example, in the search for supersymmetric top partners - the stops. The basic idea
is rather simple [20]: in searches for stops with mass that is only slightly above the top
mass, the stops decay to either a pair of top quarks or to the decay products of the top
quark. Either way, the conventional stop searches require separation of the stop signal
from the very similar and much larger top background. The ratio of the stop over top
cross-sections is shown in fig. 4 (left) for LHC 8 and 14 TeV. The computation of the
top cross-section is done at NNLO+NNLL with the program Top++ (2.0) [7], while
the stop cross-section is computed at NLO with the program Prospino(2.1) [21], using
consistently MSTW2008 in both programs. For a stop mass equal to the top mass the
ratio of cross sections is about 15%, decreasing quickly as the stop mass increases.

In fig. 4 (right) we show the “double” ratio R14/8(top + stop)/R14/8(top), where
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Fig. 4. – Stop production at LHC 8 and 14 TeV. Left plot: the ratio of the stop and top
production cross-sections. Right plot: the double ratio of the sum of top and stop cross-sections
at 8 and 14 TeV normalized to pure top pair cross-section at 8 and 14 TeV. The top pair
cross-section is evaluated at NNLO+NNLL with Top++(2.0) while the stop pair cross-section
is evaluated at NLO with the help of the program Prospino(2.1).

See	http://arxiv.org/pdf/1305.3892.pdf for	details
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Soft	gluon	Resummation:	examples

• Thrust	distribution	in	e+e- ->	3	jets	at	NNLO:

1 Introduction

Lepton colliders, such as the Large Electron-Positron collider lep which ran from 1989-2000
at cern, provide an optimal environment for precision studies in high energy physics. Lacking
the complications of strongly interacting initial states, which plague hadron colliders, lep has
been able to provide extremely accurate measurements of standard model quantities such as
the Z-boson mass, and its results tightly constrain beyond-the-standard model physics. The
precision lep data is also used for QCD studies, for example to determine the strong coupling
constant αs. With the variation of αs known to 4-loops, one should be able to confirm in
great detail the running of the coupling, or use it to establish a discrepancy which might
indicate new physics. Even at fixed center-of-mass energy, differential distributions for event
shapes, such as thrust probe several energy scales and are extremely sensitive to the running
coupling. Moreover, event shape variables are designed to be infrared safe, so that they can be
calculated in perturbation theory and so the theoretical predictions should be correspondingly
clean. Nevertheless, extractions of αs from event shapes at lep have until now been limited
by theoretical uncertainty from unknown higher order terms in the perturbative expansion.

One difficulty in achieving an accurate theoretical prediction from QCD has been the
complexity of the relevant fixed-order calculations. Indeed, while the next-to-leading-order
(NLO) results for event shapes have been known since 1980 [1], the relevant next-to-next-
to-leading order (NNLO) calculations were completed only in 2007 [2, 3]. In addition to the
loop integrals, the subtraction of soft and collinear divergencies in the real emission diagrams
presented a major complication. In fact, this is the first calculation where a subtraction scheme
has been successfully implemented at NNLO [4]. However, even with these new results at hand,
the corresponding extraction of αs continues to be limited by perturbative uncertainty. The
result of [5] was αs(mZ) = 0.1240 ± 0.0033, with a perturbative uncertainty of 0.0029. This
NNLO result for the strong coupling constant comes out lower than at NLO, but 2σ higher
than the PDG average αs(mZ) = 0.1176 ± 0.0020 [6]. Actually, the most precise values of αs

are currently determined not from lep but at low energies using lattice simulations [7] and
τ -decays [8]. An extensive review of αs determinations is given in [9], new determinations
since its publication include [10, 11].

To further reduce the theoretical uncertainty of event shape calculations, it is important
to resum the dominant perturbative contributions to all orders in αs. To see this, consider
thrust, which is defined as

T = max
n

∑
i |pi · n|∑

i |pi|
, (1)

where the sum is over all momentum 3-vectors pi in the event, and the maximum is over all
unit 3-vectors n. In the endpoint region, T → 1 or τ = (1−T ) → 0, no fixed-order calculation
could possibly describe the full distribution due to the appearance of large logarithms. For
example, at leading order in perturbation theory the thrust distribution has the form

1

σ0

dσ

dτ
= δ(τ) +

2αs

3π

[
−4 ln τ − 3

τ
+ . . .

]
, (2)

where the ellipsis denotes terms that are regular in the limit τ → 0. Upon integration over

1

See	http://arxiv.org/pdf/0803.0342.pdf

the endpoint region, one finds

R(τ) =

∫ τ

0

dτ ′ 1

σ0

dσ

dτ ′
= 1 +

2αs

3π

[
−2 ln2 τ − 3 ln τ + . . .

]
. (3)

Double logarithmic terms of the form αn
s ln2n τ arise from regions of phase space where the

quarks or gluons are soft or collinear. For small enough τ , higher order terms are just as
important as lower order ones and the standard perturbative expansion breaks down. Re-
summation refers to summing a series of contributions of the form αn

s lnm τ for the integral
R(τ) or αn

s (lnm−1 τ)/τ for the differential distribution. Leading logarithmic (LL) accuracy is
achieved by summing the tower of logarithms with m = 2n, next-to-leading logarithmic accu-
racy (NLL) also sums the terms with m = 2n − 1. Resummation at NkLL accuracy, provides
all logarithmic terms with 2n ≥ m ≥ 2n − 2k + 1, as detailed in Section 2.

The first resummation of event shapes was done by Catani, Trentadue, Turnock and Web-
ber (CTTW) in [12]. Their approach was to define jet functions JC(p2) as the probability
for finding a jet of invariant mass p2 in the event. These can be calculated to NLL by sum-
ming probabilities for successive emissions using the Alterelli-Parisi splitting functions. Each
term in the series that is resummed corresponds to an additional semi-classical radiation. The
splitting functions only account for collinear emissions; to include soft emission, it is common
either to impose some kind of angular ordering constraint to simulate soft coherence effects, or
to use more sophisticated probability functions, such as Catani-Seymour dipoles [13]. Except
for [14], none of these approaches has led to a resummation for event shapes beyond NLL.

The approach to resummation of event shapes [15] based on Soft-Collinear Effective The-
ory (SCET) [16, 17, 18] contrasts sharply with the semi-classical CTTW treatment. The
most important conceptual difference is that effective field theory works with amplitudes, at
the operator level, instead of probabilities at the level of a differential cross-section. Conse-
quently, the resummation comes not from the exponentially decreasing probability for multiple
emissions, but from a solution to renormalization group (RG) equations.

The starting point for the effective field theory approach is the factorization formula for
thrust in the 2-jet region,

1

σ0

dσ2

dτ
= H(Q2, µ)

∫
dp2

Ldp2
Rdk J(p2

L, µ) J(p2
R, µ) ST (k, µ)δ(τ −

p2
L + p2

R

Q2
−

k

Q
) , (4)

where H(Q2, µ) is the hard function, J(p2, µ) the jet function, and ST (k, µ) is the soft function
for thrust. Q refers to the center-of-mass energy of the collision, µ is an arbitrary renormaliza-
tion scale, and the born-level cross section σ0 appears for normalization. A similar factorization
formula was derived to study top quark jets in [19], and then transformed into this form to
study event shapes in [15]. Factorization properties of event shape variables were also studied
in [20, 21]. The expression (4) is valid to all orders in perturbation theory up to terms which
are power suppressed in the two-jet region τ → 0,

dσ

dτ
=

dσ2

dτ

[
1 + O(τ)

]
. (5)

The key to the factorization theorem is that near maximum thrust, τ reduces to the sum
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Figure 6: Convergence of resummed and fixed-order distributions. aleph data (red) and opal

data (blue) at 91.2 GeV are included for reference. All plots have αs(mZ) = 0.1168.

4 αs extraction and error analysis

In this section we now use our result for the thrust distribution to determine αs, using lep data
from aleph [42] and opal [43]. Before performing the fit, let us compare the perturbative
expansion with and without resummation. The result at Q = 91.2 GeV is shown in Figure 6
side-by-side with the fixed-order expression. We use the same value αs(mZ) = 0.1168 for both
plots and have set the scales µh, µj and µs to their canonical values (25). For reference, we
also show the aleph and opal data. The curves for the fixed-order calculation correspond to
the standard LO, NLO, NNLO series; for the effective field theory calculation, the orders are
defined in Table 1. It is quite striking how much faster the resummed distribution converges.
In fact, it is hard to even distinguish the higher order curves after resummation, except in
the region of very small τ , where the distribution peaks. The peak region is affected by non-
perturbative effects, as will be discussed in the next section, but it will not be used in the
extraction of αs. The region relevant for the αs extraction is shown in the lower two plots.
The value of αs(mZ) = 0.1168 we use in the plots corresponds to the best fit value in the range
0.1 < τ < 0.24 for the aleph data set. However, the plot makes it evident that the extracted

14
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Final	states	at	hadron	colliders	(particles	and	jets)
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• The	particles	observed	at	colliders	are:

• Strongly	interacting	ones	(mesons,	baryons)
• Weakly	interacting	ones

• The	gauge	bosons	(γ,Z,W)
• Higgs	(which	decays	of	course)
• Leptons

• The	problem	is	that	there	are	many	of	them

• Even	at	high	PT	the	number	of	identifiable	tracks	is	in	the	dozens	and	hundreds.

• It	would	be	very	very,	hard	to	describe	such	large	multiplicities	down	to	the	individual	
particle.

• Luckily,	they	tend	to	clump	together	along	the	direction	of	some	hard	parton	(which	we	do	
not	see	directly)	that	initiated	them.

• Such	clumps	of	particles	are	called	jets.

Final	states	at	hadron	colliders	(particles	and	jets)
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Jets	at	hadron	colliders:	
an	alternative	way	of	thinking	about	hadron	production

üJets	are	not	“Physical”	objects:	they	are	merely	clusters	of	hadrons
ü No	two	jets	are	the	same!
ü But	Jets	are	natural	at	hadron	colliders:	

ü Ex:	describing	the	water	molecules	in	Jet	d'eau is	hard
ü The	water	jet	itself	depends	on	the	dynamics	among	

the	constituent
ü It	is	the	natural	thing	to	study	when	the	detector	is	close

to	the	water	source.
ü Have	been	measured	at	colliders	since	the	late	1970-ies.
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Why do we see jets? Parton fragmentation[Introduction]
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Jets as projections[Introduction]
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Jets	and	infrared	safety

• Jets	are	defined	through	some	algorithm	(or	jet	function)	which	tells	us	how	the	measured	
particles	are	grouped	into	jets.

• Many	such	definitions	exist.	A	very	popular	one	nowadays	is	the	anti-KT	algorithm	of		
Cacciari,	Salam	and	Soyez ’08.

• If	you	are	interested	in	this	subject,	you	want	to	read	this	paper
http://arxiv.org/pdf/0802.1189v2.pdf

6 Modelling of hadrons: jets

Infrared safety means that we work with observables that are not singular when soft/collinear

emissions are made (Note: fragmentation functions are the opposite extreme since they are

collinearly unsafe; there we collect all collinear singularities and put them into the hadron).

d�

dO
=

X

n

Z
|M (n)|2�

⇣
O � F

(n)
O (p

1

, . . . , pn)
⌘
d�(n)

The ”Jet” observation function has to have the following property:

F
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O (p

1

, . . . , pn + pn+1

), if pn||pn+1

7 Physics at hadron colliders

How do we go from e+e� to hadron colliders? Just invert the diagram (and a bit more).

7.1 Parton distributions of the proton

7.2 Kinematical variables

The natural kinematical variables at hadron colliders are dictated by a) the cylindrical ge-

ometry of the beam-detector system and b) the fact that the initial state momentum (along

the z-direction) is unknown.

pµ = (E, px, py, pz)

= (mT cosh(y), pT sin(�), pT cos(�),mT sinh(y))

where we have introduced:

p2T = p2x + p2y (transverse momentum) ,

mT =
q

p2T +m2 (transverse mass) ,

y =
1

2
ln

✓
E + pz
E � pz

◆
(rapidity) .

An easier to measure variable is the pseudorapidity:

⌘ = � ln tan(✓/2) with ⌘ = y
��
m=0

.

In general we have:

y = ln

q
m2 + p2T cosh2 ⌘ + pT sinh ⌘

q
m2 + p2T

, and : ⌘ = y
��
m=0

.

• The pseudorapidity is easy to measure directly, in terms of the angle ✓.

• Rapidity di↵erences are boost invariant.

– 5 –
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Jets:	definition

• In	a	realistic	LHC	event	one	has	to	cluster	around	103-104 particles.
• Few	particles	are	hard,	most	are	soft	(soft:	i.e.	momentum->0)
• For	this	we	need:

• A	jet	algorithm	(IR	safe	one!)	that	will	cluster	all	these	partons	into	jets
• Speed	(i.e.	fast	algorithm)

• Some	popular	jet	algorithms:
• KT
• Cambridge-Aachen
• Anti-KT

• How	does	the	clustering	work?
• Define	a	distance	function	dij between	any	two	particles	or	proto-jets	(proto-jet:	a	collection	

of	particles	that	may	not	yet	be	a	jet),	as	well	as	a	distance	diB between	each	particle	and	the	
beam

facilitate reproducibility of the jet-finding.12 We recommend also that the main elements of the
jet def.description() be provided, together with citations to the original article that defines the
algorithm, as well as to this manual and, optionally, the original FastJet paper [10].

As of version 3.1, it is also possible to conditionally compile code based on the the FastJet
version number, which is encoded in the FASTJET VERSION NUMBER preprocessor symbol as a single
integer Mmmpp: M is the major version number, mm the minor version number and pp the patch
level. Thus version 3.1.12 would be represented as 30112. Code requiring at least version 3.1.0 could
be included as follows:

#include "fastjet/config.h"

#if FASTJET_VERSION_NUMBER >= 30100
// code that needs version 3.1.0 or higher
# else
// alternative code that works also with version 3.0.x
#endif

In versions prior to 3.1.0 the FASTJET VERSION NUMBER symbol is undefined and is accordingly treated
by the preprocessor as if it were zero.

4 FastJet native jet algorithms

4.1 Longitudinally invariant kt jet algorithm

The longitudinally invariant k
t

jet algorithm [8, 9] comes in inclusive and exclusive variants. The
inclusive variant (corresponding to [9], modulo small changes of notation) is formulated as follows:

1. For each pair of particles i, j work out the k
t

distance13

d
ij

= min(p2

ti

, p2

tj

) �R2

ij

/R2 (5)

with �R2

ij

= (y
i

� y
j

)2 + (�
i

� �
j

)2, where p
ti

, y
i

and �
i

are the transverse momentum (with
respect to the beam direction), rapidity and azimuth of particle i. R is a jet-radius parameter
usually taken of order 1. For each parton i also work out the beam distance d

iB

= p2

ti

.

2. Find the minimum d
min

of all the d
ij

, d
iB

. If d
min

is a d
ij

merge particles i and j into a single
particle, summing their four-momenta (this is E-scheme recombination); if it is a d

iB

then
declare particle i to be a final jet and remove it from the list.

3. Repeat from step 1 until no particles are left.

12We devote significant e↵ort to ensuring that all versions of the FastJet program give identical, correct clustering
results, and that any other changes from one version to the next are clearly indicated. However, as per the terms of
the GNU General Public License (v2), under which FastJet is released, we are not able to provide a warranty that
FastJet is free of bugs that might a↵ect your use of the program. Accordingly it is important for physics publications
to include a mention of the FastJet version number used, in order to help trace the impact of any bugs that might be
discovered in the future.

13In the soft, small angle limit for i, the kt distance is the (squared) transverse momentum of i relative to j.
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facilitate reproducibility of the jet-finding.12 We recommend also that the main elements of the
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KT algorithm:

The exclusive variant of the longitudinally invariant k
t

jet algorithm [8] is similar, except that (a)
when a d

iB

is the smallest value, that particle is considered to become part of the beam jet (i.e. is
discarded) and (b) clustering is stopped when all d

ij

and d
iB

are above some d
cut

. In the exclusive
mode R is commonly set to 1.

The inclusive and exclusive variants are both obtained through

JetDefinition jet_def(kt_algorithm, R);
ClusterSequence cs(particles, jet_def);

The clustering sequence is identical in the inclusive and exclusive cases and the jets can then be
obtained as follows:

vector<PseudoJet> inclusive_kt_jets = cs.inclusive_jets();
vector<PseudoJet> exclusive_kt_jets = cs.exclusive_jets(dcut);

4.2 Cambridge/Aachen jet algorithm

The pp Cambridge/Aachen (C/A) jet algorithm [22, 23] is provided in the form proposed in Ref. [23].
Its formulation is identical to that of the (inclusive) pp k

t

jet algorithm, except as regards the distance
measures, which are:

d
ij
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/R2 , (6a)

d
iB

= 1 . (6b)

To use this algorithm, define

JetDefinition jet_def(cambridge_algorithm, R);

and then extract inclusive jets from the cluster sequence.

Attempting to extract exclusive jets from the Cambridge/Aachen algorithm with a d
cut

parameter
simply provides the set of jets obtained up to the point where all d

ij

, d
iB

> d
cut

. Having clustered
with some given R, this can actually be an e↵ective way of viewing the event at a smaller radius,
R

e↵

=
p

d
cut

R, thus allowing a single event to be viewed at a continuous range of R
e↵

within a single
clustering.

We note that the original formulation of the Cambridge algorithm [22] (in e+e�) instead makes
use of an auxiliary (k

t

) distance measure and ‘freezes’ pseudojets whose recombination would involve
too large a value of the auxiliary distance measure. Details are given in section 5.4.1.

4.3 Anti-kt jet algorithm

This algorithm, introduced and studied in [14], is defined exactly like the standard k
t

algorithm,
except for the distance measures which are now given by
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d
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While it is a sequential recombination algorithm like k
t

and Cambridge/Aachen, the anti-k
t

algorithm
behaves in some sense like a ‘perfect’ cone algorithm, in that its hard jets are exactly circular on the
y-� cylinder [14]. To use this algorithm, define
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Cambridge/Aachen anti-KT algorithm:

And:	 R:	a	parameter	(cone	size);	R=0.5-1
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Jets:	definition

• The	distance	ΔRij is	boost	invariant
• The	jet	size	R:

• If	R	– large,	then	the	concept	of	jet	 looses	its	meaning	because	it	becomes	equivalent	to	
the	total	cross-section.

• If	R-very	small,	we	have	a	problem:	the	jet	is	formally	IR	finite	the	the	space	where	IR	
cancellation	takes	place	becomes	very	tight	and	the	IR	cancellation	becomes	imperfect.	
As	a	result,	in	the	limit	R->0	we	get	terms	like	Log[R].	

• Indeed,	in	the	limit	R->0	we	must	run	into	trouble	since	we	conceptually	go	to	the	
fragmentation	function	case	we	described	previously (which	was	IR	unsafe).

• Implementation:
• Construct	the	set	of	all	measured	momenta	pi
• Compute	all	distances	diB and	dij (defined	on	previous	page)
• If	diB is	the	smallest	on	the	list:	call	“i”	a	jet	and	remove	from	the	list
• If	dij is	the	smallest:	then	add	pi and	pj and	replace	them	in	the	list	with	their	sum.
• Continue	until	all	particle	(proto-jets)	momenta	in	the	list	are	exhausted.
• The	resulting	objects	are	our	jets.
• At	the	end,	only	jets	above	certain	pT cut	are	used	in	the	final	analysis.

• Speed:	for	N	particles,	the	number	of	comparisons	is		O(N3).	This	is	big.	
• A	library	called	FastJet exists,	which	reduces	the	time	to	N	log[N].	Moreover	it	provides	

common	implementation	and	interface	to	many	jet	algorithms.	
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The	shapes	of	Jets;	addition	of	soft	radiation

Figure 1: A sample parton-level event (generated with Herwig [8]), together with many random soft
“ghosts”, clustered with four different jets algorithms, illustrating the “active” catchment areas of
the resulting hard jets. For kt and Cam/Aachen the detailed shapes are in part determined by the
specific set of ghosts used, and change when the ghosts are modified.

the jets roughly midway between them. Anti-kt instead generates a circular hard jet, which clips a
lens-shaped region out of the soft one, leaving behind a crescent.

The above properties of the anti-kt algorithm translate into concrete results for various quanti-
tative properties of jets, as we outline below.

2.2 Area-related properties

The most concrete context in which to quantitatively discuss the properties of jet boundaries for
different algorithms is in the calculation of jet areas.

Two definitions were given for jet areas in [4]: the passive area (a) which measures a jet’s
susceptibility to point-like radiation, and the active area (A) which measures its susceptibility to
diffuse radiation. The simplest place to observe the impact of soft resilience is in the passive area for
a jet consisting of a hard particle p1 and a soft one p2, separated by a y − φ distance ∆12. In usual
IRC safe jet algorithms (JA), the passive area aJA,R(∆12) is πR2 when ∆12 = 0, but changes when
∆12 is increased. In contrast, since the boundaries of anti-kt jets are unaffected by soft radiation,

4

• Some	jets	are	better	at	handling	additional	soft	radiation	(i.e.	are	less	sensitive	to	it)
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Latest	developments	in	Jets

• Boosted	objects	as	jets.
• Imagine	W	decaying	to	jets	(Wà qq).	In	cases	the	W	itself	is	very	energetic	its	decay	

products	will	appear	as	a	single	jet.	Same	for	decaying	boosted	tops.	
• The	real	motivation	for	considering	such	cases	is	searches	for	new	physics:

• Imagine	a	heavy	resonance	decaying	to	pair	of	tops	(typical	bSM possibility)
• Each	one	of	the	tops	will	be	highly	boosted	
• The	top	decay	products	will	be	collimated.

• Jet	substructure
• A	way	of	distinguishing	normal	QCD	jets	(they	are	not	supposed	to	have	any	

characteristic	internal	structure)	from	highly	boosted	decays	is	to	try	to	identify	the	
presence	of	sub-jets	in	a	highly	energetic	and	massive	jets.

• Explosion	of	interest	and	literature	on	this	topic	in	the	last	few	years.	Many	techniques	
developed:	N-subjettiness,	etc;	Jet	trimming,	Jet	filtering,	Jet	pruning.	

• Fat	jets	and	recent	diboson 8TeV	excess	(ATLAS,	CMS) (a	search	which	is	optimized	towards	
heavy	objects	decaying	to	gauge	bosons)

For	more	info	see http://arxiv.org/abs/1307.0007 ,		http://arxiv.org/abs/1311.2708
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Figure 3: Fits of the background model to the dijet mass (mj j) distributions in (a) Pythia 8 and (b) Herwig++ simu-
lated background events that have passed all event selection and tagging requirements. The events are reweighted in
both cases to correctly reproduce the leading-jet pT distribution for untagged events, and the simulated data samples
were scaled to correspond to a luminosity of 20.3 fb�1. The significance shown in the inset for each bin is calculated
using the statistical errors of the simulated data.
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Figure 4: Fits of the background model to the dijet mass (mj j) distributions in data events (a) before boson tagging,
and (b) where both jets pass all tagging requirements except for the mj requirement, and instead satisfy 40 < mj 
60 GeV.

fits of the chosen function to simulations of the dominant background as well as sidebands and control
regions of data in which a signal contribution is expected to be negligible. These e↵ects were estimated
to be no more than 25% of the statistical uncertainty at any mass in the search region. The e↵ect of
the uncertainty on the trigger e�ciency, the variations of the selection e�ciencies as a function of the
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Figure 5: Background-only fits to the dijet mass (mj j) distributions in data (a) after tagging with the WZ selection,
(b) after tagging with the WW selection and (c) after tagging with the ZZ selection. The significance shown in
the inset for each bin is the di↵erence between the data and the fit in units of the uncertainty on this di↵erence.
The significance with respect to the maximum-likelihood expectation is displayed in red, and the significance when
taking the uncertainties on the fit parameters into account is shown in blue. The spectra are compared to the signals
expected for an EGM W 0 with mW0 = 1.5, 2.0, or 2.5 TeV or to an RS graviton with mGRS = 1.5 or 2.0 TeV.

to the shape of the signal, and N is a log-normal distribution for the nuisance parameters, ✓, modelling
the systematic uncertainty on the signal normalisation. The expected number of events is the bin-wise
sum of the events expected for the signal and background: nexp

= nsig

+ nbg

. The number of expected
background events in dijet mass bin i, ni

bg, is obtained by integrating dn/dx obtained from eqn. (1) over
that bin. Thus nbg

is a function of the dijet background parameters p1, p2, p3. The number of expected
signal events, nsig

, is evaluated based on MC simulation assuming the cross section of the model under
test multiplied by the signal strength and including the e↵ects of the systematic uncertainties described in

16

Backgrounds	
seem	OK

Local	excess
after	additional	
W,Z	selection
Not	seen	in	
13	TeV data!

See http://arxiv.org/abs/1506.00962

For	more	info	see	the	proceedings	of	the	annual	BOOST	conference http://boost2015.uchicago.edu
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Decay	of	unstable	particles:	narrow	width	approximation

NWA explained

The NWA

For �⌧ m

|| = ⇥ 1

2m�

⇥

1

(q2�m2

)

2

+m2

�

2

! ⇡
m�

�(q2 �m2) for �! 0

set intermediate particle on-shell for � 6= 0

drop o↵-shell e↵ects, spin correlation to obtain
�NWA = �prod ⇥ BR with BR = �part/�total

reduces phasespace-dimension, calculation of separate production and
decay relatively simple, loop calculations feasible

Christoph Uhlemann (Würzburg) NWA beyond the SM Maria Laach 2007 3 / 15

9 Parton showers

10 Practicalities

10.1 Scales and scale settings

10.2 Decays of unstable particles: Narrow width approximation

The propagator of an unstable particle (Breit-Wigner resonance) of momentum q, mass m

and width � is:

P (q,m,�) =
1

(q2 �m2)2 +m2�2

(this is just the modulus square of the usual propagator for a particle of width �)

In the NWA we take the formal limit:

1

(q2 �m2)2 +m2�2

�! ⇡

m�
�(q2 �m2)

i.e. the decaying particle is placed on-shell. This way the Phase space for the complete n-body

process factories into the product of the phase space of all particles but the decay products,

times the decay of the unstable particle.

The NWA leads to drastic simplification:

� = �
prod

⇥BR ,

BR =
�
partial

�
tot

.

where �
tot

is the same as � above. If there is only one decay mode then BR = 1.

10.3 HEP computational software

10.4 Integral convolution

The convolution of two smooth functions f(x) and g(x) is defined as:

f ⌦ g(z) =

Z
1

0

dx

Z
1

0

dyf(x)g(y)�(z � xy) =

Z
1

z

dx

x
f(x)g(z/x) (10.1)

10.5 Loop and Phase space integrals

One central identity in dealing with phase space integrals:

x�1+" =
1

"
�(x) +

1X

n=0

"n

n!


lnn(x)

x

�

+

(10.2)

– 8 –

• The	error	is	O(Γ/m).	Works	well	in	SM	(top,	W,Z).	Application	more	subtle	in	bSM context.	
See:																																															for	further	details.http://arxiv.org/abs/0807.4112
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Monte	Carlo	integration	methods
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• So	far	we	discussed	only	analytical	integration	in	our	discussion	of	cross-sections.
• This	is,	of	course	fine,	but	as	it	turns	out	it	is	very	restrictive given	the	realities	of	

experimental	analyses	at	colliders.

So,	what’s	the	problem?

• The	problem	is	that	analytical	integration	is,	by	its	very	nature,	inclusive.	

• Let’s	look	at	an	example:
• f(x)	is	some	probability	density	(we	imagine	it	corresponds	to	some	differential	

distribution)
• Within	the	analytical	integration	approach	

a	question	we	can	ask	is:	what	is	the	value:

• In	effect	this	is	a	bin.	
• Clearly	this	is	well	defined	only	if	a=/=	b
• Therefore	we	cannot	ask,	or	predict,	what	will	be	the	measured	value	of	F	in	a	single	

point	F(a,a).	In	other	words,	within	this	approach,	we	cannot	predict	single	events.

• Yet	single	events	happen	all	the	time	at	colliders.

• MC	comes	to	the	rescue!

9 Monte Carlo techniques

Let f(x) be some probability density function (we imagine it corresponds to some di↵erential

distribution). Within an analytical integration approach we can ask what is the value

F (a, b) =

Z b

a
f(x)dx

In e↵ect this is a bin. Clearly this is only well defined if a 6= b and therefore we cannot ask, or

predict, what is the measured value of F in a single point F (a, a). Alternatively, we cannot

ask, or predict, single events.

Yet single events happen all the time at colliders.
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• Monte	Carlo	techniques	are	super	useful	for	two	very	important	reasons:

• Formally,	they	are	an	integration	technique,	i.e.	we	can	use	them	to	do	integration	
numerically.	Compare,	for	example	with	Gaussian	integration.

Example:	
calculating	the	
value	of	π

• MC	integration	has	smaller	numerical	precision	in	1D,
• In	higher	dimensions	MC	has	no	competition.

• The	way	the	integration	is	done	is	by	summing	up	discrete	points	in	the	continuous	
variable(s)	being	integrated.	We	interpret	such	discrete	points	as	collider	events.	

Therefore,	Monte	Carlo	integration	offers	the	possibility	to	compute	
formally	continuous	distributions	by	summing	up	individual,	discrete	
events,		while	being	proper	integration	technique	at	the	same	time!

• A	word	of	caution:	although	the	interpretation	of	such	MC	events	as	the	real-life	collider	
events	is	absolutely	tantalizing,	one	should	be	careful:	this	is	only	an	integration	technique	
which	carries	the	inherent	uncertainties	of	the	underlying	theoretical	approximation.

• Generate	N	points	randomly	over	the	(x,y)	square
• Count	the	points	inside	the	circle	(n)
• Derive:	π/4	≈	n/N
• A	simple	counting	experiment.	Error:
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• Note	about	probability	density	interpretation:	

Going	beyond	LO	many	of	the	contributions	are	not	positive	anymore.	

• This	is	OK,	since:

• The	observable	is	positive	definite
• It	is	a	sum	over	partonic	reactions,	each	of	which	is	unphysical	(their	separation	is	

scheme	dependent)
• The	LO	usually	are	positive	but	higher	orders	can	individually	be	negative.

Monte	Carlo	integration	methods
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• A	fully	differential	observable	at	LO	is	defined	as:

Fixed	order	calculations	with	MC	techniques:	LO
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Yet single events happen all the time at colliders.
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3(n-1)+2	variables;
(some	redundant)

•

•

• O	labels	some	observable	(say	PT)	and	FO(…)	is	its	analytic	representation	
through	the	final	state	momenta

• To	integrate	analytically,	we	first	separate	the	pdf’s and	the	integrations	over	x1,2
• Then	perform	analytically	the	integrations	over	the	independent	3-momenta	keeping	x1,2

fixed	

partonic	cross-section

• Finally	perform	the	remaining	x1,2 integrations	numerically.	
• If	the	partonic	x-section	is	simple	enough	we	can	get	analytic	expression	and	therefore	

compute	the	O-dependence	as	a	smooth	curve;	no	bins	needed.
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Fixed	order	calculations	with	MC	techniques:	LO

• Performing	such	integrations	analytically	is	often	not	practical.	In	complicated	cases	it	is	
hardly	possible.

• MC	integration	is	much	simpler!	Consider	the	above	integral	as	a	simultaneous	integral	over	
all	final	and	initial	states	variables	(i.e.	consider	x1,2 on	equal	footing	with	the	final	state	ones)

• Parameterize	the	final	state	momenta	through	independent	variables	z1…z3(n-1) such	that	they	
take	values	on	the	unit	hypercube	0	≤	zi ≤	1:

• Note:	the	zi’s are	simply	normalized	energies	and	cos(angles)
• The	matrix	element	depends	on	scalar	products:	(p1,2.qi)	and	(qi.qj).	Rewrite	them	through	zi.	

The	x-section	now	reads:

• Here	is	how	we	actually	implement	the	MC	integration:
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Fixed	order	calculations	with	MC	techniques:	LO

• Attempting	the	above	integral	with	a	MC,	as	it	is,	is	a	bad	idea:	
• Fix	the	value	of	O
• Take	a	random	point	(x1,2,zi)
• FO at	this	point	will	not	be	equal	to	the	chosen	O

• For	MC	integration	we	need	to	bin	“events”.	Therefore	we	need	to	replace	the	delta-function	
with	a	binning	function:

• The	binning	function	is	a	set	of	theta	functions;	basically	it	takes	values	1	or	0.

• Binning	could	be	done	simultaneously	in	several	variables.
• Or	even	fully	exclusively:

1. Decide	binning	for	each	variable	of	interest
2. Generate	a	point	(x1,2,zi).	We	call	it	“event”.	Beware	it	is	not	exactly	a	physical	event!
3. Compute	the	value	of	B(….)	at	this	point.	It	is	non-zero	for	only	one	bin.
4. Compute	the	value	of	the	weight	w(…)	at	this	point.	Add	it	to	the	bin	determined	in	3.
5. Continue	the	process	until	sufficiently	large	number	of	“events”	generated	in	each	bin.
6. Divide	by	the	number	of	“events”	in	each	bin	(i.e.	obtain	the	average	w	in	each	bin)
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Z
fi(x1)fj(x2)

2s

����Mij(p1, p2 ! q
1

, . . . , qn)

����
2

�

✓
O�FO(q1, . . . , qn)

◆
d�(q

1

, . . . , qn)dx1dx2

where:

p
1

= x
1

P
1

; p
2

= x
2

P
2

d�(q
1

, . . . , qn) = (2⇡)4�4(p
1

+ p
2

� q
1

· · ·� qn)
d3q

1

(2⇡)32E
1

. . .
d3qn�1

(2⇡)32En�1

(10.1)

d�(q
1

, . . . , qn) =
d3q

1

(2⇡)32E
1

. . .
d3qn�1

(2⇡)32En�1

= J(z
1

, . . . , z
3(n�1)

)dz
1

. . . dz
3(n�1)

d�

dO
=

X

ij=g,u,ū,...
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• Binned	distributions	are	very	easy	to	manipulate.
• One	could	even	compute	the	“events”	without	regard	of	any	binning!

• Generate	events
• Save	the	event	information:	(x1,2,zi)	and	weight	w(…)	for	each	event.
• At	a	later	point	analyze	and	bin	the	events.	

• Such	approach	allows	unprecedented	flexibility

• Without	having	to	re-compute	the	matrix	elements	|M(…)|^2,	one	could	a	posteriori,	after	
events	are	computed,	change:

• Value	of	the	renormalization	scale	(recall	|M()|^2	~	αS
k(μR);	so	divide	by	this	an	multiply	

by	αS
k(μR’)	evaluated	a	some	different	scale	μR’	=/=	μR.

• Value	of	factorization	scale*
• The	pdf set*

• In	practice	computing	at	LO	is	fast	enough;	the	above	approach	is	very	handy	at	NLO,	and	
beyond.

9 Monte Carlo techniques

Let f(x) be some probability density function (we imagine it corresponds to some di↵erential

distribution). Within an analytical integration approach we can ask what is the value

F (a, b) =

Z b

a
f(x)dx

In e↵ect this is a bin. Clearly this is only well defined if a 6= b and therefore we cannot ask, or

predict, what is the measured value of F in a single point F (a, a). Alternatively, we cannot

ask, or predict, single events.

Yet single events happen all the time at colliders.

MC convergence for N events behaves

⇠ 1p
N

10 Fixed order calculations: LO

d�

dO
=

X

ij=g,u,ū,...
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*	To	do	this,	one	has	to	save	separately	the	contributions	from	all	contributing	partonic	
reactions,	not	just	their	sum,	as	implied	by	the	above	equation!
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Fixed	order	calculations	with	MC	techniques:	NLO

• NLO	x-sections	can	be	computed	following	the	LO	MC	methods	described	above.
• However,	there	are	dramatic	complications	that	arise	at	NLO,	and	which	we	describe	next.

• At	NLO	we	need	to	sum	over	all	cuts	(i.e.	all	different	partonic	final	states)	that	contribute	to	
the	observable	at	hand.	

• We	expect	this	from	our	previous	discussions	of	IR	safety.

• Dijets as	an	example:

1. If	we	want	to	have	exactly	2	jets
• then	extra	radiation	has	to	be	only	Unresolved

2. If	we	want	at	least	2	jets	(i.e.	could	be	2,3	or	more)
• Then	extra	radiation	could	be	anything	(i.e.	Unresolved	or	Resolved)

• Putting	it	all	together	we	get:
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• The	so-called	“Virtual”	2àn	contribution:

• The	1	Loop	contribution	is	divergent;	it	contains	explicit	poles	in	epsilon.	

• Phase	space	in	d-dimensions.	Note	the	phase	space	integration	of	this	piece	is	regular	
but	normally	has	to	be	performed	in	d-dim	since	terms	~	eps can	multiply	poles	from	V	
which	results	in	finite	contributions	to	the	x-section.	

• The	so-called	“Real”	2àn+1	contribution:

• The	amplitude	is	the	Born	one,	so	no	poles	in	eps (still	sub-leading	terms	in	eps might	
have	to	be	retained)

• The	phase	space	is	done	in	d-dimensions:
• The	integrand	is	finite
• Upon	integration	over	phase	space	eps poles	are	generated

d�(2 ! n; ")

dO
=

X

ij

Z
fi(x1)fj(x2)

2s

����M
(1Loop)
ij (2 ! n; ")

����
2

�

✓
O�FO(1, . . . , n)

◆
d�(q

1

, . . . , qn)dx1dx2

d�(2 ! n+ 1; ")

dO
=

X

ij

Z
fi(x1)fj(x2)

2s

����M
(Born)
ij (2 ! n+1)

����
2

�

✓
O�FO(1, . . . , n+1)

◆
d�(q

1

, . . . , qn+1

)dx
1

dx
2

V ⌘
����Mij(2 ! n+ 1)

����
2

=

����M
(Born)
ij (2 ! n+ 1)

����
2

+

����M
(1Loop)
ij (2 ! n; ")

����
2

+NNLO terms

11 Parton showers

12 Practicalities

12.1 Scales and scale settings

12.2 Decays of unstable particles: Narrow width approximation

The propagator of an unstable particle (Breit-Wigner resonance) of momentum q, mass m

and width � is:

P (q,m,�) =
1

(q2 �m2)2 +m2�2

(this is just the modulus square of the usual propagator for a particle of width �)

In the NWA we take the formal limit:

1

(q2 �m2)2 +m2�2

�! ⇡

m�
�(q2 �m2)

i.e. the decaying particle is placed on-shell. This way the Phase space for the complete n-body

process factories into the product of the phase space of all particles but the decay products,

times the decay of the unstable particle.

The NWA leads to drastic simplification:

� = �
prod

⇥BR ,

BR =
�
partial

�
tot

.

where �
tot

is the same as � above. If there is only one decay mode then BR = 1.

12.3 HEP computational software

12.4 Integral convolution

The convolution of two smooth functions f(x) and g(x) is defined as:

f ⌦ g(z) =
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• There	is	another	source	of	divergences:	collinear	divergences.

• They	are	simpler	(of	complexity	of	one-loop	less,	i.e.	Born,	but	still	have	to	be	accounted	for)

• Here	is	what	happens,	schematically,	through	NNLO:

• After	Real	and	Virtual	corrections	are	added	together	the	x-section	is	still	divergent.	
Through	NNLO	we	have	(ρ stands	for	the	relevant	kinematic	variable):

• Subtract	collinear	singularities	for	hadron	colliders	(i.e.	factor	them	into	the	hadrons)	as:

• From	the	above	we	derive	the	finite	x-section
• The	process-independent	collinear	counter-terms	are:
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The differences σdiff
ε are derived from pure interference diagrams and vanish both at threshold

β = 0 and in the high-energy limit β = 1.

The subscript ε appearing in Eqs. (3.1,3.2,3.3) emphasizes that these are bare cross-

sections, containing collinear singularities starting from 1/ε2. To subtract these singularities

and obtain the finite partonic cross-sections σ̂, one needs to perform collinear factorization,

which we describe next.

4 Collinear factorization

The description of the collinear factorization deserves some attention since for the reactions

considered in this paper it has not been spelled out in the literature. Moreover, the collinear

factorization for the reaction (2.5) represents a nonstandard contribution to the reaction

qq̄ → tt̄ + X and, for consistency, was suppressed in Ref. [1]. We take the opportunity to

describe it in this work.

In the notation of Eq. (2.4), and setting µ = m, the bare partonic cross-sections read

σ̃ij(ϵ, ρ) =
α2
S

m2

{

σ̃(0)
ij (ϵ, ρ) + αS σ̃

(1)
ij (ϵ, ρ) + α2

S σ̃
(2)
ij (ϵ, ρ) + . . .

}

. (4.1)

They are defined in d = 4−2ε dimensions and expressed in terms of the dimensionless variable

ρ = 4m2/s = 1 − β2. To obtain the finite MS-subtracted partonic cross-sections σ̂ij(ρ) one

has to factor out the initial state collinear singularities: 1

σ̃ij(ϵ, ρ)

ρ
=

∑

k,l

[

σ̂kl(x)

x
⊗ Γki ⊗ Γlj

]

(ρ) . (4.2)

The MS collinear counterterms Γ are expressed through the space-like splitting functions

P (n)
ij , defined as an expansion in (αS/(2π))n. Through NNLO we have:

Γij(ϵ, x) = δijδ(1 − x) + αSΓ
(1)
ij (ϵ, x) + α2

SΓ
(2)
ij (ϵ, x) , (4.3)

Γ(1)
ij (ϵ, x) = −

1

2π

P (0)
ij (x)

ϵ
,

Γ(2)
ij (ϵ, x) =

(

1

2π

)2
{

1

2ϵ2

[

P (0)
ik ⊗ P (0)

kj (x) + β0P
(0)
ij (x)

]

−
1

2ϵ
P (1)
ij (x)

}

,

with β0 = 11CA/6−NL/3 and αS the renormalized coupling at scale µR.

1We note a typo in Eq.(7) of Ref. [7], where σ and σ̂ have been exchanged. This typo does not affect the

rest of Ref. [7].
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describe it in this work.

In the notation of Eq. (2.4), and setting µ = m, the bare partonic cross-sections read

σ̃ij(ϵ, ρ) =
α2
S

m2

{

σ̃(0)
ij (ϵ, ρ) + αS σ̃

(1)
ij (ϵ, ρ) + α2

S σ̃
(2)
ij (ϵ, ρ) + . . .

}

. (4.1)

They are defined in d = 4−2ε dimensions and expressed in terms of the dimensionless variable

ρ = 4m2/s = 1 − β2. To obtain the finite MS-subtracted partonic cross-sections σ̂ij(ρ) one

has to factor out the initial state collinear singularities: 1

σ̃ij(ϵ, ρ)

ρ
=

∑

k,l

[

σ̂kl(x)

x
⊗ Γki ⊗ Γlj

]

(ρ) . (4.2)

The MS collinear counterterms Γ are expressed through the space-like splitting functions

P (n)
ij , defined as an expansion in (αS/(2π))n. Through NNLO we have:

Γij(ϵ, x) = δijδ(1 − x) + αSΓ
(1)
ij (ϵ, x) + α2

SΓ
(2)
ij (ϵ, x) , (4.3)

Γ(1)
ij (ϵ, x) = −

1

2π

P (0)
ij (x)

ϵ
,

Γ(2)
ij (ϵ, x) =

(

1

2π

)2
{

1

2ϵ2

[

P (0)
ik ⊗ P (0)

kj (x) + β0P
(0)
ij (x)

]

−
1

2ϵ
P (1)
ij (x)

}

,

with β0 = 11CA/6−NL/3 and αS the renormalized coupling at scale µR.

1We note a typo in Eq.(7) of Ref. [7], where σ and σ̂ have been exchanged. This typo does not affect the

rest of Ref. [7].
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Fixed	order	calculations	with	MC	techniques:	NLO

• Adding	Real	and	Virtual	corrections	is,	unfortunately,	highly	non-trivial.

• Here	are	the	problems:
• The	integration	over	the	Real	phase-space	has	to	be	done	in	d-dim.
• This	generates	explicit	poles	and	we	have	to	control	them	analytically
• This	is	against	the	spirit	of	MC	integrations	where	everything	is	done	numerically.

• The	next	complication:	
• We	want	to	have	fully	differential	calculations
• This	means	Real	and	Virtual	poles	must	cancel	in	every	point	(local	cancellation)
• And	for	any	measurement	function (recall	that	the	measurement	functions	for	the	

Real	and	Virtual	corrections	are	different).
• Therefore	we	have	to	ensure	that	poles	cancel	even	before	the	observation	

functions	have	been	specified!
• It	turns	out	it	is	sufficient	to	know	their	limiting	behavior	in	soft/collinear	limit	(recall	

our	discussion	of	jets)
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11 Parton showers

12 Practicalities

12.1 Scales and scale settings

12.2 Decays of unstable particles: Narrow width approximation

The propagator of an unstable particle (Breit-Wigner resonance) of momentum q, mass m

and width � is:

P (q,m,�) =
1

(q2 �m2)2 +m2�2

(this is just the modulus square of the usual propagator for a particle of width �)

In the NWA we take the formal limit:

1

(q2 �m2)2 +m2�2

�! ⇡

m�
�(q2 �m2)

i.e. the decaying particle is placed on-shell. This way the Phase space for the complete n-body

process factories into the product of the phase space of all particles but the decay products,

times the decay of the unstable particle.

The NWA leads to drastic simplification:

� = �
prod

⇥BR ,

BR =
�
partial

�
tot

.

where �
tot

is the same as � above. If there is only one decay mode then BR = 1.

12.3 HEP computational software

12.4 Integral convolution

The convolution of two smooth functions f(x) and g(x) is defined as:

f ⌦ g(z) =

Z
1

0

dx

Z
1

0

dyf(x)g(y)�(z � xy) =

Z
1

z

dx

x
f(x)g(z/x) (12.1)
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where �
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6 Modelling of hadrons: jets

Infrared safety means that we work with observables that are not singular when soft/collinear

emissions are made (Note: fragmentation functions are the opposite extreme since they are

collinearly unsafe; there we collect all collinear singularities and put them into the hadron).

d�

dO
=

X

n

Z
|M (n)|2�

⇣
O � F

(n)
O (p

1

, . . . , pn)
⌘
d�(n)

The ”Jet” observation function has to have the following property:

F
(n+1)

O (p
1

, . . . , pn, pn+1

) = F
(n)
O (p

1

, . . . , pn), if pn+1

! 0

F
(n+1)

O (p
1

, . . . , pn, pn+1

) = F
(n)
O (p

1

, . . . , pn + pn+1

), if pn||pn+1

7 Physics at hadron colliders

How do we go from e+e� to hadron colliders? Just invert the diagram (and a bit more).

7.1 Parton distributions of the proton

7.2 Kinematical variables

The natural kinematical variables at hadron colliders are dictated by a) the cylindrical ge-

ometry of the beam-detector system and b) the fact that the initial state momentum (along

the z-direction) is unknown.

pµ = (E, px, py, pz)

= (mT cosh(y), pT sin(�), pT cos(�),mT sinh(y))

where we have introduced:

p2T = p2x + p2y (transverse momentum) ,

mT =
q

p2T +m2 (transverse mass) ,

y =
1

2
ln

✓
E + pz
E � pz

◆
(rapidity) .

An easier to measure variable is the pseudorapidity:

⌘ = � ln tan(✓/2) with ⌘ = y
��
m=0

.

In general we have:

y = ln

q
m2 + p2T cosh2 ⌘ + pT sinh ⌘

q
m2 + p2T

, and : ⌘ = y
��
m=0

.

• The pseudorapidity is easy to measure directly, in terms of the angle ✓.

• Rapidity di↵erences are boost invariant.
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• Two	methods	are	available	on	the	market.	
• Slicing	method	(older;	not	exact;	being	developed	even	to	NNLO)
• Subtraction	method	(newer;	exact;	has	been	extended	to	NNLO)

• To	get	a	feeling	for	how	the	methods	work	we	will	simplify	them;	
• Ignore	the	presence	of	collinear	singularities	(as	the	previous	slide)
• Hide	the	presence	of	pdf’s etc.
• will	consider	only	one	kinematical	variable	(called	x);	think	of	it	as	the	energy	of	the	

additional	emitted	gluon

• Recall	that	

• …	and	the	function	R(x)	is	finite	for	x=0	(follows	from	the	factorization	of	amplitudes)

• In	the	phase-space	slicing	method	we	split	the	integration	over	x	in	two:

• Take	δ very	small,	δ<<1.	In	the	first	term	we	can	approximate	R(x)≈R(0)
• Set	eps=0	in	the	second	term	(integration	is	now	finite).	Integrate	it	numerically
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and width � is:

P (q,m,�) =
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(this is just the modulus square of the usual propagator for a particle of width �)
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Fixed	order	calculations	with	MC	techniques:	NLO

• The	slicing	method:

• When	δà 0	the	approach	becomes	exact	however	the	numerical	integration	becomes	
unstable.	

• One	has	to	show	that	the	error	due	to	finite	δ is	small.

• The	behavior	for	xà0	(i.e.	In	the	singular	limit)	can	be	predicted	with	resummation

• QT resummation	technique	(Catani,	Grazzini)

• Used	for	computing	all	2-to-2	reactions	at	NNLO	where	the	Born	final	state	is	color	
singlet	(WW,ZZ,γγ).	Now	is	being	developed	also	for	colorful	final	states	like	top-
pair.

• N-subjettiness.	New	technique	developed	in	the	last	year	(Boughezal, Focke, Liu,
Petriello)
• NNLO	corrections	to	(W+jet;	Higgs+jet)

d�(2 ! n; ")

dO
=

X

ij

Z
fi(x1)fj(x2)

2s

����M
(1Loop)
ij (2 ! n; ")

����
2

�

✓
O�FO(1, . . . , n)

◆
d�(q

1

, . . . , qn)dx1dx2

d�(2 ! n+ 1; ")

dO
=

X

ij

Z
fi(x1)fj(x2)

2s

����M
(Born)
ij (2 ! n+1)

����
2

�

✓
O�FO(1, . . . , n+1)

◆
d�(q

1

, . . . , qn+1

)dx
1

dx
2

V ⌘
����Mij(2 ! n+ 1)

����
2

=

����M
(Born)
ij (2 ! n+ 1)

����
2

+

����M
(1Loop)
ij (2 ! n; ")

����
2

+NNLO terms

�̃(", ⇢) = �̃(0)(", ⇢) + ↵S �̃
(1)(", ⇢) + ↵2

S �̃
(2)(", ⇢) + . . .

d�O =

Z
1

0

dx

x1+"
R(x)FO(n+ 1;x) +

✓
V pole

"
+ V fin

◆
FO(n)

FO(n+ 1;x = 0) = FO(n) ; R(0) = V pole

d�O =

Z
1

0

dx

x1+"
R(x)FO(n+ 1;x) +

✓
V pole

"
+ V fin

◆
FO(n)

=

Z �

0

dx

x1+"
R(x)FO(n+ 1;x) +

Z
1

�

dx

x1+"
R(x)FO(n+ 1;x) +

✓
V pole

"
+ V fin

◆
FO(n)

⇡
✓
�1

"
+ log(�)

◆
V poleFO(n) +

Z
1

�

dx

x
R(x)FO(n+ 1;x) +

✓
V pole

"
+ V fin

◆
FO(n)

⇡
Z

1

�

dx

x
R(x)FO(n+ 1;x) +

⇣
log(�)V pole + V fin

⌘
FO(n) +O(�)

d�O =

Z
1

0

dx

x1+"
R(x)FO(n+ 1;x) +

✓
V pole

"
+ V fin

◆
FO(n)

=

Z
1

0

dx

x
(R(x)FO(n+ 1;x)�R(0)FO(n+ 1; 0)) + V finFO(n)

=

Z
1

0

dx

x

⇣
R(x)FO(n+ 1;x)� V poleFO(n)

⌘
+ V finFO(n)

– 9 –



87

Fixed	order	calculations	with	MC	techniques:	NLO

• The	subtraction	method.	Use	the	mathematical	identity:

• Then	rewrite	(everything	is	exact)

• The	above	integral	is	now	finite	
• In	any	kinematical	point
• For	any	observable
• Therefore,	we	can	easily	construct	an	MC	(partonic	MC)	

• Method	has	been	developed	at	NLO	(basis	for	the	MC@NLO);	also	at	NNLO	(Czakon).	Used	
for	top	pair;	Higgs	+jet,	top	decay).

In the NWA we take the formal limit:

1

(q2 �m2)2 +m2�2

�! ⇡

m�
�(q2 �m2)

i.e. the decaying particle is placed on-shell. This way the Phase space for the complete n-body

process factories into the product of the phase space of all particles but the decay products,

times the decay of the unstable particle.

The NWA leads to drastic simplification:

� = �
prod

⇥BR ,

BR =
�
partial

�
tot

.

where �
tot

is the same as � above. If there is only one decay mode then BR = 1.

12.3 HEP computational software

12.4 Integral convolution

The convolution of two smooth functions f(x) and g(x) is defined as:

f ⌦ g(z) =

Z
1

0

dx

Z
1

0

dyf(x)g(y)�(z � xy) =

Z
1

z

dx

x
f(x)g(z/x) (12.1)

12.5 Loop and Phase space integrals

One central identity in dealing with phase space integrals:

x�1+" =
1

"
�(x) +

1X

n=0

"n

n!


lnn(x)

x

�

+

(12.2)

13 Recap: what did we learn?

• Approximations, approximations, approximations

• Do not be afraid of approximations

• Working approximately is not a sign of weakness or inferiority; it is a grand mastery!

• We use many schemes, approximations and modelling at intermediate stages. Nonethe-

less everything we do is fully consistent and observables are eventually scheme- and

modelling-independent.
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Fixed	order	calculations	with	MC	techniques:	NLO

• Although	the	method	is	exact	and	implementable	in	MC,	it	brings	addt’l complications	at	
NLO

• Finiteness	is	achieved	through	combination	of	events	and	counter-events;	events	have	
positive	weight;	counter-events	– negative	weight.	

• Separately,	they	can	be	arbitrary	large	but	added	together	they	are	finite.

• Events	and	counter-events	are	strongly	correlated.
• Generate	event	and	its	counter-event	at	the	same	time

• Two	separate	calculations	are	now	needed	(they	are	individually	finite):
1. Subtracted	real	contributions	
2. Finite	Virtual	term

• Can	be	extended	to	NNLO.	Same	idea	– many	more	contributions
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Parton	showers	and	event	generators	(Leading	Order)



90

• Hard	emissions	(at	some	scale	Q)		are	described	well	in	fixed	order	perturbation	theory.
• The	probability	for	such	emissions	is	suppressed	by	powers	of	αS(Q)	<<	1.
• Soft	emissions	(at	some	soft	scale	S)	are	ubiquitous	because	αS(S)	≈	1.
• In	particular	there	can	be	many	such	emissions.

• Example:	a	typical	event	for	Z	à hadrons;	
down	to	~	GeV scales	in	average	around	
7	gluons	are	emitted.

● Figure shows (schematically) a typical parton shower in Z0 → hadrons: for a resolution
scale t0 ∼ 1 GeV2, about 7 gluons are emitted.

47

Credit:	Bryan	Webber

• Here	is	how	a	typical	hard	collision	event	is	developing:
• After	the	collision	hard	radiation	is	possible;	few	very	hard	particles	are	produced.	This	

part	is	well	described	by	fixed	order	perturbation	theory.
• The	produced	partons	are	off-shell	and	can	still	radiate.	Typically	these	are	soft	

emissions	(real	and/or	virtual).	
• As	discussed	previously	such	emissions	are	cheap	and	can	be	copious.
• This	stage	is	described	by	a	“parton shower”,	i.e.	a	calculator	that	simulates	soft	and/or	

collinear	emissions.	Due	to	their	universality	and	factorizability,	such	calculations	are	
much	easier	than	full	FO	calculations.

• Once	the	system	is	at	very	low	scales	O(GeV),	perturbation	theory	completely	breaks	
down.	We	enter	the	hadronization stage.	Hadronization can	be	modeled	“exclusively”.

• Programs	that	do	all	steps	above	are	called	event	generators	(like	HERWIG,	PYTHIA).

What	is	a	shower?
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Specific Hadronization Models

● General ideas do not describe hadron formation. Main current models are cluster and string.

22

Cluster String	(like	string	theory)

Credit:	Ellis,	Stirling,	Webber

Main	hadronization models
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Main	hadronization models

Cluster	hadronization model String	hadronization model

• Used	in	PYTHIA
• The	color	string	formed	from	a	quark	pair	

breaks	down	into	hadrons
• String	is	consistent	with	linear	confining	

potential

• A	– area
• Kinks	– from	gluon	emissions

● String (PYTHIA)

❖ Uses string dynamics: colour string stretched between initial qq̄ breaks up into hadrons via
qq̄ pair production.

❖ String gives linear confinement potential, area law for matrix elements.
❖ Gluons produced in shower give ‘kinks’ on string.

nh

hn-1

1

2h

h

-qq

.....

x

t A

|M(qq̄ → h1 · · ·hn)|2 ∝ e−bA

❖ Extra parameters for pT and heavy particle suppression.
❖ Some problems with baryons.

● Both models describe e+e− data well . . .

24

Specific Hadronization Models

● General ideas do not describe hadron formation. Main current models are cluster and string.

22

Specific Hadronization Models

● General ideas do not describe hadron formation. Main current models are cluster and string.

22

• Used	in	HERWIG
• Assumed	that	color	singlet	cluster	are	

formed	from	neighboring	q-qbar pairs
• These	color	cluster	then	decay	into	

hadrons
• The	mass	of	the	clusters	is	few	GeV
• How	they	decay	to	hadrons	is	model	

dependent.	But	a	simple	phase	space-
based	model	already	works	well.

• The	model	does	not	work	very	well	with	
very	massive	cluster

• Problems	with	Baryons	and	heavy	
quarks.
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Parton	showers	and	event	generators:

Matching	to	LO	calculations

Extra	material
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• Multijet events	are	omnipresent	at	the	LHC.	QCD	produces	many	of	those;	bSM too.	To	find	
bSM we	need	good	understanding	of	the	genuine	QCD	backgrounds.

• Notice	the	limit	of	the	simulation
• Notice	the	large	number	of	jets	that	are	actually	measured.	And	this	is	for	8	TeV.	The	LHC	

now	operates	at	13	TeV!

Why	we	need	LO+PS	matching?

8 4 Background estimation

mainly to reflect the level of statistical precision for this validation. Due to the multiple sam-
pling of the response template, the statistical uncertainty of the prediction is evaluated with a
set of pseudo-experiments using a bootstrap technique [49]. Relative differences between the
predictions using efficiencies extracted from data and MC result in 2–20% uncertainties across
the various search bins. Other systematic uncertainties arise from the geometrical and kine-
matic acceptance for the muons (3%), and the t-jet response function (1–15%). An uncertainty
of 1–8% is assigned to account for possible differences between data and MC simulation for the
acceptance of the mT selection.

4.4 Estimation of the QCD multijet background

The background from QCD multijet events is evaluated with the “rebalance and smear” method
[9, 10], using data samples recorded with HT thresholds ranging from 350 to 650 GeV. The
events, recorded with a trigger prescaled by a factor k, are sampled k times to create seed
events as described below.

In the rebalance step, the momenta of the jets with pT > 10 GeV/c in each event are adjusted
within the jet-pT-resolution values, using a kinematic fit, such that the events are balanced
in the transverse plane. Considering only jets with pT above a certain threshold introduces
an additional imbalance in the event, which results in larger pT for the rebalanced jets than
the expected true value. This effect is compensated by scaling the rebalanced jets by a pT-
dependent factor derived by comparing rebalanced and generator-level jets in the simulation.
The scaling factors derived using either PYTHIA or MADGRAPH, and with different average
pileup interactions, are found to be similar. The jets in the rebalanced events are then smeared
using jet pT response functions, which are obtained from MC simulation as a function of pT and
h, and adjusted to match those determined from dijet and g+jets data [27]. The QCD multijet
background is predicted by applying selection criteria on the kinematic quantities calculated
from the smeared jets. The procedure is repeated one hundred times to evaluate the average
prediction and its statistical uncertainty in each search region.

Ev
en

ts
 / 

G
eV

-210

1

210

410

610 Predicted Background
Genuine Background
Stat. Uncertainty

 = 8 TeVs,  -1CMS Simulation, L = 19.5 fb
 > 500 GeVT 3, H≥ JetsN

(a)

 [GeV]TH
1000 2000 3000 4000 5000

(P
re

d.
-S

im
.)/

Si
m

.

-1
-0.5

0
0.5

1

Ev
en

ts
 / 

G
eV

-410

-210

1

210

410
510

Predicted Background
Genuine Background
Stat. Uncertainty

 = 8 TeVs,  -1CMS Simulation, L = 19.5 fb
 1000 GeV≥ T 5, H≤ Jets N≤3 

(b)

 [GeV]TH
0 100 200 300 400 500 600 700

(P
re

d.
-S

im
.)/

Si
m

.

-1
-0.5

0
0.5

1

Ev
en

ts

-110

210

510

810

1110 Predicted Background
Genuine Background
Stat. Uncertainty

 = 8 TeVs,  -1CMS Simulation, L = 19.5 fb
 > 500 GeVT 3, H≥ JetsN

(c)

JetsN
3 4 5 6 7 8 9 10 11 12 13 14 15

(P
re

d.
-S

im
.)/

Si
m

.

-1.0
-0.5
0.0
0.5
1.0

Figure 4: Predicted (a) HT, (b) HT/ , and (c) NJets distributions found from applying the
“rebalance-and-smear” method to simulated QCD multijet events (solid points) in comparison
with the genuine QCD multijet background from simulation (shaded curve). The distributions
are shown for events that satisfy the baseline selection, except that the HT/ selection is not ap-
plied, and in addition HT > 1000 GeV is required for the events used in the HT/ distribution.
The statistical uncertainties are indicated by the hatched band for the expectation and by error
bars for the prediction.

The method is validated using simulated QCD multijet events. Comparisons of the HT, HT/ ,
and NJets distributions from the MC simulation to those predicted by the rebalance-and-smear

6 4 Background estimation

background prediction.

4.2 Estimation of the lost-lepton background

The lost-lepton background is estimated from a µ+jets control sample, selected with the same
criteria as used for the search, except that events are required to have exactly one well-reconstructed
and isolated µ with pµ

T >10 GeV. The events are collected with the same trigger that is used
to search for the signal. The transverse mass mT =

p
2pµ

TET/ [1 � cos(Df)] is required to be less
than 100 GeV in order to select events containing W ! µn decays as well as to reject possible
signal events. Here Df is the azimuthal angle between the ~pT

µ and the ~ET/ directions.

Using the reconstruction and isolation efficiencies e
e,µ
reco and e

e,µ
iso of the electrons and muons,

the events in the isolated muon control sample are weighted by
�
1/e

µ
iso
�
⇥ [(1 � e

e,µ
reco)/e

µ
reco] in

order to estimate the number of events with unidentified leptons, and by
�
e

e,µ
reco/e

µ
reco

�
⇥ [(1 �

e
e,µ
iso )/e

µ
iso] to estimate the number of events with non-isolated leptons in the signal region. The

predicted number of lost-lepton events is corrected to account for the detector and kinematic
acceptance of the muons. The lepton efficiencies and kinematic acceptance factors are obtained
from the MC simulation of W+jets and tt events and are determined in bins of NJets, HT, and
HT/ .

This method is validated using simulated tt and W+jets events. The single-muon events se-
lected from the simulated samples are used to predict the number of background events ex-
pected in the zero-lepton search regions. The resulting HT, HT/ , and NJets distributions are com-
pared in Fig. 2 to the genuine ones obtained from tt and W+jets events simulated at the detector
level. The predicted distributions closely resemble the genuine ones.
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Figure 2: Predicted (a) HT, (b) HT/ , and (c) NJets distributions found from applying the lost-
lepton background evaluation method to simulated tt and W+jets events (solid points) in com-
parison to the genuine tt and W+jets background from simulation (shaded curves). Only sta-
tistical uncertainties are shown.

The number of lost-lepton events predicted from data using the method described above, and
the corresponding uncertainties, are listed in Table 1 for each search region. The dominant un-
certainties arise from the limited number of single-muon events in most of the search regions.
The differences in lepton reconstruction and isolation efficiencies between data and MC simu-
lation are evaluated using a “tag-and-probe” method [46] on Z(µ+µ�)+jets events. The lepton
reconstruction and isolation efficiencies are measured in bins of lepton pT and DR relative to
the closest jet. This method renders these efficiencies insensitive to the kinematic differences
between Z(`+`�)+jets events and tt and W+jets events. Relative differences between the pre-
dictions using efficiencies extracted from data and MC simulation result in 10–25%, 10–30%,
and 15–24% uncertainties for the predicted background for various HT and HT/ search bins with

10 5 Results and interpretation

Table 1: Predicted event yields for the different background components in the search regions
defined by HT, HT/ and NJets. The uncertainties of the different background sources are added
in quadrature to obtain the total uncertainties.

Selection Z ! nn tt/W tt/W QCD Total Data
NJets HT [GeV] HT/ [GeV] ! e, µ+X ! th+X background
3–5 500–800 200–300 1820±390 2210±450 1750±210 310±220 6090±670 6159
3–5 500–800 300–450 990±220 660±130 590±70 40±20 2280±270 2305
3–5 500–800 450–600 273±63 77±17 66.3±9.5 1.3+1.5

�1.3 418±66 454
3–5 500–800 >600 42±10 9.5±4.0 5.7±1.3 0.1+0.3

�0.1 57.4±11.2 62
3–5 800–1000 200–300 216±46 278±62 192±33 92±66 777±107 808
3–5 800–1000 300–450 124±26 113±27 84±12 9.9±7.4 330±40 305
3–5 800–1000 450–600 47±11 36.1±9.9 24.1±3.6 0.8+1.3

�0.8 108±15 124
3–5 800–1000 >600 35.3±8.8 9.0±3.7 10.3±2.0 0.1+0.4

�0.1 54.8±9.7 52
3–5 1000–1250 200–300 76±17 104±26 66.5±9.9 59±25 305±41 335
3–5 1000–1250 300–450 39.3±8.9 52±14 41±11 5.1±2.7 137±20 129
3–5 1000–1250 450–600 18.1±4.7 6.9±3.2 6.8±2.0 0.5+0.7

�0.5 32.3±6.1 34
3–5 1000–1250 >600 17.8±4.8 2.4±1.8 2.5±0.8 0.1+0.3

�0.1 22.8±5.2 32
3–5 1250–1500 200–300 25.3±6.0 31.0±9.5 21.3±4.1 31±13 109±18 98
3–5 1250–1500 300–450 16.7±4.3 10.1±4.4 13.7±7.1 2.3±1.6 42.8±9.5 38
3–5 1250–1500 >450 12.3±3.5 2.3±1.7 2.7±1.2 0.2+0.5

�0.2 17.6±4.1 23
3–5 >1500 200–300 10.5±2.9 16.7±6.2 23.5±5.6 35±14 86±17 94
3–5 >1500 >300 10.9±3.1 9.7±4.3 6.6±1.4 2.4±2.0 29.7±5.8 39

6–7 500–800 200–300 22.7±6.4 133±59 117±25 18.2±9.2 290±65 266
6–7 500–800 300–450 9.9±3.2 22±11 18.0±5.1 1.9±1.7 52±12 62
6–7 500–800 >450 0.7±0.6 0.0+3.2

�0.0 0.1+0.5
�0.1 0.0+0.1

�0.0 0.8+3.3
�0.6 9

6–7 800–1000 200–300 9.1±3.0 56±25 46±11 13.1±6.6 124±29 111
6–7 800–1000 300–450 4.2±1.7 10.4±5.5 12.0±3.6 1.9±1.4 28.6±6.9 35
6–7 800–1000 >450 1.8±1.0 2.9±2.5 1.2±0.8 0.1+0.4

�0.1 6.0±2.8 4
6–7 1000–1250 200–300 4.4±1.7 24±12 29.5±7.8 11.9±6.0 70±16 67
6–7 1000–1250 300–450 3.5±1.5 8.0±4.7 8.6±2.7 1.5±1.5 21.6±5.8 20
6–7 1000–1250 >450 1.4±0.8 0.0+3.6

�0.0 0.6+0.8
�0.6 0.1+0.4

�0.1 2.2+3.8
�1.1 4

6–7 1250–1500 200–300 3.3±1.4 11.5±6.5 6.4±2.7 6.8±3.9 28.0±8.2 24
6–7 1250–1500 300–450 1.4±0.8 3.5±2.6 3.5±1.9 0.9+1.3

�0.9 9.4±3.6 5
6–7 1250–1500 >450 0.4±0.4 0.0+2.5

�0.0 0.1+0.5
�0.1 0.1+0.3

�0.1 0.5+2.6
�0.4 2

6–7 >1500 200–300 1.3±0.8 10.0±6.9 2.0±1.2 7.8±4.0 21.1±8.1 18
6–7 >1500 >300 1.1±0.7 3.2±2.8 2.8±1.9 0.8+1.1

�0.8 7.9±3.6 3

�8 500–800 >200 0.0+0.8
�0.0 1.9±1.5 2.8±1.4 0.1+0.4

�0.1 4.8+2.3
�2.1 8

�8 800–1000 >200 0.6±0.6 4.8±2.9 2.3±1.2 0.5+0.9
�0.5 8.3+3.4

�3.3 9
�8 1000–1250 >200 0.6±0.5 1.4+1.5

�1.4 2.9±1.3 0.7+1.0
�0.7 5.6+2.3

�2.1 8
�8 1250–1500 >200 0.0+0.9

�0.0 5.1±3.5 1.4±0.9 0.5+0.9
�0.5 7.1+3.8

�3.6 5
�8 >1500 >200 0.0+0.7

�0.0 0.0+4.2
�0.0 2.4±1.4 0.9+1.3

�0.9 3.3+4.7
�1.7 2
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3–5 1000–1250 450–600 18.1±4.7 6.9±3.2 6.8±2.0 0.5+0.7

�0.5 32.3±6.1 34
3–5 1000–1250 >600 17.8±4.8 2.4±1.8 2.5±0.8 0.1+0.3

�0.1 22.8±5.2 32
3–5 1250–1500 200–300 25.3±6.0 31.0±9.5 21.3±4.1 31±13 109±18 98
3–5 1250–1500 300–450 16.7±4.3 10.1±4.4 13.7±7.1 2.3±1.6 42.8±9.5 38
3–5 1250–1500 >450 12.3±3.5 2.3±1.7 2.7±1.2 0.2+0.5

�0.2 17.6±4.1 23
3–5 >1500 200–300 10.5±2.9 16.7±6.2 23.5±5.6 35±14 86±17 94
3–5 >1500 >300 10.9±3.1 9.7±4.3 6.6±1.4 2.4±2.0 29.7±5.8 39

6–7 500–800 200–300 22.7±6.4 133±59 117±25 18.2±9.2 290±65 266
6–7 500–800 300–450 9.9±3.2 22±11 18.0±5.1 1.9±1.7 52±12 62
6–7 500–800 >450 0.7±0.6 0.0+3.2

�0.0 0.1+0.5
�0.1 0.0+0.1

�0.0 0.8+3.3
�0.6 9

6–7 800–1000 200–300 9.1±3.0 56±25 46±11 13.1±6.6 124±29 111
6–7 800–1000 300–450 4.2±1.7 10.4±5.5 12.0±3.6 1.9±1.4 28.6±6.9 35
6–7 800–1000 >450 1.8±1.0 2.9±2.5 1.2±0.8 0.1+0.4

�0.1 6.0±2.8 4
6–7 1000–1250 200–300 4.4±1.7 24±12 29.5±7.8 11.9±6.0 70±16 67
6–7 1000–1250 300–450 3.5±1.5 8.0±4.7 8.6±2.7 1.5±1.5 21.6±5.8 20
6–7 1000–1250 >450 1.4±0.8 0.0+3.6

�0.0 0.6+0.8
�0.6 0.1+0.4

�0.1 2.2+3.8
�1.1 4

6–7 1250–1500 200–300 3.3±1.4 11.5±6.5 6.4±2.7 6.8±3.9 28.0±8.2 24
6–7 1250–1500 300–450 1.4±0.8 3.5±2.6 3.5±1.9 0.9+1.3

�0.9 9.4±3.6 5
6–7 1250–1500 >450 0.4±0.4 0.0+2.5

�0.0 0.1+0.5
�0.1 0.1+0.3

�0.1 0.5+2.6
�0.4 2

6–7 >1500 200–300 1.3±0.8 10.0±6.9 2.0±1.2 7.8±4.0 21.1±8.1 18
6–7 >1500 >300 1.1±0.7 3.2±2.8 2.8±1.9 0.8+1.1

�0.8 7.9±3.6 3

�8 500–800 >200 0.0+0.8
�0.0 1.9±1.5 2.8±1.4 0.1+0.4

�0.1 4.8+2.3
�2.1 8

�8 800–1000 >200 0.6±0.6 4.8±2.9 2.3±1.2 0.5+0.9
�0.5 8.3+3.4

�3.3 9
�8 1000–1250 >200 0.6±0.5 1.4+1.5

�1.4 2.9±1.3 0.7+1.0
�0.7 5.6+2.3

�2.1 8
�8 1250–1500 >200 0.0+0.9

�0.0 5.1±3.5 1.4±0.9 0.5+0.9
�0.5 7.1+3.8

�3.6 5
�8 >1500 >200 0.0+0.7

�0.0 0.0+4.2
�0.0 2.4±1.4 0.9+1.3

�0.9 3.3+4.7
�1.7 2

…

CMS	’14	http://arxiv.org/pdf/1402.4770v2.pdf

Background	simulations

Data	vs.	
background

Extra	material



95

• The	genuine	shower	programs	cannot	predict	such	events	with	any	reasonable	accuracy.

• Pythia,	for	example,	has	only	2	à 1	and	2	à 2processes	genuinely	built	in.	To	generate	
many	hard	jets	with	a	shower,	one	has	to	use	the	soft	and	collinear	radiation	of	the	
shower	well	outside	its	intended	“comfort”	zone.	

• A	warning – this	can	be	achieved	by	playing	with	the	scales	– but	would	this	be	correct?	
And	a	more	general	warning:	programs	can	produce	any	number.	It	is	up	to	the	user	to	
make	sense	of	produced	results.	The	logic	of	“an	imperfect	number	is	better	than	no	
number”	could	be	very	useful	but	also	very	dangerous.	One	has	to	be	very	careful	there!

• Large	number	of	hard	emissions	are	naturally	described	in	fixed	order	perturbation	theory.	
But	these	are	single,	colorful (typically	massless)	on-shell	partons	that	look	nothing	like	the	
jets	we	measure.	

• Clearly,	we	need	a	combination	of:
• hard	emissions	generated	by	a	complete	fixed	order	calculation	(these	will	give	the	

proto-jets)
• parton	shower	(builds	the	highly	complex	internal	structure	of	the	jets).

• Combining	fixed	order	calculations	with	parton	showers	is	a	non-trivial	task	which	is	by	now	
solved	in	many	ways	at	LO.	Doing	this	at	NLO	is	still	a	very	advanced	problem.	At	NNLO	this	
hasn’t	even	been	seriously	contemplated	(not	yet	– but	may	not	be	far	into	the	future!)

Why	we	need	LO+PS	matching? Extra	material
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• First,	recall	the	distinction	between	inclusive	and	exclusive	observable
• Example:	inclusive	jets:	typically,	within	QCD,	this	means	two	or	more jets.
• At	LO	however,	we	only	include	2-to-2	diagrams.	This	way	no	final	states	with	3	or	more	

particles	(jets).	At	the	same	time	a	state	with,	e.g.	8	jets,	also	belongs	to	this	inclusive	
observable.	

• Question	is:	how	to	account	for	such	multi-jet	events?
• Exclusive	event:	one	with	a	fixed	number	of	final	state	particles	(jets).	For	example:

• Exactly	2
• Exactly	3
• ...

• Note:	at	LO	(and	only	at	LO)	the	various	final	states	are	mutually	exclusive,	i.e.	an	
inclusive	sample	is	just	a	sum	of	exclusive	ones.	This	absolutely	doesn’t	work	at	NLO	and	
beyond!

• Thus,	we	arrive	at	the	basic	idea	of	merging	samples	at	LO:

• Introduce	a	separation	measure	between	final	states	with	n	and	n+1	partons.
• Generate	samples	for	all	processes	with	n	final	states,	n<Nmax.	Nmax ~O(10)	– see	

previous	slide.
• Add	the	samples.	They	are	non-overlapping	by	construction,	i.e.	any	double	counting	is	

avoided.	
• A	question: this	seems	an	easy	thing	to	do.	But	then	why	do	we	need	NLO	calculations?

Before	we	match	LO	with	PS:	what’s	a	merging	scheme? Extra	material
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• Lets	take	as	an	example	Higgs	production:
• Inclusive	Higgs	at	LO:	ppàH
• Inclusive	Higgs	at	NLO:	ppà h;	h+j
• Inclusive	Higgs	at	NNLO:	pp->h;h+j;h+jj

• A	merged	LO	sample	with	Nmax=2	would	cover	all	of	the	above	final	states.
• But	not	in	the	full	kinematic	range!

• For	example,	in	the	merged	LO	sample	we	are	not	allowed	to	take	any	two	final	state	partons	
too	close	to	each	other.	In	fact,	the	result	would	diverge	if	we	attempted	to	do	that!

• Thus,	the	LO	merged	sample	depends	on	the	parameter	that	separates	the	different	
multiplicities.	

• In	contrast,	in	an	NLO	calculation	one	can	take	the	extra	emitted	final	state	parton	and	make	
it	as	close	as	desired	to	any	other	parton.	The	divergence	is	compensated	by	the	divergence	
in	the	loop	virtual	corrections	that	are	absent in	the	merged	sample!

• Similarly	at	NNLO:	there	up	to	two	partons	can	become	very	close	to	any	other	parton.	The	
divergences	are	much	worse	than	at	NLO	but	this	is	again	compensated	by	the	(now	even	
more	complicated)	loop	corrections.

The	difference	between	a	merged	LO	sample	and	an	NLO	(or	NkLO)	calculation
Extra	material
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A	note	of	caution:	the	terms	merging	and	matching	are	not	always	assigned	the	same	meaning		
in	the	literature.	Keep	an	open	mind	and	all	should	eventually	be	clear	from	the	context.

From	merged	LO	samples	to	matching	with	PS

• There	is	no	one	“best”	or	unique	way	of	doing	this:	the	final	result	always	contains	
ambiguities	and	dependence	on	unphysical	scales	as	long	as	we	work	to	finite	orders	in	
perturbation	theory

• The	main	requirements	for	a	good	matching	scheme	are:

• Avoid	double	counting	(all	emissions	look	the	same:	be	they	hard,	or	from	the	shower)
• Avoid	dead	regions	(i.e.	kinematical	regions	unpopulated	by	radiation	while	they	should	

be)
• One	scheme	is	better	than	another	one	if	it	is	a	better	approximation	(in	the	sense	that	

both	LO	and	NLO	are	imperfect,	but	NLO	is	clearly	better	than	LO).
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Follow	the	comparative	study	http://arxiv.org/pdf/0706.2569v2.pdf

1. A	jet	measure	is	defined	and	all	relevant	cross	sections	including	jets	are	calculated	for	the	
process	under	consideration.	I.e.	for	the	production	of	a	final	state	X	in	pp-collisions,	the	
cross	sections	for	the	processes	pp →	X	+	n	jets	with	n	=	0,	1,	...,	N	=	Nmax are	evaluated.

2. Hard	parton	samples	are	produced	with	a	probability	proportional	to	the	respective	total	
cross	section,	in	a	corresponding	kinematic	configuration	following	the	matrix	element.

3. The	individual	configurations	are	accepted	or	rejected	with	a	dynamical,	kinematics-
dependent	probability	that	includes	both	effects	of	running	coupling	constants	and	of	
Sudakov form	factors.	In	case	the	event	is	rejected,	step	2	is	repeated,	i.e.	a	new	parton	
sample	is	selected,	possibly	with	a	new	number	of	jets.

4. The	parton	shower	is	invoked	with	suitable	initial	conditions	for	each	of	the	legs.	In	some	
cases,	like,	e.g.	in	the	MLM	procedure,	this	step	is	performed	together	with	the	step	before,	
i.e.	the	acceptance/rejection	of	the	jet	configuration.	In	all	cases	the	parton	shower	is	
constrained	not	to	produce	any	extra	jet;	stated	in	other	words:	configurations	that	would	
fall	into	the	realm	of	matrix	elements	with	a	higher	jet	multiplicity	are	vetoed	in	the	parton	
shower	step.

Common	strategies	for	PS	matching	procedures

The	matching	procedures	discussed	below	differ	mainly	in:

• the	jet	definition	used	in	the	matrix	elements;
• how	acceptance/rejection	of	jet	configurations	from	the	matrix	element	is	performed;
• Details	of,	and	the	jet	vetoing	inside,	the	parton	showering.
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Restate	the	problem

• Let’s	make	it	even	more	evident	where’s	the	problem

• We	need	a	separation	parameter	at	parton	level	Rpart,	i.e.	any	two	partons	must	have	
R>Rpart.	It	is	needed,	because	if	Rpart à0	then	the	partonic	x-section	is	IR	divergent.

• We	also	need	a	jet-level	separation	parameter	(connected	to	jet	definition,	etc)	Rjet
which	separates	jets	from	each	other.

• Clearly,	only	Rjet is	physical	because	it	is	related	to	the	measurement;	not	Rpart.

• Yet,	it	is	easy	to	see	that	an	unmatched	sample	has	strong	dependence	on	the	value	of	Rpart:	
by	taking	smaller	and	smaller	values	for	Rpart the	x-section	grows	unbounded.

• Basically	our	prediction	strongly	depends	on	an	unphysical	parameter.	This	is	a	problem.

• Rpart should	be	smaller	than	Rjet (because	otherwise	we	will	have	unpopulated	regions	– or	
dead	zones)	which	is	undesirable.	

• The	goal	of	the	FO+PS	matching	procedure	is	to	minimize	the	dependence	on	this	parton	
level	cut

Ideally	it	should	be	independent	of	it,	but	this	is	never	the	case.

• How	to	achieve	this	is	not	obvious.	There	are	3	main	proposals.
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• Main	algorithms:
• MLM	(Mangano ‘02)
• CKKW	(Catani,	Kraus,	Kuhn,	Webber	‘01)
• Dipole	(Lonnblad’02)

• Their	approaches	are:	if	two	partons	are	very	close	(can	happen	when	Rpart is	small)	we	
somehow	suppress	or	outright	veto	such	event	(a	veto	is	a	form	of	suppression).

• In	MLM	the	parton	level	generation	and	shower	are	done	without	any	intermediate	checks.
• Only	the	final	jets	are	checked	for:

• mutual	separation
• If	each	jet	can	be	associated	with	one	hard	parton	
• all	jets	and	partons	can	be	paired	

• Any	event	where	the	above	are	not	satisfied	is	vetoed.	
• The	Rpart sensitivity	is	reduced	because	if	two	partons	are	very	close	they	will	produce	

jets	that	are	close	to	each	other	and	this	is	vetoed.	

• In	CKKW	there	are	both	parton-level	and	jet-level	checks:
• Associate	a	Sudakov factor	at	each	vertex.	This	is	an	exponential	which	dampens	parton-

level	events	with	small	separation.	
• PS	emissions	which	are	hard	(off-jet)	are	vetoed.
• Important:	this	gives	a	prescription	for	how	to	choose	the	value	of	the	renormalization	

scale	at	each	vertex	(i.e.	for	each	emission)!

Main	LO	+	PS	matching	procedures Extra	material
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CKKW	merging	procedure

Monte Carlo Methods 5 Bryan Webber

CKKW shower veto

• Shower n partons from “creation scales”

– includes coherent soft emission

• Veto emissions at scales above Q1

– cancels leading (LL&NLL) Q1 dependence

Q

q

Q1

shower from Q

shower from q

shower from Q, not q
Fig.	courtesy	of	B.	Webber

• The	separation	of	the	matrix-element	and	parton-shower	domains	for	different	multi-jet	
processes	is	achieved	through	a	k⊥measure	which	controls	the	internal	separation	cut,	also	
called	the	merging	scale;

• The	acceptance/rejection	of	jet	configurations	proceeds	through	a	reweighting	of	the	matrix	
elements	with	analytical	Sudakov form	factors	and	factors	due	to	different	scales	in	αs;

• A	vetoed	parton-shower	algorithm	is	used	to	guarantee	that	no	unwanted	hard	jets	are	
produced	during	jet	evolution.

• The	starting	scale	for	the	parton	shower	evolution	of	each	parton	is	given	by	the	scale	where	
it	appeared	first:
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The	Sudakov Formfactor

• In	our	discussion	of	soft-gluon	resummation	(lecture	2)	we	encountered	the	Sudakov
formfactor

• It	was	resumming soft	emission	from	an	independently	evolving	hard	parton
• It	included	both	virtual	(loop)	and	real	emission	corrections.
• Separately,	Real	and	Virtual	corrections	were	divergent,	but	together	they	were	finite.
• We	interpreted	it	as	a	probability	for	no	resolved	emission.

• In	the	context	of	parton	showers	it	reads:

• Evolution	of	parton	i from	scale	q1 down	to	scale	q2 without	resolved	radiation
• Q0 is	a	scale	1GeV,	at	which	the	shower	terminates.	

• How	does	the	shower	work?
• Start	with	a	hard	parton	i;	
• It	is	on-shell;	we	shift	it	off-shell	and	assign	some	virtuality Q	(the	initial	scale)	to	the	

parton	(all	momenta	need	to	be	reshuffled	for	this!).
• Solve	the	equation	Δ(Q,q1)	=	R	for	q1,	where	R	is	a	uniform	random	number.

• If	q1 <	Q0:	terminate	the	shower	(no	resolved	emission	was	made)
• If	q1 >Q0:	then	splitting	iàj occurred.

• Repeat	the	above	for	the	secondary	parton	j	starting	from	a	scale	q1.
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11 Parton showers
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The	MC@NLO	approach

Frixione,	Webber	hep-ph/0204244
• Combine	NLO	matrix	element	with	a	shower

• The	NLO	matrix	element	is	formulated	within	the	subtractions	method	we	discussed	
yesterday.	The	matrix	elements	either	have	an	emission	or	not	(virtual)

• The	shower	is	based	upon	the	Sudakov formfactor and	describes	emissions	(0,1,2…)	that	
are	independent	of	the	matrix	element	emissions

• The	goal	is	to	ensure:

• No	double	counting	(after	all,	emissions	from	matrix	elements	and	Shower	look	the	
same…)

• Simple	interpretation:	the	definition	of	the	observable	enters	through	the	shower;	
the	matrix	elements	only	modify	the	weight	of	the	shower	(compared	to	the	LO	
case).

• Improved	numerical	convergence	compared	to	a	fixed	order	calculation
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The	MC@NLO	approach
• Assume	the	following	form:

• A	combination	of	sets	of	(0,1,…)-emission	events	with:

• Weight	W0,W1,	to	be	determined	by	matching	to	a	fixed	order	calculation
• Each	emission	is	interfaced	to	a	shower	S().	The	kinematics	of	the	shower	is	dependent	

on	the	real	emission	(i.e.	the	shower	can	emit	only	the	energy	left	after	the	hard	
emission	is	made)

• x0 and	xM are	the	minimum/maximum	energies	available	to	radiate.
• Denote	the	energy	of	the	real	emission,	if	any,	as	y:	x0 <	y	<	xM.

• The	Sudakov formfactor is:

• It	drives	the	shower	(i.e.	shower	contains	all	possible	emissions	with	probability	derived	from	
the	Sudakov):

12 MC@NLO

�(xM , x0) = exp


�a

Z xM

x0

dz

z
P (z)

�
= 1� a

Z xM

x0

dz

z
P (z) +O(a2)

d�MC@NLO(O) = W0S(O, xM ) +

Z xM

x0

dyWi(y)S(O, y) + . . .

S(O, xM ) - shower; describing 0,1,.... emissions driven by the Sudakov form factor.

S(O, x) =


1� a

Z x

x0

dz

z
P (z) +O(a2)

�
�(O �O(y))

(12.1)

13 Practicalities

13.1 Scales and scale settings

13.2 Decays of unstable particles: Narrow width approximation

The propagator of an unstable particle (Breit-Wigner resonance) of momentum q, mass m

and width � is:

P (q,m,�) =
1

(q2 �m2)2 +m2�2

(this is just the modulus square of the usual propagator for a particle of width �)

In the NWA we take the formal limit:

1

(q2 �m2)2 +m2�2
�! ⇡

m�
�(q2 �m2)

i.e. the decaying particle is placed on-shell. This way the Phase space for the complete n-body

process factories into the product of the phase space of all particles but the decay products,

times the decay of the unstable particle.
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1 emission	from	shower

2	emissions	from	shower
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The	MC@NLO	approach

• To	determine	the	weights	W0,W1	one	expands	MC@NLO	and	requires	that	to	NLO	it	agrees	
with	the	NLO	result	(derived	within	the	subtraction	method)

• The	MC@NLO	weights	read:

• Notice	the	“miracle”:	
• Weights	are	similar	to	the	NLO	ones	but	the	real	emission	counter-term	got	replaced	by	

the	shower:	R(0)==B	à BP(x)

• This	implies	that	the	subtraction	kinematics	is	the	same	as	the	one	for	the	event.	
Improved	convergence;	less	negative	weight	events	compared	to	fixed	order	calculation
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Just	a	number	~	Born
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The	state	of	the	art	for	FO	+	PS

• NNLO	+	PS	results	have	been	derived	for	processes	like	Higgs,	DY,	etc.

• Within	MINLO	approach	(2013):		Hamilton,	Nason,	Re,	Zanderighi
• GENEVA	collaboration	(2015): Alioli,	Bauer,	Berggren,	Tackmann,	Walsh

• The	MINLO	approach	is	based	on	fully	differential	NLO	calculation	which	has	NNLO	
normalization	through	reweighting.

• The	GENEVA	result	is	based	on	the	slicing	method	with	N-jettiness variable.

• Extensions	beyond	these	(2à 1)	processes	is	unclear.	

• Expect	lots	of	activity	and	hopefully	new	results.
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PDF	evolution	and	number	of	active	flavors	in	the	proton

• How	to	treat	the	heavy	flavors	(c,b,t)	in	the	proton?	

• It	depends	on	the	scale	at	which	we	measure	the	pdfs:
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13 Active flavours in the proton

fi(x, µ)

i = u, d, s if µ < mc

i = u, d, s, c if mc < µ < mb

i = u, d, s, c, b if mbµ < mt

i = u, d, s, c, b, t if µ > mt
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– 10 –• Unlikely	to	need	top	quark	pdf’s at	the	LHC	but	should	be	absolutely	essential	at	a	future	100	
TeV hadron	collider
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PDF	(and	fragmentation	functions)	at	different	orders	(LO	NLO,…)14 PDF’s at di↵erent orders
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15 Practicalities

15.1 Scales and scale settings

15.2 Decays of unstable particles: Narrow width approximation

The propagator of an unstable particle (Breit-Wigner resonance) of momentum q, mass m

and width � is:

P (q,m,�) =
1

(q2 �m2)2 +m2�2

(this is just the modulus square of the usual propagator for a particle of width �)

In the NWA we take the formal limit:

1

(q2 �m2)2 +m2�2
�! ⇡

m�
�(q2 �m2)

i.e. the decaying particle is placed on-shell. This way the Phase space for the complete n-body

process factories into the product of the phase space of all particles but the decay products,

times the decay of the unstable particle.

The NWA leads to drastic simplification:

� = �prod ⇥BR ,

BR =
�partial

�tot
.

where �tot is the same as � above. If there is only one decay mode then BR = 1.

15.3 HEP computational software

15.4 Integral convolution

The convolution of two smooth functions f(x) and g(x) is defined as:

f ⌦ g(z) =

Z 1

0
dx

Z 1

0
dyf(x)g(y)�(z � xy) =

Z 1

z

dx

x
f(x)g(z/x) (15.1)
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• Using	the	same	data,	we	can	extract	pdf’s at	LO,	NLO,	NNLO,…

• Clearly,	the	change	in	perturbative	cross-section	gets	“absorbed”	by	a	change	in	the	pdf.

• Therefore,	pdf’s at	LO,	NLO,…	are	different.

• They	should	be	used	consistently	in	subsequent	computations.
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NNLO	calculations
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uFirst	were	Smith,	van	Neerven and	co.
uEarly	modern	work	was	analytic	(elegant	but	couldn’t	cope	with	less-inclusive	observables)

u Early	numeric	work	based	on	sector	decomposition	(lead	to	tremendous	progress;	
implementation	is	process	dependent)

u Antenna	subtraction	(ongoing	progress)

u
uColorful	subtraction	(promising	development)

NNLO	approaches	(1)

Binoth and	Heinrich	’04
[Higgs,	Drell-Yan] Anastasiou,	Melnikov,	Petriello ’03

[Higgs,	Drell-Yan] Anastasiou,	Dixon,	Melnikov	Petriello ’01-04

[e+e-à 3	jets] Weinzierl	'08-09
Gerhmann-De	Ridder,	Gehrmann,	Glover,	Heinrich	’07

[dijets] Currie,	Gehrmann-De	Ridder,	Gerhmann,	Glover,	Pires,	Wells	’13-15
[H+j] Chen,	Gehrmann,	Glover,	Jacquier ’14
[Z+j] Gehrmann-De	Ridder,	Gerhmann,	Glover,	Huss,	Morgan	’15
[tt (quarks)] Abelof,	Gehrmann-De	Ridder ’14

del	Duca,	Somogyi,	Trocsanyi ’05
[Higgs	à bb] del	Duca,	Duhr,	Somogyi,	Tramontano,	Trocsanyi ’15
[e+e-à 3j] del	Duca,	Duhr,	Kardos,	Somogyi,	Trocsanyi ‘16

[Drell-Yan,	e+e-] through	mid-’90’s
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uqT-subtraction	
Ø elegant	and	effortless	for	colorless	final	states:

Ø being	developed	for	general	final	states:

u N-jettiness (new	and	very	promising	development)

NNLO	approaches	(2)

Catani,	Grazzini ‘07	
[γγ] Catani,	Cieri,	de	Florian,	Ferrara,	Grazzini ’11
[Wγ, Zγ] Grazzini,	Kallweit,	Rathlev,Torre ’13-15
[ZH] Ferrara,	Grazzini,	Tramontano ’14
[WH] Ferrara,	Grazzini,	Tramontano ’11-13
[WW] Gehrmann,	Grazzini,	Kallweit,	Maierhoeffer,von Manteuffel,Pozzorini,	Rathlev,	Tancredi ’14
[ZZ] Cascioli,	Gehrmann,	Grazzini,	Kallweit,	Maierhoeffer,	von	Manteuffel,Pozzorini,	

Rathlev,	Tancredi,	Weihs ’14

Zhu,	Li,	Li,	Shao,	Yang	‘12
Catani,	Grazzini,	Torre	’14

[tt-offdiagonal] Bonciani,	Catani,	Grazzini,	Sargsyan,	Torre	’15

Gaunt,	Stahlhofen,	Tackmann,	Walsh,	'15
[Vj] Boughezal,	Focke,	Liu,	Petriello ’15-16
[Zj] Boughezal,	Focke,	Giele,	Liu,	Petriello ’15
[Hj] Boughezal,	Campbell,	Ellis,	Focke,	Giele,	Liu,	Petriello ’15
[γγ] Campbell,	Ellis,	Li,	Williams	‘16
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uSector-improved	residue	subtraction

uFuture	developments	within	this	approach:

Ø Independent	implementation	in	a	new	code	STRIPPER

Ø Process-independent	(currently	used	for	top	production;	adding	top	decay)

Ø Important	stability	and	numerics-related	improvements	being	implemented

Ø Linked	to	fastNLO:	could	output	tables	for	any	process

ü Very	useful	for	pdf studies

NNLO	approaches	(3)

Czakon	‘10-11
Czakon,	Heymes ‘14
Boughezal,	Melnikov,	Petriello,	'11

[tt]		 Barnreuther,	Czakon,	Fiedler,	Heymes,	Mitov	’12-16
[Hj] Boughezal,	Caola,	Melnikov,	Petriello,	Schulze,	'13-15
[B-decay] Caola,	Czernecki,	Liang,	Melnikov,	Szafron,	'14
[t-decay] Brucherseifer,	Caola,	Melnikov,	'13

Czakon,	Heymes,	van	Hameren

Britzger,	Rabbertz,	Sieber,	Stober,	Wobisch
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u Establishing	a	connection	between	various	processes:

Ø Access	all	(many)	processes	under	the	same	roof

u NLO	is	a	good	lead	(although	should	not	be	followed	verbatim	due	to	computational	cost	at	
NNLO):

uMCFM
uMC@NLO
uPowheg
uSherpa
u…

u Matching	NNLO	to	showers	and	description	of	realistic	final	states

u Exploring	new	frontiers	(beyond	2-to-2)

u (Some	of)	the	NNLO	methods	can	in	principle	cope	with	any-multiplicity	processes.

u Numerics is	however	another	issue…	

u However,	no	2-loop	amplitude	is	known	beyond	2-to-2

NNLO:	future	needs	and	directions
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And	finally:	the	big	picture	(thanks	to	Fabio	Maltoni)

The	past:

… and	the	future
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LHC	applications
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Drell-Yan,	W	and	Z

• Relevance	of	these	processes:

• Standard	calibration	tool	for	detectors.
• Were	proposed	for	LHC	luminosity	measurement	due	to	the	very	good	theory	control.
• Searches	for	Z’	and	related	bSM processes
• The	W+	and	W- asymmetries	allow	direct	access	to	the	flavor	asymmetries	of	the	proton	

pdf’s.
• Uncertainties	at	percent	level.

Latest	version	of	FEWZ	http://arxiv.org/pdf/1208.5967.pdf

• These	processes	are	the	best	known	ones	at	hadron	colliders

• See	program	FEWZ	

• Known	fully	differentially	through	NNLO	in	QCD	for	all	processes

• For	Drell-Yan	also	NLO	EW	included.

• W/Z	+	jet	now	also	known	at	NNLO	(several	groups)
• DY/W/Z	also	merged	with	PS’s
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W	and	Z	+	jet	@	NNLO

• V+jet @	NNLO	is	needed	to	describe	the	V	PT at	NNLO

• HT distribution	for	W+jet:

Radja Boughezal, ANL NNLO Jet Phenomenology29

The HT Distribution

•  While NLO QCD results undershoot the ATLAS and CMS data for most of the 
HT/ST range, NNLO QCD corrections lead to a much better description of data 
over the entire range. 

• NNLO correction in the 1-jet bin plays an important role in describing HT. 

•  HT is the scalar sum of the transverse momenta of all reconstructed jets, and is 
called ST by ATLAS.

RB, Liu, Petriello  1602.05612
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W	and	Z	+	jet	@	NNLO

• V+jet @	NNLO	is	needed	to	describe	the	V	PT at	NNLO

• HT distribution	for	Z+jet:

Radja Boughezal, ANL NNLO Jet Phenomenology33

The HT Distribution

•  While NLO QCD results significantly underestimate the cross section at 
intermediate and high HT, the ATLAS and CMS data for the entire HT/ST 
range are well described with the NNLO QCD corrections. 

RB, Liu, Petriello  1602.05612
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Di-photon	@	NNLO

• The	main	background	to	Higgs	à γγ
• NNLO	(and	beyond)	makes	a	dramatic	difference

Figure 2. Representative Feynman diagrams for the calculation of gg ! �� at LO (top left) and
NLO (the remainder). The virtual two-loop corrections are shown in the top right, while the bottom
row corresponds to real radiation contributions.

manifest, and combined across the different phase spaces in order to ensure that a sensible
prediction is obtained. As discussed in the introduction, we will use the N -jettiness slicing
technique proposed in refs [41, 42] for this task. This results in an above-cut contribution
corresponding to the calculation of pp ! ��j at NLO. The below-cut contribution requires
2-loop soft [60, 61] and beam [62] functions, together with the process-dependent hard func-
tion. Various component pieces of this calculation, including explicit results for the hard
function, are given in Appendix A

2.2 gg initiated loops at LO and NLO

The NNLO calculation of �� production represents the first order in perturbation theory
that is sensitive to gg initial states. One class of gg configurations corresponds to real-real
corrections, i.e. the gg ! qq�� matrix element that is related to the contribution shown in
figure 1 (right) by crossing. These pieces are combined with contributions from the DGLAP
evolution of the parton distribution functions in the real-virtual and double-virtual terms
to ensure an IR-finite result. The second type of contribution is due to nF “box” loops, for
which a representative Feynman diagram is shown in the top left corner of Figure 2. This
contribution has no tree-level analogue and is thus separately finite.

The box diagrams result in a sizeable cross section (⇡ �LO), primarily due to the large
gluon flux at LHC energies and the fact that this contribution sums over different quark
flavors in the loop. In this section, we focus on nF = 5 light quark loops. Since this
contribution is clearly important for phenomenology it is interesting to try to isolate and
compute higher order corrections to it. We illustrate typical component pieces of these
NLO corrections in the remaining diagrams in Figure 2. They comprise two-loop gg��

amplitudes, and one-loop ggg�� and gqq�� amplitudes. A NLO calculation of gg ! ��

including the two-loop and one-loop ggg�� amplitudes was presented in refs. [20, 21]. An
infrared-finite calculation can be obtained from the gg ! �� two-loop amplitudes and the
ggg�� one-loop amplitudes, provided that a suitable modification to the quark PDFs is used
(essentially using a LO evolution for the quark PDFs and a NLO evolution for the gluon
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Figure 1. Representative Feynman diagrams for the calculation of pp ! �� at NNLO. From
left to right these correspond to double virtual (calculated in ref. [57]), real-virtual and real-real
corrections.

LHC phenomenology, comparing our predictions to data obtained by the CMS experiment
at 7 TeV, and to the m�� spectrum reported by ATLAS at 13 TeV. Finally, we draw our
conclusions in section 5. Appendices A, B and C contain additional technical details of our
calculation.

2 Calculation

In this section we present an overview of our calculation of diphoton production at NNLO
and discuss the various contributions that are included in this paper. Before going into
detail we introduce the following notation

�NLO
�� = �LO

+��NLO ,

�NNLO
�� = �NLO

+��NNLO
= �LO

+��NLO
+��NNLO . (2.1)

In this way ��X represents the correction obtained from including the coefficient that first
arises at order X in perturbation theory. We use this notation both inclusively (as written
above) and for differential predictions.

2.1 Overview

We present representative Feynman diagrams for the various topologies that enter the
calculation of the pp ! �� process at NNLO in Figure 1. At this order in perturbation
theory contributions arise from three distinct final states. The simplest is the one that also
represents the Born contribution and corresponds to a 2 ! 2 phase space. At NNLO this
final state receives corrections from two-loop amplitudes interfered with the LO amplitude,
and one-loop squared contributions. The 2 ! 3 real-virtual phase space consists of tree-
level and one-loop amplitudes for qqg�� interfered with one another. Finally the largest
phase space, representing a 2 ! 4 process, is referred to as the double-real contribution and
consists of two tree-level qq�� +2 parton amplitudes squared. The contributions discussed
above have ultraviolet (UV) poles in the double-virtual and real-virtual phase spaces, which
we renormalize in the MS scheme. Amplitudes for the double-virtual contribution can be
found in ref. [57], for the real-virtual in ref. [58], and tree-level amplitudes for the real-real
can be found in ref. [59].

After UV renormalization the individual component pieces of the calculation still con-
tain singularities of infrared (IR) origin. These infrared poles must be regulated, made

– 3 –

MCFM:		http://arxiv.org/pdf/1603.02663v2.pdf
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Di-photon	@	NNLO

• The	main	background	to	Higgs	à γγ
• NNLO	(and	beyond)	makes	a	dramatic	difference

Figure 2. Representative Feynman diagrams for the calculation of gg ! �� at LO (top left) and
NLO (the remainder). The virtual two-loop corrections are shown in the top right, while the bottom
row corresponds to real radiation contributions.

manifest, and combined across the different phase spaces in order to ensure that a sensible
prediction is obtained. As discussed in the introduction, we will use the N -jettiness slicing
technique proposed in refs [41, 42] for this task. This results in an above-cut contribution
corresponding to the calculation of pp ! ��j at NLO. The below-cut contribution requires
2-loop soft [60, 61] and beam [62] functions, together with the process-dependent hard func-
tion. Various component pieces of this calculation, including explicit results for the hard
function, are given in Appendix A

2.2 gg initiated loops at LO and NLO

The NNLO calculation of �� production represents the first order in perturbation theory
that is sensitive to gg initial states. One class of gg configurations corresponds to real-real
corrections, i.e. the gg ! qq�� matrix element that is related to the contribution shown in
figure 1 (right) by crossing. These pieces are combined with contributions from the DGLAP
evolution of the parton distribution functions in the real-virtual and double-virtual terms
to ensure an IR-finite result. The second type of contribution is due to nF “box” loops, for
which a representative Feynman diagram is shown in the top left corner of Figure 2. This
contribution has no tree-level analogue and is thus separately finite.

The box diagrams result in a sizeable cross section (⇡ �LO), primarily due to the large
gluon flux at LHC energies and the fact that this contribution sums over different quark
flavors in the loop. In this section, we focus on nF = 5 light quark loops. Since this
contribution is clearly important for phenomenology it is interesting to try to isolate and
compute higher order corrections to it. We illustrate typical component pieces of these
NLO corrections in the remaining diagrams in Figure 2. They comprise two-loop gg��

amplitudes, and one-loop ggg�� and gqq�� amplitudes. A NLO calculation of gg ! ��

including the two-loop and one-loop ggg�� amplitudes was presented in refs. [20, 21]. An
infrared-finite calculation can be obtained from the gg ! �� two-loop amplitudes and the
ggg�� one-loop amplitudes, provided that a suitable modification to the quark PDFs is used
(essentially using a LO evolution for the quark PDFs and a NLO evolution for the gluon
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left to right these correspond to double virtual (calculated in ref. [57]), real-virtual and real-real
corrections.

LHC phenomenology, comparing our predictions to data obtained by the CMS experiment
at 7 TeV, and to the m�� spectrum reported by ATLAS at 13 TeV. Finally, we draw our
conclusions in section 5. Appendices A, B and C contain additional technical details of our
calculation.

2 Calculation

In this section we present an overview of our calculation of diphoton production at NNLO
and discuss the various contributions that are included in this paper. Before going into
detail we introduce the following notation

�NLO
�� = �LO

+��NLO ,

�NNLO
�� = �NLO

+��NNLO
= �LO

+��NLO
+��NNLO . (2.1)

In this way ��X represents the correction obtained from including the coefficient that first
arises at order X in perturbation theory. We use this notation both inclusively (as written
above) and for differential predictions.

2.1 Overview

We present representative Feynman diagrams for the various topologies that enter the
calculation of the pp ! �� process at NNLO in Figure 1. At this order in perturbation
theory contributions arise from three distinct final states. The simplest is the one that also
represents the Born contribution and corresponds to a 2 ! 2 phase space. At NNLO this
final state receives corrections from two-loop amplitudes interfered with the LO amplitude,
and one-loop squared contributions. The 2 ! 3 real-virtual phase space consists of tree-
level and one-loop amplitudes for qqg�� interfered with one another. Finally the largest
phase space, representing a 2 ! 4 process, is referred to as the double-real contribution and
consists of two tree-level qq�� +2 parton amplitudes squared. The contributions discussed
above have ultraviolet (UV) poles in the double-virtual and real-virtual phase spaces, which
we renormalize in the MS scheme. Amplitudes for the double-virtual contribution can be
found in ref. [57], for the real-virtual in ref. [58], and tree-level amplitudes for the real-real
can be found in ref. [59].

After UV renormalization the individual component pieces of the calculation still con-
tain singularities of infrared (IR) origin. These infrared poles must be regulated, made
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MCFM:		http://arxiv.org/pdf/1603.02663v2.pdf
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Higgs	production

• The	slow	convergence	of	the	perturbative	expansion	in	Higgs	production	prompted	work	
beyond	NNLO	QCD.

a major milestone towards the complete Higgs-boson cross-section at N3LO, but they also

constitute the most precise calculation of the Higgs-boson cross-section at N3LO beyond

threshold.

In a second part of our paper, we use our results and perform a critical appraisal of

the threshold approximation. We define a way to quantify the convergence of the trun-

cated threshold expansion, and we perform a numerical study of the convergence of the

threshold expansion at NLO, NNLO and N3LO. Given the widely accepted dominance of

the threshold limit in Higgs production at the LHC, our study is an important ingredient

to asses the reliability of the threshold approximation at N3LO in QCD.

This paper is organised as follows: In Section 2 we present our results for the complete

second term in the threshold expansion and the exact results for the coefficients of the

first three leading logarithmically-enhanced terms in the threshold limit. In Section 3 we

perform a critical appraisal of the threshold expansion, both in z-space and in Mellin-space.

In Section 4 we draw our conclusions.

2. Analytic results for the N3LO partonic cross-section

2.1 The gluon-fusion cross-section

In this section we present the main results of our paper. We start by giving a short review

of the inclusive gluon-fusion cross-section and its analytic properties, and then we present

our results in subsequent sections.

The inclusive cross-section σ for the production of a Higgs boson is given by

σ = τ
∑

ij

(

fi ⊗ fj ⊗
σ̂ij(z)

z

)

(τ) , (2.1)

where σ̂ij are the partonic cross-sections for producing a Higgs boson from the parton

species i and j, and fi and fj are the corresponding parton densities. We have defined the

ratios

τ =
m2

H

S
and z =

m2
H

s
, (2.2)

where mH denotes the Higgs-boson mass and s and S denote the squared partonic and

hadronic center-of-mass energies. The convolution of two functions is defined as

(A⊗B)(τ) =

∫ 1

0
dx dy A(x)B(y) δ(τ − xy) . (2.3)

In the rest of this section we only concentrate on the partonic cross-sections. If we work

in perturbative QCD, and after integrating out the top quark, the partonic cross-sections

take the form
σ̂ij(z)

z
=

πC2

8V

∞
∑

k=0

(αs

π

)k
η(k)ij (z) , (2.4)

with V = N2
c − 1 and Nc the number of SU(Nc) colours, and C ≡ C(µ2) and αs ≡

αs(µ2) denote the Wilson coefficient [15] and the strong coupling constant, evaluated at
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See	https://arxiv.org/abs/1602.00695	

observed in z-space. As it was also observed for the leading soft terms and parts of the

next-to-soft terms in ref. [8], we find that through O
(

1
N

)

the corrections are always positive.

Nevertheless, we observe that the formally leading logarithms contribute the least to the

hadronic cross-section. In total, the soft-virtual (SV) terms (lognN) contribute about

∼ 18% of the Born to the cross-section, while the next-to-soft (NS) terms (lognN/N)

contribute about ∼ 11% of the Born. We therefore conclude that, unlike common folklore

suggests, the threshold limit does in fact not dominate the cross-section at LHC energies,

but there is a sizeable contribution from terms beyond threshold.

As we have emphasised in ref. [9], there is an ambiguity in how to convolute an ap-

proximate partonic cross-section with the parton densities. For example, we can recast the

hadronic cross-section in the form,

σ = τ1+n
∑

ij

(

f (n)
i ⊗ f (n)

j ⊗
σ̂ij(z)

z1+n

)

(τ) (3.9)

where

f (n)
i (z) ≡

fi(z)

zn
. (3.10)

σ is independent of the arbitrary parameter n as long as the partonic cross-section is known

exactly. Mellin transforming eq. (3.9), we obtain

M
[ σ

τ1+n

]

(N) =
∑

ij

M
[

f (n)
i

]

(N)M
[

f (n)
j

]

(N)M

[

σ̂(z)

z1+n

]

(N)

=
∑

ij

M [fi] (N − n)M [fj] (N − n)M

[

σ̂(z)

z

]

(N − n) .

(3.11)

If only a finite number of terms in the threshold expansion of the partonic cross-sections

are kept,

σ̂ij(z)

z1+n
≃ σ̂ij(z)|(1−z)−1 + σ̂ij(z)|(1−z)0 + n(1− z) σ̂ij(z)|(1−z)−1 +O(1− z)1 (3.12)

then the convolution integral is sensitive to varying the arbitrary parameter n. This am-

biguity is expected to be reduced when including higher-order terms in the threshold ex-

pansion. This effect was already observed at NNLO [25], corresponding to expanding

around threshold the 1/z flux-factor as part of the partonic cross-section or evaluating

it unexpanded as part of the parton luminosity. A similar ambiguity appears to be re-

sponsible [28, 29] for the bulk of the difference in the numerical predictions for the Higgs

cross-section at N3LO in various approaches and implementations of threshold resumma-

tion [5].

In the remainder of this section we analyse the impact of this truncation when we

use the results of Section 2, which contains the most precise information on the threshold

expansion of the cross-section at N3LO to date. In order to quantify the trustworthiness

of the threshold approximation, we study the dependence of the result on the parameter n

defined through eq. (3.9), both in z and in Mellin-space.

– 15 –

• Expansion	around	the	soft	limit	(normally	n=1):
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Higgs	production

• The	(essentially)	full	N3LO	result	is	a	reason	for	joy!

• So	far	the	choice	of	central	scale	was	always	tenuous.

• It	seems	at	N3LO	it	doesn’t	mater	as	much	(which	is	a	very	good	news)

See	https://arxiv.org/abs/1602.00695	

Figure 8: The dependence of the cross-section on a common renormalization and factorization
scale µ = µF = µR.

�scale
EFT,k

LO (k = 0) ±14.8%

NLO (k = 1) ±16.6%

NNLO (k = 2) ±8.8%

N3LO (k = 3) ±1.9%

Table 5: Scale variation of the cross-section as defined in eq. (3.11) for a common renormalization
and factorization scale µ = µF = µR.

the treatment of both infrared and ultraviolet singularities. For a physical process such

as inclusive Higgs production, where one cannot identify very disparate physical scales,

large separations between the renormalization from the factorization scale entail the risk

of introducing unnecessarily large logarithms. In Fig. 8 we present the dependence of the

cross-section on a common renormalization and factorization scale µ = µR = µF . Through

N3LO, the behaviour is very close to the scale-variation pattern observed when varying

only the renormalization scale with the factorization scale held fixed. More precisely, using

the same quantifier as introduced in eq. (3.11) for the variation of the renormalization scale

only, the variation of the cross-section in the range [mH/4,mH ] for the common scale µ

is shown in Tab. 5. We observe that the scale variation with µR = µF is slightly reduced

compared to varying only the renormalization scale at NLO and NNLO, and this di↵erence

becomes indeed imperceptible at N3LO.

The scale variation is the main tool for estimating the theoretical uncertainty of a

cross-section in perturbative QCD, and it has been successfully applied to a multitude of

– 16 –
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Higgs	+	jet	production
• Now	also	H+j is	known	at	NNLO

• Needed	to	describe	the	Higgs	PT at	NNLO
See	http://arxiv.org/pdf/1505.03893.pdf
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Figure 1: Cancellation of 1/✏ poles in the qg channel. Note
that individual contributions have been rescaled by a factor
of 0.1, while the sum of them is not rescaled.

detail in our previous work on Higgs plus jet production
in pure gluodynamics [9], we only sketch here the salient
features of the calculation. We then present the numer-
ical results of the computation including NNLO results
for cross sections of Higgs plus jet production at various
collider energies and for various values of the transverse
momentum cut on the jet. We also discuss the NNLO
QCD corrections to the transverse momentum distribu-
tion of the Higgs boson. Finally, we present our conclu-
sions.

We begin by reviewing the details of the computation.
Our calculation is based on the e↵ective theory obtained
by integrating out the top quark. For values of the Higgs
p
?

below 150 GeV, this approximation is known to work
to 3% or better at NLO [13, 14]. Since the Higgs boson re-
ceives its transverse momentum by recoiling against jets,
we expect that a similar accuracy of the large-mt ap-
proximation can be expected for observables where jet
transverse momenta do not exceed O(150) GeV as well.

The e↵ective Lagrangian is given by

L = �1

4
G(a)

µ⌫ G
(a),µ⌫ +

X

i

q̄ii/Dqi�C1
H

v
G(a)

µ⌫ G
(a),µ⌫ , (1)

where G
(a)
µ⌫ is the gluon field-strength tensor, H is the

Higgs boson field and qi denotes the light quark field
of flavor i. The flavor index runs over the values i =
u, d, s, c, b, which are all taken to be massless. The co-
variant derivative /D contains the quark-gluon coupling.
The Higgs vacuum expectation value is denoted by v,
and C1 is the Wilson coe�cient obtained by integrating
out the top quark. The calculation presented here re-
quires C1 through O(↵3

s), which can be obtained from
Ref. [15]. Both the Wilson coe�cient and the strong
coupling constant require ultraviolet renormalization; the
corresponding renormalization constants can be found
e.g. in Ref. [16].

Partonic cross sections computed according to the
above prescription are still not finite physical quantities.

NNPDF2.3, 8 TeV

�
[fb
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Figure 2: Dependence of the total LO, LO and NNLO cross-
sections on the unphysical scale µ. See text for details.

Two remaining issues must be addressed. First, contribu-
tions of final states with di↵erent number of partons must
be combined in an appropriate way to produce infrared-
safe observables. This requires a definition of final states
with jets. We use the anti-kT jet algorithm [17] to com-
bine partons into jets. Second, initial-state collinear sin-
gularities must be absorbed into the parton distribution
functions (PDFs) by means of standard MS PDF renor-
malization. A detailed discussion of this procedure can
be found in Ref. [18].
The finite cross sections for each of the partonic chan-

nels ij obtained in this way have an expansion in the MS
strong coupling constant ↵s ⌘ ↵s(µ), defined in a theory
with five active flavors,

�ij = �
(0)
ij +

↵s

2⇡
�
(1)
ij +

⇣↵s

2⇡

⌘2

�
(2)
ij +O(↵6

s). (2)

Here, the omitted terms indicated by O(↵6
s) include the

↵3
s factor that is contained in the leading order cross sec-

tion �
(0)
ij . Our computation will include the gg and qg

partonic cross sections at NNLO, �(2)
gg and �

(2)
qg , where q

denotes any light quark or anti-quark. At NLO, it can be
checked using MCFM [19] that these channels contribute
over 99% of the cross section for typical jet transverse
momentum cuts, p

?

⇠ 30 GeV. We therefore include the
partonic channels with two quarks or anti-quarks in the
initial state only through NLO.
In addition to the ultraviolet and collinear renormal-

izations described above, we need the following ingre-

dients to determine �
(2)
gg and �

(2)
qg : the two-loop vir-

tual corrections to the partonic channels gg ! Hg and
qg ! Hq; the one-loop virtual corrections to gg ! Hgg,
gg ! Hqq̄ and qg ! Hqg; the double real emission
processes gg ! Hggg, gg ! Hgqq̄, qg ! Hqgg and
qg ! HqQQ̄, where the QQ̄ pair in the last process can
be of any flavor. The helicity amplitudes for all of these
processes are available in the literature. The two-loop
amplitudes were computed in Ref. [20]. The one-loop cor-
rections to the four-parton processes are known [21] and

See	http://arxiv.org/pdf/1504.07922v1.pdf

• Dramatic	reduction	of	scale	dependence
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Dijet	production

• Major	hadron	collider	process:
• bSM searches
• PDF’s

• Partially	known	at	NNLO

See	http://arxiv.org/pdf/1407.5558.pdf

NNLO dijet production Nigel Glover

(a)

(b)

Figure 1: Representative Feynman diagrams at NNLO for (a) gg ! gluons and (b) qq̄ ! gluons.

range making it the second most dominant channel at the LHC. This is not the case at the Tevatron
where qg scattering is the dominant channel at low and moderate pT and the high-pT jet production
is completely dominated by qq̄ scattering. The first steps towards the NNLO corrections for this
process were made in Refs. [10, 11] which computed the purely gluonic contribution to the dijet
cross section, the gg ! gg subprocess. In this contribution, we provide the first numerical results
for the leading colour contribution to the qq̄ ! gg subprocess. The NNLO calculation presented
here describes gluonic jets production in the sense that only gg ! gluons and qq̄ ! gluons matrix
elements are involved.

At NNLO, three types of parton-level processes contribute to jet production: the two-loop
virtual corrections to the basic 2 ! 2 process [12, 13], the one-loop virtual corrections to the single
real radiation 2 ! 3 process [14, 15] and the double real radiation 2 ! 4 process at tree-level [16].
Representative Feynman graphs relevant for gluonic dijet production are shown in Fig. 1.

2. Antenna subtraction and the NNLOJET integrator

It is well known that in QCD, both the virtual and real radiative corrections are peppered with
IR singularities which conspire to mutually cancel to form the finite physical cross section. After
ultraviolet renormalization, the virtual contributions contain explicit infrared singularities, which

3

NNLO dijet production Nigel Glover

Jets are identified using the anti-kT algorithm with resolution parameter R = 0.7. Jets are
accepted at central rapidity |y| < 4.4, and ordered in transverse momentum. An event is retained
if the leading jet has pT 1 > 80 GeV. For the dijet invariant mass distribution, a second jet must be
observed with pT 2 > 60 GeV.
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Figure 2: Inclusive jet transverse energy distribution, ds/d pT , for jets constructed with the anti-kT algo-
rithm with R = 0.7 and with pT > 80 GeV, |y| < 4.4 and

p
s = 8 TeV at NNLO (blue), NLO (red) and LO

(dark-green). The lower panel shows the ratios of different perturbative orders, NLO/LO, NNLO/LO and
NNLO/NLO.

All calculations have been carried out with the MSTW08NNLO distribution functions [30],
including the evaluation of the LO and NLO contributions. This choice of parameters allows us to
quantify the size of the genuine NNLO contributions to the parton-level subprocess. Factorization
and renormalization scales (µF and µR) are chosen dynamically on an event-by-event basis. As
default value, we set µF = µR ⌘ µ and set µ equal to the transverse momentum of the leading jet
so that µ = pT 1.

In Fig. 2 we present the inclusive jet cross section for the anti-kT algorithm with R = 0.7 and
with pT > 80 GeV, |y| < 4.4 as a function of the jet pT at LO, NLO and NNLO, for the central
scale choice µ = pT 1. The NNLO/NLO k-factor shows the size of the higher order NNLO effect
to the cross section in each bin with respect to the NLO calculation. For this scale choice we see
that the NNLO/NLO k-factor is approximately flat across the pT range corresponding to a 27-16%
increase compared to the NLO cross section. Note that in the combination of qq̄ ! gg +gg ! gg
channels, the gluon-gluon initiated channel dominates. The NNLO/NLO k-factor for the qq̄ ! gg
channel alone is roughly 5%.

Fig. 3(a) shows the inclusive jet cross section in double-differential form in jet pT and rapidity
bins at NNLO. The pT range is divided into 16 jet-pT bins and seven rapidity intervals over the
range 0.0-4.4 covering central and forward jets. The double-differential k-factors for the distribu-
tion in Fig. 3(a) for three rapidity slices: |y| < 0.3, 0.3 < |y| < 0.8 and 0.8 < |y| < 1.2 are shown

5
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Top-pair	production 4

too, and a consistent NNLO treatment would require the
analysis of Ref. [35] to be extended to NNLO, which is
now possible with the help of the results derived in this
letter as well as Ref. [12]. Given the numerical effect is
small (a 0.7% shift at LHC 8 TeV and a 0.4% shift at the
Tevatron), in this work we take A = 0.
As can be concluded from table I the precision of the

theoretical prediction at full NNLO+NNLL is very high.
At the Tevatron, the scale uncertainty is as low as 2.2%
and just slightly larger, about 3%, at the LHC. The inclu-
sion of the NNLO correction to the gg-initiated reaction
increases the Tevatron prediction of Ref. [12] by about
1.4%, which agrees well with what was anticipated in
that reference.

Collider σtot [pb] scales [pb] pdf [pb]

Tevatron 7.009 +0.259(3.7%)
−0.374(5.3%)

+0.169(2.4%)
−0.121(1.7%)

LHC 7 TeV 167.0 +6.7(4.0%)
−10.7(6.4%)

+4.6(2.8%)
−4.7(2.8%)

LHC 8 TeV 239.1 +9.2(3.9%)
−14.8(6.2%)

+6.1(2.5%)
−6.2(2.6%)

LHC 14 TeV 933.0 +31.8(3.4%)
−51.0(5.5%)

+16.1(1.7%)
−17.6(1.9%)

TABLE II: Pure NNLO theoretical predictions for various
colliders and c.m. energies.

To assess the numerical impact from soft gluon re-
summation, in table II we present results analogous to
the ones in table I but without soft gluon resummation,
i.e. at pure NNLO. Comparing the results in the two
tables we conclude that the effect of the resummation
is a (2.2, 2.9, 2.7, 2.2)% increase in central values and
(2.4, 2.2, 2.1, 1.5)% decrease in scale dependence for, re-
spectively, (Tevatron, LHC7, LHC8, LHC14).
Next we compare our predictions with the most precise

experimental data available from the Tevatron and LHC.
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The comparison with the latest Tevatron combination
[36] is shown in fig. 3. The measured value σtot = 7.65±
0.42 pb is given, without conversion, at the best top mass
measurement [37] m = 173.18 ± 0.94 GeV. From this
comparison we conclude that theory and experiment are
in good agreement at this very high level of precision.
In fig. 4 we show the theoretical prediction for the

tt̄ total cross-section at the LHC as a function of the
c.m. energy. We compare with the most precise avail-
able data from ATLAS at 7 TeV [38], CMS at 7 [39] and
8 TeV [40] as well as the ATLAS and CMS combination
at 7 TeV [41]. We observe a good agreement between
theory and data. Where conversion is provided [39], the
measurements have been converted to m = 173.3 GeV.
Finally, we make available simplified fits for the top

mass dependence of the NNLO+NNLL cross-section, in-
cluding its scale and pdf uncertainties:

σ(m) = σ(mref )
(mref

m

)4
(16)

×

(

1 + a1
m−mref

mref
+ a2

(

m−mref

mref

)2
)

.

The coefficient a1,2 can be found in table III.

CONCLUSIONS AND OUTLOOK

In this work we compute the NNLO corrections to
gg → tt̄ + X . With this last missing reaction included,
the total inclusive top pair production cross-section at
hadron colliders is now known exactly through NNLO
in QCD. We also derive estimates for the two-loop hard
matching coefficients which allows NNLL soft-gluon re-
summation matched consistently to NNLO. All results
are implemented in the program Top++ (v2.0) [33].

Scale	error	at	3%;	similar	to	parametric	errors	due	to	αs,	mtop,	pdf
FURTHER EXPLORATION OF TOP PAIR HADROPRODUCTION AT NNLO 5
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Fig. 2. – Scale dependence of the predicted cross-section at LO, NLO and NNLO at the LHC
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√
s (left). On the right plot: detailed breakdown of scale uncertainty for LHC

8 TeV at LO, NLO and NNLO including also soft-gluon resummation at LL, NLL and NNLL.

resummation. Inclusion of resummation with logarithmic accuracy at NLL or NNLL
also noticeably decreases the scale dependence of the theoretical prediction, as expected.
The absolute size of the resulting reduction in scale dependence is also at the 2% level.

An alternative way of assessing the impact of soft-gluon resummation is shown in
fig. 3 (which updates fig. 1 of Ref. [18] by including the exact NNLO result). Plotted
is the relative error of the cross-section at the LHC as a function of the collider energy.
We consider a broad range of energies, starting from slightly above the tt̄ production
threshold and going up to 45 TeV which is far above threshold. In all cases we observe
that the inclusion of soft gluon resummation extends the validity of the perturbative
prediction closer to threshold. For large collider energies the enhanced tt̄ threshold
contribution gets reduced and, indeed, we observe that the resummed and unresummed
predictions converge to each other in this case. We also notice that the difference between
NLL and NNLL is small and is more pronounced when added on top of the NLO result
(as anticipated). Finally we note that the inclusion of soft-gluon resummation on top
of the NNLO result makes the relative scale uncertainty practically independent of the
collider energy, except of course for the immediate threshold region which, a posteriori,
is another justification for the use of soft-gluon resummation.

5. – Application to searches for physics beyond the Standard Model

In addition to being a powerful tool for testing the Standard Model, the high precision
of the total inclusive tt̄ production cross-section presents an opportunity for devising new
strategies for searches of physics beyond the Standard Model. A first exploration of the
improvements in BSM searches arising from NNLO top data was presented in Ref. [9],
where it was shown that the use of top quark data in a NNLO global PDF fit leads to
an improved determination of the poorly known large-x gluon PDF. This improvement
then translates into more accurate predictions for BSM heavy particle production and
for the large mass tail of the Mtt distribution, the latter used in searches of new heavy
resonances which decay into top quarks.

While the above examples illustrate the indirect improvement in BSM searches due
to top quark data, high-precision top production can also impact BSM studies directly,

Impressive	convergence	of	perturbation	theory	
in	this	process.	

For	more	details	see	arXiv:1305.3892
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Top-pair	production

• The	scale	variation	in	top	production	is	small.	Indicates	good	perturbative	convergence.
• Amazing	parallel	to	Higgs	production	at	N3LO!

From	http://arxiv.org/pdf/1606.03350.pdf	

-10

-5

-1
 0
 1

 5

 10

1/8 1/4 1/2 1 2 4 8

PP → tt-+X (8 TeV)
mt=173.3 GeV
µ0 = mt
MSTW2008

σ
(µ
)/
σ
re
s(
m t
)-

1[
%]

µ/µ0

LO
NLO
NNLO

NNLO+NNLL

-10

-5

-1
 0
 1

 5

 10

1/8 1/4 1/2 1 2 4 8

PP → tt-+X (8 TeV)
mt=173.3 GeV
µ0 = mt
NNPDF3.0

σ
(µ
)/
σ
re
s(
m t
)-

1[
%]

µ/µ0

LO
NLO
NNLO

NNLO+NNLL

Figure 1. Total cross-section at LO, NLO, NNLO and NNLO+NNLL QCD evaluated with a fixed
scale µF = µR = mt with two different pdf sets: MSTW2008 (left) and NNPDF3.0 (right). Each plot
is normalised to the NNLO+NNLL cross-section evaluated with the corresponding pdf set at scale
µ0 = mt. The symbols on some of the lines are meant to help distinguish the various lines.

where the momentum pT entering the definition of mT in eq. (3.2) is either that of the top

or the antitop, depending on the distribution. The sum in the definition of H ′

T runs over

all massless partons present in the final state (at NNLO there could be up to two partons).

Finally, an important part of the process of choosing the functional form of µ0 involves

the fixing of the proportionality constant, signified by the ∼ sign in the above equations.

While for brevity we focus our presentation on LHC 8 TeV, we have also verified that our

conclusions remain unchanged at LHC 13 TeV. Unless explicitly specified, throughout this

work we combine partonic cross-sections with pdf of the same order (LO with LO, NLO with

NLO, etc). Resummed NNLO partonic cross-sections are convoluted with NNLO pdf.

3.1 Total cross-section

We begin our investigation with the total inclusive cross-section based on the standard choice

µ0 = mt and computed with two pdf sets: MSTW2008 [69] and NNPDF3.0 [70]. The total

cross-section is computed with the help of the program Top++ [71]. Besides the LO, NLO

and NNLO QCD corrections we also include soft-gluon resummation through NNLL accuracy

where available (i.e. for the total cross-section computed with a fixed scale µ0 ∼ mt).

Two important observations can be made from fig. 1 and they turn out to be central for

this work: first, the scale for which perturbative convergence is maximised is slightly above

mt/2, i.e. that scale is significantly lower than the standard one µ0 = mt. Second, the value of

the fixed order NNLO cross-section evaluated at the scale of fastest convergence is only about

0.5% higher than the NNLO+NNLL resummed one evaluated at the usual scale µ0 = mt,

i.e. the two values essentially agree (recall that 0.5% difference is only a small fraction of the

scale uncertainty of the resummed result).

The numerical agreement between the fixed order result evaluated at a lower scale and

– 5 –
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Top-pair	production	AFB	asymmetry
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FIG. 1: The inclusive asymmetry in pure QCD (black) and
QCD+EW[28] (red). Capital letters (NLO, NNLO) corre-
spond to the unexpanded definition (2), while small letters
(nlo, nnlo) to the definition (3). The CDF/DØ (naive) av-
erage is from Ref. [29]. Error bands are from scale variation
only. Our final prediction corresponds to scenario 10.

ing in eq. (3).] The first definition, eq. (2), uses exact re-
sults in both numerator and denominator of eq. (1), while
the second, eq. (3), is the expansion of the ratio eq. (2) in
powers of αS . (Such an expansion is not, strictly speak-
ing, fully consistent since the αS expansion is performed
after convolution with pdf’s. Nevertheless, following the
existing literature, we consider it as an indication of the
sensitivity of AFB to missing higher order terms.)

In the present letter, we present differential asymme-
tries with the unexpanded definition (2) and without EW
corrections (see figs. 2,3,4). The inclusive asymmetry,
see fig. 1, is computed with both definitions (2) and (3)
including EW corrections. (EW corrections to Di are
neglected since EW effects to the total cross-section are
very small O(1%), see Refs. [57–61].) The numerator
factor NEW is taken from Table 2 in Ref. [28]. (We have
checked that the different pdf and mt used in Ref. [28]
have negligible impact on the QCD numerator N3 and
so we expect the same to hold for NEW.) Only for the
inclusive asymmetry we determine the scale variation by
keeping µR = µF (since the scale dependence of NEW is
published [28] only for µR = µF ). (We have checked that
for the pure QCD corrections to the total asymmetry the
difference with respect to scale uncertainty derived with
µR ̸= µF variation is negligible.) We also note that the
scale variation of AFB is derived from the consistent scale
variation of the ratio, i.e. both numerator and denom-
inator in eqs. (2) and (3) are computed for each scale
value.
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FIG. 3: As in fig. 2 but for the Mtt̄ differential asymmetry.
The highest bin contains overflow events and the lowest bin
includes all events down to the production threshold 2mt.

DISCUSSION AND CONCLUSIONS

In fig. 1 we observe that the central values of the ex-
panded (3) and unexpanded (2) definitions of inclusive
AFB differ significantly at NLO but less so at NNLO.
While the unexpanded definition (2) closely resembles
the experimental setup, the consistency of the two def-
initions within uncertainties renders the question about
the more appropriate choice largely irrelevant. We also
note the small scale error for the expanded AFB defini-
tion (3) in pure QCD at both NLO and NNLO, which
appears too small to be realistic. The inclusion of EW
corrections, however, breaks this pattern and brings the
scale dependence in line with the unexpanded definition

• An	excellent	example	why	QCD	matter:	for	a	long	time	it	was	thought	that	no	higher	order	
QCD	corrections	should	be	expected,	thus	making	the	discrepancy	between		CDF	
measurement	/	SM	theory	more	significant.

• However,	NNLO	QCD	brings	large	corrections	that	helped	to	finally	resolve	the	long	standing	
Tevatron	AFB	puzzle.
• A	new	D0	measurement	was	also	much	closer	to	SM.

From	http://arxiv.org/pdf/1411.3007.pdf
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FIG. 1: The inclusive asymmetry in pure QCD (black) and
QCD+EW[28] (red). Capital letters (NLO, NNLO) corre-
spond to the unexpanded definition (2), while small letters
(nlo, nnlo) to the definition (3). The CDF/DØ (naive) av-
erage is from Ref. [29]. Error bands are from scale variation
only. Our final prediction corresponds to scenario 10.

ing in eq. (3).] The first definition, eq. (2), uses exact re-
sults in both numerator and denominator of eq. (1), while
the second, eq. (3), is the expansion of the ratio eq. (2) in
powers of αS . (Such an expansion is not, strictly speak-
ing, fully consistent since the αS expansion is performed
after convolution with pdf’s. Nevertheless, following the
existing literature, we consider it as an indication of the
sensitivity of AFB to missing higher order terms.)

In the present letter, we present differential asymme-
tries with the unexpanded definition (2) and without EW
corrections (see figs. 2,3,4). The inclusive asymmetry,
see fig. 1, is computed with both definitions (2) and (3)
including EW corrections. (EW corrections to Di are
neglected since EW effects to the total cross-section are
very small O(1%), see Refs. [57–61].) The numerator
factor NEW is taken from Table 2 in Ref. [28]. (We have
checked that the different pdf and mt used in Ref. [28]
have negligible impact on the QCD numerator N3 and
so we expect the same to hold for NEW.) Only for the
inclusive asymmetry we determine the scale variation by
keeping µR = µF (since the scale dependence of NEW is
published [28] only for µR = µF ). (We have checked that
for the pure QCD corrections to the total asymmetry the
difference with respect to scale uncertainty derived with
µR ̸= µF variation is negligible.) We also note that the
scale variation of AFB is derived from the consistent scale
variation of the ratio, i.e. both numerator and denom-
inator in eqs. (2) and (3) are computed for each scale
value.
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FIG. 2: The |∆y| differential asymmetry in pure QCD at
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FIG. 3: As in fig. 2 but for the Mtt̄ differential asymmetry.
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includes all events down to the production threshold 2mt.

DISCUSSION AND CONCLUSIONS

In fig. 1 we observe that the central values of the ex-
panded (3) and unexpanded (2) definitions of inclusive
AFB differ significantly at NLO but less so at NNLO.
While the unexpanded definition (2) closely resembles
the experimental setup, the consistency of the two def-
initions within uncertainties renders the question about
the more appropriate choice largely irrelevant. We also
note the small scale error for the expanded AFB defini-
tion (3) in pure QCD at both NLO and NNLO, which
appears too small to be realistic. The inclusion of EW
corrections, however, breaks this pattern and brings the
scale dependence in line with the unexpanded definition
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Top-pair	production

• Top	pair	production	is	now	under	good	control	all	the	way	into	the	TeV regime

From	http://arxiv.org/pdf/1606.03350.pdf	
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Figure 14. The pT,t/t̄ (left) and mtt̄ (right) distributions for LHC 13 TeV. Error bands are from scale
variation only.

pdf related uncertainties become the dominant source of error long before one reaches the

end points of the computed ranges. To gain insight into the size of the pdf error we have

compared predictions based on three pdf sets. It appears that at present the constraining

factor in doing TeV analyses is the knowledge of pdfs. For this reason the result of the present

work should be used with some care. Future precision progress will critically depend on the

availability of improved pdf sets. In order to facilitate the use of our calculations with any

future pdf set, we will release in the near future our results also as tables in the fastNLO

library format [76, 77].

Second, we would like to emphasise that besides pdf errors, the results we present here

will also be affected by the resummation of collinear logs and possibly by EW effects. Those

contributions will require dedicated future studies. In any case the NNLO QCD result com-

puted in this work offers the base for such future additions.

6 Conclusions

The main result of this work is the extension of the recently computed NNLO QCD differential

distributions for stable top quark pair production at the LHC beyond the small pT /mtt̄ regime

studied so far at LHC Run I. The results derived here make it possible to describe stable top

quark production into the multi-TeV regime which will be explored in detail during LHC Run

– 20 –
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Top-pair	production

• Top	pair	production	is	now	under	good	control	all	the	way	into	the	TeV regime

• One	could	actually	predict	the	relevant	Mtt behaviour below	1	TeV with	around	O(1%)!

• Main	restrictive	factor	for	the	future?
• PDF	– this	will	be	a	major	concern	for	the	future!
• Possibly	even	mtop
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Figure 9. As in figs. 7,8 but for the ratios of the normalised pT,t/t̄ (left) and mtt̄ (right) distributions.

knowledge of pdf. It is clear that with the large amount of top data expected during Run II

of the LHC, top-quark data has very strong potential for constraining pdfs. In this work we

only highlight this problem and verify that the pdf uncertainty does not affects our optimal

scale-choice. Detailed analysis of pdf and how they can be improved with top data should be

the subject of a dedicated study.

Finally, before closing this section, we present another proof that the conclusion derived

in section 3 regarding the choice of “best” scale µ0 is not impacted by the choice of pdf

set. Given the difference in predictions between different pdf sets such a conclusion is non-

trivial and is an important test of the robustness of our chosen dynamic scales (3.9). To

that end, in figs. 12,13 we show plots analogous to the ones in figs. 5,6 but with all curves

evaluated with the same NNLO pdf set (i.e. LO, NLO and NNLO partonic cross-sections

are all convoluted with the same NNLO pdf). Based on the conclusions above, the K-factors

for each scale should be pdf independent. We notice that all K-factors are very similar to

the ones in figs. 5,6 and most importantly, the K-factors for the “best” scale choices eq. (3.9)

are consistently the smallest ones, and the ones closest to unity, among all dynamic scales

considered by us.

5 Phenomenological applications

As stated in the introduction, the ultimate goal of seeking a robust dynamic scale for top-

pair production is to describe top production in the broadest kinematic ranges that will be

accessible at the LHC. Indeed, as shown in the previous sections, the “best” scales from

eq. (3.9) satisfy all our criteria for a “good” dynamic scale. In this work we calculate the

NNLO QCD corrections to all stable top quark observables that have so-far been measured

– 15 –
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Top-pair	production:	top-mass	measurement

Cosmological	implications:

Ø Higgs	Inflation:	Higgs	=	inflaton

Ø Higgs	mass	and	vacuum	stability	in	the	Standard	Model	at	NNLO.		

Degrassi,	Di	Vita,	Elias-Miro,	Espinosa,	Giudice,	Isidori,	Strumia ‘12

Bezrukov,	Shaposhnikov ’07-’08
De	Simone,	Hertzbergy,	Wilczek’08

Strong	dependence	
on	the	top	mass!

Instability scale Λ [GeV]
δMtop is	the
dominant	uncertainty!

Ø The	fate	of	the	Universe	might	depend	on	1	GeV in	Mtop!

For	more	details	see	arXiv:1310.0799
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CMS + ATLAS mtop (MC) 

17

Analysis combined using BLUE, 
accounts for correlations between
all uncertainties.

CMS combination :
mtop = 172.44 ± 0.48 GeV

ATLAS combination :
(OLD) mtop = 172.99 ± 0.91 GeV
(NEW) mtop = 172.84 ± 0.70 GeV
(not in the combination plot)

World combination:  
mtop = 174.34 ± 0.76  GeV

Total uncertainty is now well
below 1 GeV

LHCTOPWG

precision of 0.3%

June 2016 Javier Fdez.

• And	the	current	status:
• Thanks	to	Javier	Fernandez	(LHCP2016,	Lund	Sweden)	
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Some	B-physics
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uThe	CKM	matrix	is	parametrize	with	3	Real	parameters	+	1	phase

u Notice	the	mixing	angles	are	small.	Nicely	reflected	by	the	Wolfenstein	parametrization

CP	violation

Problem 3.1. Simplest unitary parameterization of the CKM. Given that we know that
the physical content of the ckm matrix must boil down to three mixing angles and one phase, show
that the most general ckm matrix can be parameterized by at most 4 real parameters that cannot
all be in the same row. That is, that we must have a minimum of five complex elements.

In light of the above mathematical result, it is customary to choose Vud, Vus, Vcb, and Vtb to be
purely real. The remaining elements are complex. One standard parameterization of the mixing
angles is: ✓12, ✓13, ✓23. In the limit of two generations (e.g. d and s), ✓12 is the usual Cabbibo
angle. The two indices tell us which plane we’re rotating about. The phase �KM is typically
named after Kobayashi and Maskawa. In terms of these parameters, the ckm matrix takes the
form (writing c12 = cos ✓12, etc.)

VCKM =

0

@
c12c13 s12c13 s13e�i�

�s12c23 � c12s23s13ei� c12c23 � s12s23s13ei� s23c13
s12s23 � c12c23s13ei� �c12s23 � s12c23s13ei� c23c13

1

A . (3.11)

From the utfit website,7 we find that the data give

sin ✓12 = 0.22497± 0.00069 (3.12)

sin ✓23 = 0.04229± 0.00057 (3.13)

sin ✓13 = 0.00368± 0.00010 (3.14)

�[�] = 65.9± 2.0 . (3.15)

Notice that all mixing angles are small! This is an important case where the Standard Model is
not a generic standard model. Thus it would be nice to have an approximation that captures the
essential physics in a way that makes it more transparent. This is a bit of a shift in paradigm, so
let’s take a moment to discuss some philosophy. The reason why we use approximations in physics
is because we often can’t solve things exactly. However, here we have an exact parameterization of
the ckm matrix, but we want to move away from it to an approximation. This sounds extremely
stupid! It will seem even more stupid when you realize that the approximation that we make is
not even unitary—we lose one of the fundamental properties of the matrix! However, part of being
a physicist means knowing what you can neglect.

We tell the undergrads at Cornell that it is not by mistake that our department is
in the College of Arts and Sciences. Physics is about the art of making the right
approximation. Making the right approximation can teach you a lot.

The first person to make such an approximation was Wolfenstein—you might be familiar with him
from the msw e↵ect in neutrino physics. His key insight was that the orders of magnitude of the
ckm matrix seem to follow a particular pattern:

|V | ⇠
0

@
1 � �3

� 1 �2

�3 �2 1

1

A , (3.16)

where � ⇡ 0.2. Motivated by this, he defined four di↵erent parameters to describe the physical
content of the ckm matrix: �, A, ⇢, ⌘. One takes � to be a small parameter worthy of expanding

7http://www.utfit.org/UTfit/
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content of the ckm matrix: �, A, ⇢, ⌘. One takes � to be a small parameter worthy of expanding

7http://www.utfit.org/UTfit/
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The	full	set	of	parameters	is:
about and the others are formally O(1). These parameters are defined relative to the standard
parameterization by

s12 = � =
|Vus|p|Vud|2 + |Vus|2

(3.17)

s13 = A�2 = �

����
Vcb

Vus

���� (3.18)

and finally

s13e
i� = A�3(⇢+ i⌘) = V ⇤

ub . (3.19)

One is free to plug in these relations into (3.11) to get a perfectly unitary and even uglier repre-
sentation of the ckm matrix. The beauty of the Wolfesntein parameterization, however, is
that we may use it to write the CKM matrix as a Taylor expansion in �, so that

V =

0

@
1� �2/2 � A�3(⇢� i⌘)

�� 1� �2/2 A�2

A�3(1� ⇢� i⌘) �A�2 1

1

A+O(�4). (3.20)

Looking at the factors of � we see that the diagonals are order one, and we get the structure in
(3.16) that Wolfenstein observed. Now look at the upper left 2⇥ 2. Do you recognize this? (If you
don’t see it, then there’s something wrong with your physics education! ) The elements are just the
expansion for sine and cosine. In fact, it is the 2⇥ 2 Cabbibo mixing matrix! To first order in �,
the first two generations don’t know about the third. There’s one more feature: complex numbers
only show up in the 1–3 and 3–1 mixing elements. Let us make a brief detour to highlight the
physical significance of this complex number.

3.3 CP violation

Let’s remind ourselves of some properties of discrete symmetries. We have the usual suspects: C,
P , CP , and CPT . Any local Lorentz-invariant field theory preserves CPT . So far everything we’ve
observed agrees with CPT , so we assume that this is respected by nature at a fundamental level—
though there are interesting cases where e↵ective CPT -violating theories are useful. What about
the other discrete symmetries? None of them needs to be conserved by a theory. Experimentally
we know that qcd and qed each conserve both C and P separately, and so also conserve CP .
The weak interaction is a di↵erent story.

Electroweak theory is, by construction, parity violating. This is because it is a chiral theory:
it treats left- and right-handed fields di↵erently. Clearly once you write down such a theory,
interchanging left and right brings you to a di↵erent theory. Any chiral theory tautologically
violates parity. What about charge conjugation? Applying C to a left-handed field transforms
it into a right-handed field, and so it is also violated in by the weak interaction. The particular
transformation isn’t important to us here, but is explained thoroughly in, e.g. [37, 38]. Thus a
chiral theory violates both P and C. To repeat things over again but with more refined language,
we may say

qed and qcd are vectorial and so preserve P and C separately, but electroweak theory
is chiral and so violates both P and C.
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uComplex	numbers	appear	only	in	at	1-3	and	3-1	elements;	thus	3	generations	needed	to	
have	CP	violation

uHere	is	how	CP	arises:

uParametrization-independent	way	to	measure	CP	violation:	the	Jarlskog invariant:

u It	depends	on	all	mixing	angle;	even	if	one	is	zero	– no	CP	violation!

CP	violation

What about CP? Since both P and C transformations take left- and right-handed fields
into one another, � $  ̄, at first glance CP isn’t necessarily violated. This is indeed true at a
model-building level. Following our prescription for designing a model, we may specify the key
ingredients of a model—gauge group, representations, breaking pattern—and then write down
the most general renormalizable Lagrangian. This is a model, but it’s not actually a “predictive
description of nature” until its physical parameters are determined explicitly. A ‘standard model’
written with undetermined parameters may or may not violate CP . It is only once the parameters
of the Standard Model were measured8 that we found that indeed, the values of some of the
parameters violates CP .

How does a parameter violate CP? CP -violation reduces to the presence of a non-vanishing
physical phase: this is precisely what we called �KM above. You should read these as synonyms:

“physical non-zero phase” = “this theory is CP violating.”

We won’t go into details here, though we’ve already done most of the work in our parameter
counting. For details see [38, 39]. Instead, we provide a hand-wavy argument and focus on the
Yukawa terms. Let us consider the up-type Yukawa term and—for this one time only—explicitly
write out its Hermitian conjugate,

LYuk,u = yij�
i
Q
eH j

U + y⇤ij�̄
i
Q
eH† ̄i

U , (3.21)

where we’ve explicitly written out Weyl spinors,  Dirac = (�,  ̄)T to emphasize that our fields are
chiral9. What happens when we apply CP to this? The key point is that the fermion bilinear  ̄ 
in Dirac notation10 is invariant under CP . In terms of Weyl spinors,

�i
Q
eH j

U
CP ! �̄i

Q
eH† ̄j

U . (3.22)

The CP conjugated Yukawa terms thus look like

(CP )LYuk,u = yij�̄
i
Q
eH† ̄j

U + y⇤ij�
i
Q
eH j

U . (3.23)

Note that we did not act on the coe�cient, which is just a number and does not transform. We
conclude that the Lagrangian is CP -invaraint only when y = y⇤, i.e. when the Yukawa matrix is
real. We could have forced y to be real by re-phasing our fields. The complete argument requires
showing that one cannot make this phase rotation, and in fact reduces to the fact that we’ve
already shown from parameter counting that there is a physical phase left over. Experiments have
verified that in the Standard Model this phase is non-zero. The key statement is this:

A physical complex parameter that is measured to be non-trivial implies CP violation.

So far we haven’t mentioned flavor at all. Charge and parity are discrete symmetries of our
field theory that come from spacetime symmetry. In a standard model, however, CP violation

8This is an anachronistic statement since the Standard Model was developed theoretically hand-in-hand with
the experiments that probed its parameters.

9In our notation, the bar distinguishes the (1/2, 0) and (0, 1/2) spin representations. These carry di↵erent
indices, �↵ and  ̄↵̇. See [31] for an encyclopedic treatment of this formalism.

10It is arguable whether or not the discussion is simpler using Dirac spinors. On the one hand the transformation
properties are straightforward, but on the other hand one should technically also write out explicit chiral projection
operators which end up not mattering. The original lecture was given in Dirac spinors. The choice to use Weyl
spinors here was a source of heated debate between the authors.
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Under	CP:

Therefore	the	Lagrangian is	CP-inv if	the	Yukawa	matrix	y	is	real.

always comes with flavor violation. We could see this in our parameter counting by noting that
we really needed to have N � 3 flavors (i.e. N ⇥N Yukawa matrices) in order to have a physical
phase.

Let’s go back to the Wolfenstein parameterization (3.20). The interesting feature we noted
at the end of the last subsection was that to leading order the only complex parameters show
up in the 1–3 and 3–1 elements. In other words, to very good approximation, CP violation only
occurs in interactions between the first and third generations. One can go to higher order in the
expansion in � to get CP violation in other elements, but clearly these e↵ects will be suppressed
by additional powers of �.

3.4 The Jarlskog Invariant

Now that we’re familiar with the existence of the CP -violating phase, we would like to be able
to quantify it in a meaningful way that is manifestly basis-independent. What we need is some
kind of invariant that identifies CP violation. Such an object exists and it is called the Jarlskog
invariant, J [40]. It is defined by

Im
⇥
VijVklV

⇤
i`V

⇤
kj

⇤
= J

X

mn

✏ikm✏j`n , (3.24)

where there is no sum on the left-hand side. In terms of our ckm parameterizations, this corre-
sponds to

J = c12c23c
2
13s12s23s13 sin �KM ⇡ �6A2⌘ . (3.25)

This parameterization-independent quantity that measures the amount of CP violation in our
model. The most remarkable observation is that it depends on every physical mixing angle! Thus
if any of the mixing angles are zero, there would be no CP violation. This is another manifestation
that one needs N � 3 flavors to have CP violation and underlines the connection between flavor
and CP . In fact, we can see that the amount of CP violation in the Standard Model is small, but
it is not small because the CP phase �KM is small. Quite on the contrary, it is small because of the
mixing angles. We can see this in the Wolfenstein parameterization where the Jarlskog invariant
comes along with six powers of �.

3.5 Unitarity triangles and the unitarity triangle

Using the unitarity of the ckm matrix, we can write down equations for the o↵-diagonal elements
of V V †. For example,

3X

i=1

VidV
⇤
is = 0 . (3.26)

We have 6 such relations (three for the rows, three for the columns) and can plot each relation as
a triangle in the complex plane. Each leg of the triangle is one term in the sum. These are called
unitarity triangles.

Some of these triangles are so flat that they are almost linear. Consider the example above:

VudV
⇤
us + VcdV

⇤
cs + VtdV

⇤
ts = 0. (3.27)
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uCompare	the	rates	for	some	charged	and	some	neutral	current	processes

u NC	rates	are	super	suppressed	compared	to	the	CC	ones.	Why?
uConsider	all	mediators	in	turn:

uPhoton	and	gluon	FCNC:	gauge	invariance:	it	is	universal	across	families.	True	for	all	
unbroken	symmetries

uHiggs	FCNS:	structure	of	SM	Yukawa.	Interaction	is	~																															.	Therefore	if	we	
diagonalize the	mass	matrix	we	automatically	diagonalize the														coupling.	This	
property	is	not	automatic.	Broken	in	a	generic	Higgs	doublet,	for	example.

uZ	boson:	its	gauge	symmetry	is	broken	but	no	FCNC	appear.	

How	to	access	CKM?	Flavor-changing	currents	(charged	and	neutral)

4 Tree-level FCNCs in the Standard Model

What did experimentalists see in the charged current and how did this lead to the
construction of the Standard Model?

4.1 Charged versus neutral currents

We’ve chosen a basis for the quarks where the only flavor o↵-diagonal interaction comes from the
W -boson, which we know is charged. Thus the neutral boson interactions are flavor-conserving.
Now let’s switch gears and look at this from the experimental side. Suppose we don’t know
anything about the Standard Model, all we know are the experiments whose data is summarized
in the pdg.

Let us ‘go through the data’ and compare some charged current and neutral current processes.
In the following we use only one or two significant digits and do not quote the errors.

Example 4.1. Kaon decay. Consider the following two decays:

Br(K+ ! µ+⌫) = 64% Br(KL ! µ+µ�) = 7⇥ 10�9. (4.1)

Because the left-hand side of each decay is hadronic and the right-hand side is leptonic, we can
determine that K+ ! µ+⌫ has a charged intermediate state (charged current) and that KL !
µ+µ� has a neutral intermediate state (neutral current).

What do we learn from this? Both processes change flavor, but the charged current flavor-
changing process proceeds at a much much larger rate—larger by eight orders of magnitude (recall
that the lifetime of the K+ and KL are roughly the same). Näıvely we would expect both processes
to come from some flavor-violating structure so that they should both be of the same order of
magnitude. Do we see the same pattern in other decays?

Example 4.2. B and D decays. Making use of the pdg, we find for two particular B decays

Br(B� ! D0`⌫̄) = 2.3% Br(B� ! K⇤�`+`�) = 5⇥ 10�7. (4.2)

Similarly, for two particular D decays,

Br(D± ! K0µ±⌫) = 9% Br(D0 ! K±⇡⌥µ±µ⌥) < 5⇥ 10�4. (4.3)

As one can check in the pdg, experimentalists have not yet measured analogous flavor-changing
neutral currents in the charm sector, which is why we can only quote an upper bound. fcncs in
the charm sector have been measured in DD̄ mixing [45], though as of this writing fcncs from
decays are a work-in-progress.

We indeed find the same pattern! The charged current interaction is much larger than the
neutral current. This pattern only shows up in flavor-changing processes. For the flavor-conserving
processes, the weak interaction charged and neutral currents indeed occur at roughly the same
rates. We leave it to look up demonstrative examples in the pdg.

Example 4.3. Isolating the weak interaction, part I. One set of flavor-conserving processes
are ⌫e X ! eX 0 and ⌫e X ! ⌫e X 0 where X and X 0 are nuclear states. Why would it be misleading
to look at the rates for eX ! eX 0? Answer: This is dominated by the electric coupling and so
the overall rate will not tell us about interactions mediated by the weak force.
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Expanding the Higgs H about its vev, we obtain

ydijQ̄
i(v + ih)Dj. (4.5)

Thus it is clear that diagonalizing the mass matrix v yd simultaneously diagonalizes the Q̄hD
coupling. This is one of the examples when it is su�cient for a matrix to be diagonal in the mass
basis but not universal. This is very specific to the fact that a standard model only has one Higgs.
Consider adding a second Higgs to the model in the most trivial way,

y1ijQ̄
i
L(v1 + ih1)D

j
R + y2ijQ̄

i
L(v2 + ih2)D

j
R. (4.6)

In general the fermion mass matrix is (y1v1+y2v2) while the Higgs couplings are governed by y1 and
y2 separately. One can see that now the Higgs coupling matrices are, in general, not proportional
to the fermion mass matrix and so these change flavor.

Example 4.4. Two Higgs Doublet Models. This is not the way we usually add a second
Higgs in two Higgs doublet models (2hdm). In such models the up- and down-type sectors couple
to di↵erent Higgs bosons which each get an independent vev. In this case the Higgs couplings
are diagonal because they are aligned with the mass matrices. To provide some context, the
most famous 2hdm model is the mssm since supersymmetry requires at least two Higgses due to
constraints from holomorphy and anomaly cancellation. Note that if you have four Higgses in the
mssm you again generally find fcncs through the Higgs couplings.

Example 4.5. Experimental signature of Higgs FCNCs. The model (4.6) has explicit flavor-
changing neutral currents in the quark sector. Where do you expect to see trouble? We’ll narrow
it down to a multiple choice question: do you expect more disagreement in the kaon sector or the
B sector? Answer: In this particular model there is some subtlety because the mass matrix can
be very di↵erent from the couplings, but let us assume that this e↵ect is not particularly perverse.
Because the Higgs couples according to the Yukawas, it couples more strongly to massive particles.
Thus we end up with a much stronger coupling to B mesons (from the b quark) than kaons (which
only have an s quark). This is an important lesson: there are some cases where fcncs in the kaon
sector are negligible and o↵er model-builders some wiggle room.

4.5 Z FCNCs: broken gauge symmetry

Now what about the Z? This is a gauge boson, but it is a gauge boson of a broken gauge symmetry
so there is no reason to expect gauge invariance to protect against fcncs. We don’t have fcncs
at tree-level in the Standard Model, so something is still protecting the Z.

Because the Z is neutral, it only connects fermions with the same electric charge and color.
Color is trivially satisfied since SU(3)c has nothing to do with SU(2)L⇥U(1)Y . Electric charge, on
the other hand, is related to the SU(2)L and U(1)Y charge by Q = T3 + Y . In the sm, all quarks
with the same electric charge Q also have the same T3 and therefore also the same Y . Recall that
the Z coupling only depends on these quantities,

gZff = g cos ✓WT3 � g0 sin ✓WY. (4.7)

Thus particles of the same charge all have the same coupling to the Z, i.e. the Z coupling is
universal for each of the up-type and (separately) down-type quarks. This is why the Standard

23

Expanding the Higgs H about its vev, we obtain

ydijQ̄
i(v + ih)Dj. (4.5)

Thus it is clear that diagonalizing the mass matrix v yd simultaneously diagonalizes the Q̄hD
coupling. This is one of the examples when it is su�cient for a matrix to be diagonal in the mass
basis but not universal. This is very specific to the fact that a standard model only has one Higgs.
Consider adding a second Higgs to the model in the most trivial way,

y1ijQ̄
i
L(v1 + ih1)D

j
R + y2ijQ̄

i
L(v2 + ih2)D

j
R. (4.6)

In general the fermion mass matrix is (y1v1+y2v2) while the Higgs couplings are governed by y1 and
y2 separately. One can see that now the Higgs coupling matrices are, in general, not proportional
to the fermion mass matrix and so these change flavor.

Example 4.4. Two Higgs Doublet Models. This is not the way we usually add a second
Higgs in two Higgs doublet models (2hdm). In such models the up- and down-type sectors couple
to di↵erent Higgs bosons which each get an independent vev. In this case the Higgs couplings
are diagonal because they are aligned with the mass matrices. To provide some context, the
most famous 2hdm model is the mssm since supersymmetry requires at least two Higgses due to
constraints from holomorphy and anomaly cancellation. Note that if you have four Higgses in the
mssm you again generally find fcncs through the Higgs couplings.

Example 4.5. Experimental signature of Higgs FCNCs. The model (4.6) has explicit flavor-
changing neutral currents in the quark sector. Where do you expect to see trouble? We’ll narrow
it down to a multiple choice question: do you expect more disagreement in the kaon sector or the
B sector? Answer: In this particular model there is some subtlety because the mass matrix can
be very di↵erent from the couplings, but let us assume that this e↵ect is not particularly perverse.
Because the Higgs couples according to the Yukawas, it couples more strongly to massive particles.
Thus we end up with a much stronger coupling to B mesons (from the b quark) than kaons (which
only have an s quark). This is an important lesson: there are some cases where fcncs in the kaon
sector are negligible and o↵er model-builders some wiggle room.

4.5 Z FCNCs: broken gauge symmetry

Now what about the Z? This is a gauge boson, but it is a gauge boson of a broken gauge symmetry
so there is no reason to expect gauge invariance to protect against fcncs. We don’t have fcncs
at tree-level in the Standard Model, so something is still protecting the Z.

Because the Z is neutral, it only connects fermions with the same electric charge and color.
Color is trivially satisfied since SU(3)c has nothing to do with SU(2)L⇥U(1)Y . Electric charge, on
the other hand, is related to the SU(2)L and U(1)Y charge by Q = T3 + Y . In the sm, all quarks
with the same electric charge Q also have the same T3 and therefore also the same Y . Recall that
the Z coupling only depends on these quantities,

gZff = g cos ✓WT3 � g0 sin ✓WY. (4.7)

Thus particles of the same charge all have the same coupling to the Z, i.e. the Z coupling is
universal for each of the up-type and (separately) down-type quarks. This is why the Standard

23

Model Z doesn’t give flavor-changing neutral currents. To see this explicitly, consider the terms
in the Lagrangian giving the Z coupling to left- and right-handed up quarks,

LZ =
g

cos ✓W


ūi
L�µ

✓
1

2
� 2

3
sin2 ✓W

◆
ui
L + ūj

R�µ

✓
�2

3
sin2 ✓W

◆
uj
R

�
Zµ. (4.8)

To go to the mass basis, we perform a unitary rotation on the external fields. Let’s just write out
the uL term,

LZ =
g

cos ✓W


ūLVuL�µ

✓
1

2
� 2

3
sin2 ✓Q

◆
V †
uLuL

�
Zµ . (4.9)

What is the structure of this term in flavor space? Everything in the parenthesis is universal. Thus
the flavor structure is trivial,

VuLV
†
uL = . (4.10)

and we have no FCNCs.
Let us write this in terms of a general principle,

Theorem 4.6. In order to completely prevent flavor-changing neutral currents in the gauge sec-
tor, particles with the same unbroken gauge quantum numbers must also have the same quantum
numbers under the broken gauge group.

In the Standard Model we have no Z fcncs because the particles of a given electric charge also
have the same SU(2)L charge (namely T3). In general this needn’t have been the case. Consider a
slightly di↵erent model where the dL and sL quarks had di↵erent SU(2)L representations, but still
the same electromagnetic and color charge.

L � d̄L
h
T (d)
3 �Q sin2 ✓W

i
�µdLZµ + s̄L

h
T (s)
3 �Q sin2 ✓W

i
�µsLZµ . (4.11)

If T (d)
3 6= T (s)

3 then we would not be able to avoid fcncs.

Example 4.7. For example, consider the somewhat contrived case where Qd,s = 0, T (d)
3 = 1,

T (s)
3 = 0. Thus the s doesn’t see the Z and the flavor structure of the relevant term in the Z

coupling will be

VdL

✓
1 0
0 0

◆
V †
dL. (4.12)

This is clearly not universal.

Example 4.8. Why the charm shouldn’t have been surprising. The charm quark was dis-
covered in the J/ particle in 1974. The Cabbibo angle for two-generation mixing was understood
in the 1960s, but charm wasn’t even hypothesized until the 70s. Thus through most of the 60s it
was well understood that there was a (u, d) isospin (really SU(2)L) doublet and a weird s quark
with the same charge as the d but apparently living in an iso-singlet. This was a missed oppor-
tunity! We now see that this structure clearly has flavor-changing neutral currents and physicists
should have expected to see KL ! µ+µ�. It wasn’t until Glashow, Iliopoulos, and Maiani that
physicists realized that the non-observation of this mode imples that there should be a charm
quark to complete the doublet. By the time the b was discovered, physicists had learned their
lesson and realized immediately that there should also be a t quark. (Or course they expected a
t that was not much heavier than the b; the story of this hierarchy is one of the great unsolved
problems in flavor physics.)
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Since																									then	the	Z	boson	couples	the	same	to	all	generations!	
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Let us write this in terms of a general principle,

Theorem 4.6. In order to completely prevent flavor-changing neutral currents in the gauge sec-
tor, particles with the same unbroken gauge quantum numbers must also have the same quantum
numbers under the broken gauge group.

In the Standard Model we have no Z fcncs because the particles of a given electric charge also
have the same SU(2)L charge (namely T3). In general this needn’t have been the case. Consider a
slightly di↵erent model where the dL and sL quarks had di↵erent SU(2)L representations, but still
the same electromagnetic and color charge.

L � d̄L
h
T (d)
3 �Q sin2 ✓W

i
�µdLZµ + s̄L

h
T (s)
3 �Q sin2 ✓W

i
�µsLZµ . (4.11)

If T (d)
3 6= T (s)

3 then we would not be able to avoid fcncs.

Example 4.7. For example, consider the somewhat contrived case where Qd,s = 0, T (d)
3 = 1,

T (s)
3 = 0. Thus the s doesn’t see the Z and the flavor structure of the relevant term in the Z

coupling will be

VdL

✓
1 0
0 0

◆
V †
dL. (4.12)

This is clearly not universal.

Example 4.8. Why the charm shouldn’t have been surprising. The charm quark was dis-
covered in the J/ particle in 1974. The Cabbibo angle for two-generation mixing was understood
in the 1960s, but charm wasn’t even hypothesized until the 70s. Thus through most of the 60s it
was well understood that there was a (u, d) isospin (really SU(2)L) doublet and a weird s quark
with the same charge as the d but apparently living in an iso-singlet. This was a missed oppor-
tunity! We now see that this structure clearly has flavor-changing neutral currents and physicists
should have expected to see KL ! µ+µ�. It wasn’t until Glashow, Iliopoulos, and Maiani that
physicists realized that the non-observation of this mode imples that there should be a charm
quark to complete the doublet. By the time the b was discovered, physicists had learned their
lesson and realized immediately that there should also be a t quark. (Or course they expected a
t that was not much heavier than the b; the story of this hierarchy is one of the great unsolved
problems in flavor physics.)
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GIM	mechanism:	suppression	of	FCNC	at	loop	level
Glashow,	Iliopoulos,	Maiani (1970)

uConsider	the	rare	weak	radiative	process	

uMediated	by	W	boson	(plus	possibly	top	and	Higgs	in	the	loop)	as	well	as	light	quarks

uOne	expects	that	by	the	decoupling	theorem	(since	mb<<mW)	

u If	all	quark	masses	were	the	same	then:																																								(by	CKM	unitarity)

uHowever	quark	masses	are	non-universal.	Therefore:		

u In	the	decoupling	limit:	

uResulting	GIM	double	suppression:

uFunny	trivia:																													and																														are	similar	despite	mt>>mc (due	to	CKM)

In loop-level processes, particles go o↵ shell and we then expect the Appelquist-Carazzone
decoupling theorem to hold [46]. This tells us that when we take the mass of the internal
particle to infinity, its e↵ects on physics at much lower scales must vanish. But now we are saying
that the heavy particles in fcnc loops do not decouple. In fact, the result of the amplitude is a
function of the form f(m2

t/m
2
W ), which goes to a constant for large values of its argument. What’s

going on?

5.1 Example: b ! s�

A classic example is the loop-level diagram for b ! s�, which was first observed at Cornell, about
halfway through cleo’s lifetime. This was when y.g. was in grad school and his first paper was on
this so-called penguin diagram. The curious etymology of this process is best explained in John
Ellis’ own words, as cited in Shifman’s introduction to the itep Lectures in Particle Physics [47].
Here’s an example of a penguin diagram,

The dependence of b ! s� on the ckm matrix is

M /
X

i

V ⇤
ibVis = 0 , (5.1)

where we sum over the internal quarks, i. This product vanishes identically by unitarity. This
tells us that any part of the diagram that only depends on flavor through the sum

P
i V

⇤
ibVis will

vanish. The only other source of flavor-dependence are the masses of the quarks themselves—recall
that the quark mass matrix is diagonal, but not universal. Any term in M that is independent
of the internal quark mass must necessarily vanish. In the diagram above, we draw this as a
chirality-flipping mass insertion. We conclude that

M =
X

i

V ⇤
ibVisf(mi). (5.2)

We can expand f in a power series. If mi ⌧ mW then f(mi ⌧ mW ) / m2
i /m

2
W . The W indeed

satisfies the decoupling limit. When we take mi large (say mi = mt), however, the argument is
not valid. Thus we know that f(m2

i /m
2
W ) is linear at small values and constant at large values.

The function f is called the Inami–Lim function, because they calculated all of these diagrams
in the 1980s—it wasn’t until the 80s that anyone really believed that the top quark might be so
heavy [48]!

The reason why decoupling is violated is that the diagrams are essentially mediated by the
longitudinal part of the W by the Goldstone Equivalence theorem. Thus the coupling to the
fermions is essentially a Yukawa coupling, which goes like the fermion mass. When you have a
particle whose coupling is proportional mass, then it is clear that decoupling fails—the heavy mass
is compensated by a large coupling. Thus the gim mechanism tells us that one-loop diagrams
carry factors of m2

i /m
2
W , where i is summed over the internal quarks.
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SM estimate of the B̄ → Xsγ branching ratio at this level
was presented in Ref. [15] where all the corrections calcu-
lated up to 2006 were taken into account. A part of the
O(α2

s) contribution was obtained via interpolation [16]
in the charm quark mass between the large-mc asymp-
totic expression [17] and the mc = 0 boundary condition
that was estimated using the Brodsky-Lepage-Mackenzie
(BLM) approximation [18].
In the present Letter, we provide an updated predic-

tion for Bsγ , including all the contributions and estimates
worked out after the completion of Ref. [15]. They are
listed in Sec. II where the necessary definitions are in-
troduced. The interpolation in mc is still being applied.
However, the mc = 0 boundary condition is no longer a
BLM-based estimate but rather comes from an explicit
calculation [19].
The current analysis supersedes our previous one in

Ref. [15], which was published in 2006 and has not been
updated since then. It has been widely considered as
a standard reference until now. The time for our up-
date comes only at present because the most recent and
technically challenging four-loop calculation of Ref. [19]
constitutes a breakthrough in the analysis. It has an im-
portant effect on the central value of Bsγ .
The Letter is organized as follows. After discussing

Bsγ in Sec. II, our NNLO analysis is extended to
Bdγ in Sec. III. Next, in Sec. IV, we consider Rγ ≡
(Bsγ + Bdγ) /Bcℓν which may sometimes be more conve-
nient than Bsγ for deriving constraints on new physics.
Sec. V is devoted to presenting a generic expression for
beyond-SM contributions, as well as an updated bound
for the charged Higgs boson mass in the two-Higgs-
doublet model II (THDM II). We conclude in Sec. VI.

II. Bsγ IN THE SM

Radiative B-meson decays are most conveniently de-
scribed in the framework of an effective theory that arises
after decoupling of the W boson and heavier particles.
Flavor-changing weak interactions that are relevant for
Γ(b → Xp

q γ) with q = s, d are given by

Leff ∼ V ∗

tqVtb

[

8
∑

i=1

CiQi + κq

2
∑

i=1

Ci(Qi −Qu
i )

]

. (4)

Explicit expressions for the current-current (Q1,2), four-
quark penguin (Q3,...,6), photonic dipole (Q7), and
gluonic dipole (Q8) operators can be found, e.g., in
Eq. (2.5) of Ref. [16]. The CKM element ratio κq =
(V ∗

uqVub)/(V ∗

tqVtb) is small for q = s, and it affects Bsγ by
less than 0.3%. Barring this effect and the higher-order
electroweak ones, Γ(b → Xp

s γ) in the SM is given by a
quadratic polynomial in the real Wilson coefficients Ci

Γ(b → Xp
s γ) ∼

8
∑

i,j=1

CiCj Gij . (5)

A series of contributions to the above expression from
our calculations in Refs. [19–28] makes the current anal-
ysis significantly improved with respect to the one in
Ref. [15]. In particular, the NNLO Wilson coefficient
calculation becomes complete after including the four-
loop anomalous dimensions that describe Q1,...,6 → Q8

mixing under renormalization [20]. Effects of the charm
and bottom quark masses in loops on the gluon lines in
G77 [21], G78 [22] and G(1,2)7 [23], as well as a com-
plete calculation of G78 [24], are now available. Three-
and four-body final-state contributions to G88 [25, 26]
and G(1,2)8 [26] are included in the BLM approximation.
Four-body final-state contributions involving the penguin
and Qu

1,2 operators are taken into account at the leading
order (LO) [27] and next-to-leading order (NLO) [28].
Last but not least, the complete NNLO calculation [19]
of G17 and G27 at mc = 0 is used as a boundary for
interpolating their unknown parts in mc.
Following the algorithm described in detail in Ref. [19],

taking into account new nonperturbative effects [13, 29,
30], as well as the previously omitted parts of the NNLO
BLM corrections [31], we arrive at the following SM pre-
diction

BSM
sγ = (3.36± 0.23)× 10−4 for E0 = 1.6GeV. (6)

Individual contributions to the total uncertainty are of
nonperturbative (±5%), higher-order (±3%), interpola-
tion (±3%) and parametric (±2%) origin. They are com-
bined in quadrature. The parametric one gets reduced
with respect to Ref. [15], which becomes possible thanks
to the new semileptonic fits of Ref. [32]. Our input pa-
rameters, their uncertainties and the corresponding cor-
relation matrix can be found in Appendix D of Ref. [19].
Since we normalize to the semileptonic branching ratio
Bcℓν, our result shows little sensitivity to the b-quark
mass and the CKM angles. The main parametric uncer-
tainty (±1.5%) originates from Bcℓν, while the next one
(±0.75%) comes from αs(MZ).
As far as the interpolation uncertainty is concerned,

one might have hoped for its reduction with respect to
Ref. [15] after the explicit evaluation of the mc = 0
boundary [19]. Unfortunately, the interpolated parts of
the O(α2

s) contributions toG(1,2)7 turn out to be sizeable.
Their effect on BSM

sγ grows from 0 to around 5% when mc

changes from 0 up to the measured value (see Fig. 4 of
Ref. [19]). In such a situation, we prefer to stay conser-
vative, and retain our interpolation uncertainty estimate
at the ±3% level.
For the higher-order uncertainty estimation, it is use-

ful to study how BSM
sγ depends on three renormaliza-

tion scales: the matching scale µ0 ∼ mt at which the
heavy particles (t, W , Z, H0) are decoupled, the low-
energy scale µb ∼ mb/2 at which the Wilson coefficient
renormalization group evolution is terminated, and the
scale µc at which the charm quark mass is renormal-
ized. We vary them in the ranges µ0 ∈ [80, 320]GeV
and µb, µc ∈ [1.25, 5]GeV, setting the central values to
µ0 = 160GeV and µb = µc = 2GeV. The observed scale
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vanish. The only other source of flavor-dependence are the masses of the quarks themselves—recall
that the quark mass matrix is diagonal, but not universal. Any term in M that is independent
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fermions is essentially a Yukawa coupling, which goes like the fermion mass. When you have a
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Mediated	by	penguin	diagrams	like:
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Combining our results for various O(α2
s) corrections to the weak radiative B-meson decay, we

are able to present the first estimate of the branching ratio at the next-to-next-to-leading order in
QCD. We find B(B̄ → Xsγ) = (3.15 ± 0.23) × 10−4 for Eγ > 1.6 GeV in the B̄-meson rest frame.
The four types of uncertainties: nonperturbative (5%), parametric (3%), higher-order (3%) and
mc-interpolation ambiguity (3%) have been added in quadrature to obtain the total error.

PACS numbers: 12.38.Bx, 13.20.He

The inclusive radiative B-meson decay provides im-
portant constraints on the minimal supersymmetric stan-
dard model and many other theories of new physics at the
electroweak scale. The power of such constraints depends
on the accuracy of both the experiments and the stan-
dard model (SM) calculations. The latest measurements
by Belle and BABAR are reported in Refs. [1, 2]. The
world average performed by the Heavy Flavor Averaging
Group [3] for Eγ > 1.6 GeV reads

B(B̄ → Xsγ) =
(

3.55 ± 0.24 +0.09
−0.10 ± 0.03

)

× 10−4. (1)

The combined error in the above result is of the same
size as the expected O(α2

s) next-to-next-to-leading or-
der (NNLO) QCD corrections to the perturbative de-
cay width Γ(b → Xparton

s γ), and larger than the known
nonperturbative corrections to the relation Γ(B̄ →
Xsγ) ≃ Γ(b → Xparton

s γ) [4]–[6]. Thus, calculating the
SM prediction for the b-quark decay rate at the NNLO is
necessary for taking full advantage of the measurements.

Evaluating the O(α2
s) corrections to B(b → Xparton

s γ)
is a very involved task because hundreds of three-loop
on-shell and thousands of four-loop tadpole Feynman di-
agrams need to be computed. In a series of papers [7]–
[14], we have presented partial contributions to this en-
terprise. The purpose of the present Letter is to combine
all the existing results and obtain the first estimate of
the branching ratio at the NNLO. We call it an estimate
rather than a prediction because some of the numeri-
cally important contributions have been found using an
interpolation in the charm quark mass, which introduces
uncertainties that are difficult to quantify.

γ

W−b s
t t

FIG. 1: Sample LO diagram for the b → sγ transition.

Let us begin with recalling that the leading-order (LO)
contribution to the considered decay originates from one-
loop diagrams in the SM. An example of such a diagram
is shown in Fig. 1. Dressing this diagram with one or
two virtual gluons gives examples of diagrams that one
encounters at the next-to-leading order (NLO) and the
NNLO. In addition, one should include diagrams describ-
ing the bremsstrahlung of gluons and light quarks.

An additional difficulty in the analysis of the con-
sidered decay is the presence of large logarithms
(αs ln M2

W /m2
b)

n that should be resummed at each or-
der of the perturbation series in αs. To do so, one em-
ploys a low-energy effective theory that arises after de-
coupling the top quark and the heavy electroweak bosons.
Weak interaction vertices (operators) in this theory are
either of dipole type (s̄σµνbFµν , s̄σµνT abGa

µν) or con-
tain four quarks ([s̄Γb][q̄Γ′q]). Coupling constants at
these vertices (Wilson coefficients) are first evaluated
at the electroweak renormalization scale µ0 ∼ mt, MW

by solving the so-called matching conditions. Next,
they are evolved down to the low-energy scale µb ∼ mb

In loop-level processes, particles go o↵ shell and we then expect the Appelquist-Carazzone
decoupling theorem to hold [46]. This tells us that when we take the mass of the internal
particle to infinity, its e↵ects on physics at much lower scales must vanish. But now we are saying
that the heavy particles in fcnc loops do not decouple. In fact, the result of the amplitude is a
function of the form f(m2

t/m
2
W ), which goes to a constant for large values of its argument. What’s

going on?

5.1 Example: b ! s�

A classic example is the loop-level diagram for b ! s�, which was first observed at Cornell, about
halfway through cleo’s lifetime. This was when y.g. was in grad school and his first paper was on
this so-called penguin diagram. The curious etymology of this process is best explained in John
Ellis’ own words, as cited in Shifman’s introduction to the itep Lectures in Particle Physics [47].
Here’s an example of a penguin diagram,

The dependence of b ! s� on the ckm matrix is

M /
X

i

V ⇤
ibVis = 0 , (5.1)

where we sum over the internal quarks, i. This product vanishes identically by unitarity. This
tells us that any part of the diagram that only depends on flavor through the sum

P
i V

⇤
ibVis will

vanish. The only other source of flavor-dependence are the masses of the quarks themselves—recall
that the quark mass matrix is diagonal, but not universal. Any term in M that is independent
of the internal quark mass must necessarily vanish. In the diagram above, we draw this as a
chirality-flipping mass insertion. We conclude that

M =
X

i

V ⇤
ibVisf(mi). (5.2)

We can expand f in a power series. If mi ⌧ mW then f(mi ⌧ mW ) / m2
i /m

2
W . The W indeed

satisfies the decoupling limit. When we take mi large (say mi = mt), however, the argument is
not valid. Thus we know that f(m2

i /m
2
W ) is linear at small values and constant at large values.

The function f is called the Inami–Lim function, because they calculated all of these diagrams
in the 1980s—it wasn’t until the 80s that anyone really believed that the top quark might be so
heavy [48]!

The reason why decoupling is violated is that the diagrams are essentially mediated by the
longitudinal part of the W by the Goldstone Equivalence theorem. Thus the coupling to the
fermions is essentially a Yukawa coupling, which goes like the fermion mass. When you have a
particle whose coupling is proportional mass, then it is clear that decoupling fails—the heavy mass
is compensated by a large coupling. Thus the gim mechanism tells us that one-loop diagrams
carry factors of m2

i /m
2
W , where i is summed over the internal quarks.
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Inami–Lim	function

Example 5.1. Finiteness of penguins. Penguin amplitudes are manifestly finite. One näıve
argument for this is that any divergences are independent of the internal quark mass (say, using
dimensional regularization) so that unitarity kills any divergences. This, however, obfuscates
deeper reasons why the amplitude is finite. One heuristic argument that the loop level must be
finite since symmetries preventing fcncs prevent any tree-level counter-term. The detailed reason
for the finiteness is that there are two sources of suppression13 that reduce the superficial degree
of divergence for these diagrams:

1. Gauge invariance, in the form of the Ward identity, requires the amplitude to depend explic-
itly on the external momentum. This is explained very clearly in [50].

2. Lorentz invariance prevents divergences which are odd in the loop momentum, k. In other
words,

R
d4k/k/k2n = 0. Since the leading order contribution to b ! s� is even in k, the

next-to-leading term is odd and vanishes.

As a final remark on this, one can also argue that the chiral structure of this process provides a
suppression mechanism. The penguin is mediated by a �µ⌫Fµ⌫ operator that requires an explicit
mass insertion. This turns out to be equivalent to gauge invariance.

5.2 History of the GIM mechanism

In the early days of the quark model, physicists thought there were only three quarks u, d, s. The
SU(3) flavor symmetry between these seemed to describe the light hadronic states well and there
wasn’t any motivation for the fourth quark. The gim mechanism gave a motivation: it is a way
to avoid fcncs at tree-level. Recall that if someone with no knowledge of the Standard Model
stared at the pdg for a long enough time, that person might realize that it was very curious that
neutral current processes like KL ! µ+µ� were heavily suppressed relative to the charged current
processes. In the 60s people couldn’t reach the precision to see this decay while it’s charged current
cousin was readily measurable. gim gives a way to understand this: the neutral current process is
suppressed by a loop factor and by a gim factor,

M ⇠ g2

16⇡2

m2
c

m2
W

. (5.3)

Gaillard and T.D. Lee calculated KK̄ mixing, keeping and dropping factors of two somewhat
haphazardly as theorists are wont to do. Their calculations gave a prediction the mass of the c,
1.5 GeV which is remarkably close. It turns out that—like many good theorists—Gaillard and Lee
had luck on their side, since if one follows their calculation somewhat more honestly, one obtains
a value between 0.5 and 10. The charm was finally observed in 1974 at slac and Brookhaven.

Which quark dominates the mixing? It seems we have already spoiled the answer since we said
that heavy quarks dominate in loops, but we should be careful since there’s also a ckm suppression
associated with the top so that there is a competition between the large mass and the small ckm
elements. Comparing the loops with an internal top and charm,

Mt ⇠ m2
tVtdVts Mc ⇠ m2

cVcdVcs. (5.4)

13This kind of double suppression happens all the time in model building. For example, in little Higgs theories
there’s a sense of collective symmetry breaking where dangerous parameters can be protected by multiple symmetries,
see [43] for a nice review. At Cornell there are two kinds of “double protection.” One has to do with a supersymmetric
composite Higgs [49]. The other is the following quote from y.g., when p.t. asked for a copy of his hand-written
lecture notes: “Well, they probably won’t be useful to you. They’re written in Hebrew. Also I lost them.”
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GIM	mechanism:	suppression	of	FCNC	at	loop	level

uHow	do	we	do	calculations	with	this?

uEven	at	LO	one	loop	diagrams	are	present.	We	need	to	go	to	3-4	loops	at	present	…

uEffective	Hamiltonian:	replace	the	full	SM	with	an	effective	Hamiltonian	consisting	of	SM	with	
top	quark	and	heavy	EW	gauge	bosons	integrated	out.	This	shrinks	the	above	diagrams	to	a	
point.	

uThis	results	in	a	EFT	with	many	vertices.	Their	coefficients	(Wilson	Coefficients)	depend	on	
the	masses	of	the	integrated	heavy	bosons.	Their	RG	evolution	is	very	important	and	leads	to	
resumming factors	like	

uA	typical	perturbative	calculation	then	happens	in	3	steps:

In loop-level processes, particles go o↵ shell and we then expect the Appelquist-Carazzone
decoupling theorem to hold [46]. This tells us that when we take the mass of the internal
particle to infinity, its e↵ects on physics at much lower scales must vanish. But now we are saying
that the heavy particles in fcnc loops do not decouple. In fact, the result of the amplitude is a
function of the form f(m2

t/m
2
W ), which goes to a constant for large values of its argument. What’s

going on?

5.1 Example: b ! s�

A classic example is the loop-level diagram for b ! s�, which was first observed at Cornell, about
halfway through cleo’s lifetime. This was when y.g. was in grad school and his first paper was on
this so-called penguin diagram. The curious etymology of this process is best explained in John
Ellis’ own words, as cited in Shifman’s introduction to the itep Lectures in Particle Physics [47].
Here’s an example of a penguin diagram,

The dependence of b ! s� on the ckm matrix is

M /
X

i

V ⇤
ibVis = 0 , (5.1)

where we sum over the internal quarks, i. This product vanishes identically by unitarity. This
tells us that any part of the diagram that only depends on flavor through the sum

P
i V

⇤
ibVis will

vanish. The only other source of flavor-dependence are the masses of the quarks themselves—recall
that the quark mass matrix is diagonal, but not universal. Any term in M that is independent
of the internal quark mass must necessarily vanish. In the diagram above, we draw this as a
chirality-flipping mass insertion. We conclude that

M =
X

i

V ⇤
ibVisf(mi). (5.2)

We can expand f in a power series. If mi ⌧ mW then f(mi ⌧ mW ) / m2
i /m

2
W . The W indeed

satisfies the decoupling limit. When we take mi large (say mi = mt), however, the argument is
not valid. Thus we know that f(m2

i /m
2
W ) is linear at small values and constant at large values.

The function f is called the Inami–Lim function, because they calculated all of these diagrams
in the 1980s—it wasn’t until the 80s that anyone really believed that the top quark might be so
heavy [48]!

The reason why decoupling is violated is that the diagrams are essentially mediated by the
longitudinal part of the W by the Goldstone Equivalence theorem. Thus the coupling to the
fermions is essentially a Yukawa coupling, which goes like the fermion mass. When you have a
particle whose coupling is proportional mass, then it is clear that decoupling fails—the heavy mass
is compensated by a large coupling. Thus the gim mechanism tells us that one-loop diagrams
carry factors of m2

i /m
2
W , where i is summed over the internal quarks.

26

ar
X

iv
:h

ep
-p

h/
06

09
23

2v
2 

 3
1 

D
ec

 2
00

6

arXiv:hep-ph/0609232

Estimate of B(B̄ → Xsγ) at O(α2

s
)

M. Misiak,1, 2 H. M. Asatrian,3 K. Bieri,4 M. Czakon,5 A. Czarnecki,6 T. Ewerth,4

A. Ferroglia,7 P. Gambino,8 M. Gorbahn,9 C. Greub,4 U. Haisch,10 A. Hovhannisyan,3

T. Hurth,2, 11 A. Mitov,12 V. Poghosyan,3 M. Ślusarczyk,6 and M. Steinhauser9
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Combining our results for various O(α2
s) corrections to the weak radiative B-meson decay, we

are able to present the first estimate of the branching ratio at the next-to-next-to-leading order in
QCD. We find B(B̄ → Xsγ) = (3.15 ± 0.23) × 10−4 for Eγ > 1.6 GeV in the B̄-meson rest frame.
The four types of uncertainties: nonperturbative (5%), parametric (3%), higher-order (3%) and
mc-interpolation ambiguity (3%) have been added in quadrature to obtain the total error.

PACS numbers: 12.38.Bx, 13.20.He

The inclusive radiative B-meson decay provides im-
portant constraints on the minimal supersymmetric stan-
dard model and many other theories of new physics at the
electroweak scale. The power of such constraints depends
on the accuracy of both the experiments and the stan-
dard model (SM) calculations. The latest measurements
by Belle and BABAR are reported in Refs. [1, 2]. The
world average performed by the Heavy Flavor Averaging
Group [3] for Eγ > 1.6 GeV reads

B(B̄ → Xsγ) =
(

3.55 ± 0.24 +0.09
−0.10 ± 0.03

)

× 10−4. (1)

The combined error in the above result is of the same
size as the expected O(α2

s) next-to-next-to-leading or-
der (NNLO) QCD corrections to the perturbative de-
cay width Γ(b → Xparton

s γ), and larger than the known
nonperturbative corrections to the relation Γ(B̄ →
Xsγ) ≃ Γ(b → Xparton

s γ) [4]–[6]. Thus, calculating the
SM prediction for the b-quark decay rate at the NNLO is
necessary for taking full advantage of the measurements.

Evaluating the O(α2
s) corrections to B(b → Xparton

s γ)
is a very involved task because hundreds of three-loop
on-shell and thousands of four-loop tadpole Feynman di-
agrams need to be computed. In a series of papers [7]–
[14], we have presented partial contributions to this en-
terprise. The purpose of the present Letter is to combine
all the existing results and obtain the first estimate of
the branching ratio at the NNLO. We call it an estimate
rather than a prediction because some of the numeri-
cally important contributions have been found using an
interpolation in the charm quark mass, which introduces
uncertainties that are difficult to quantify.

γ

W−b s
t t

FIG. 1: Sample LO diagram for the b → sγ transition.

Let us begin with recalling that the leading-order (LO)
contribution to the considered decay originates from one-
loop diagrams in the SM. An example of such a diagram
is shown in Fig. 1. Dressing this diagram with one or
two virtual gluons gives examples of diagrams that one
encounters at the next-to-leading order (NLO) and the
NNLO. In addition, one should include diagrams describ-
ing the bremsstrahlung of gluons and light quarks.

An additional difficulty in the analysis of the con-
sidered decay is the presence of large logarithms
(αs ln M2

W /m2
b)

n that should be resummed at each or-
der of the perturbation series in αs. To do so, one em-
ploys a low-energy effective theory that arises after de-
coupling the top quark and the heavy electroweak bosons.
Weak interaction vertices (operators) in this theory are
either of dipole type (s̄σµνbFµν , s̄σµνT abGa

µν) or con-
tain four quarks ([s̄Γb][q̄Γ′q]). Coupling constants at
these vertices (Wilson coefficients) are first evaluated
at the electroweak renormalization scale µ0 ∼ mt, MW

by solving the so-called matching conditions. Next,
they are evolved down to the low-energy scale µb ∼ mb

1 Introduction

The decay B̄ → Xsγ is a well-known probe of new physics at the electroweak scale. The
current world average for its branching ratio with a cut Eγ > 1.6 GeV in the B̄-meson rest
frame reads [1]

B(B̄ → Xsγ)exp

Eγ>1.6 GeV
=
(
3.55 ± 0.24 +0.09

−0.10 ± 0.03
)
× 10−4, (1.1)

where the first error is combined statistical and systematic. The second one is due to the theory
input on the shape function. The third one is caused by the b → dγ contamination.

The total error in Eq. (1.1) amounts to around 7.4%, i.e. it is of the same size as the expected
O(α2

s) corrections to the perturbative transition b → Xparton
s γ. On the other hand, the relation

Γ(B̄ → Xsγ) ≃ Γ(b → Xparton
s γ) (1.2)

holds up to non-perturbative corrections that turn out to be smaller (see Section 7).
Consequently, evaluating the Next-to-Next-to-Leading Order (NNLO) QCD corrections to
b → Xparton

s γ is of crucial importance for deriving constraints on new physics from the mea-
surements of B̄ → Xsγ.

In the calculation of b → Xparton
s γ, resummation of large logarithms (αs ln M2

W /m2
b)

n is
necessary at each order in αs, which is most conveniently performed in the framework of an
effective theory that arises from the Standard Model (SM) after decoupling the heavy elec-
troweak bosons and the top quark. The explicit form of the relevant effective Lagrangian is
given in the next section. The Wilson coefficients Ci(µ) play the role of coupling constants at
the flavour-changing vertices (operators) Qi.

The perturbative calculations are performed in three steps:

(i) Matching: Evaluating Ci(µ0) at the renormalization scale µ0 ∼ MW , mt by requiring
equality of the SM and effective theory Green’s functions at the leading order in
(external momenta)/(MW , mt).

(ii) Mixing: Calculating the operator mixing under renormalization, deriving the effective
theory Renormalization Group Equations (RGE) and evolving Ci(µ) from µ0 down to the
low-energy scale µb ∼ mb.

(iii) Matrix elements: Evaluating the on-shell b → Xparton
s γ amplitudes at µb ∼ mb.

In the NNLO analysis of the considered decay, the four-quark operators Q1, . . . , Q6 and the
dipole operators Q7 and Q8 must be matched at the two- and three-loop level, respectively.
Three-point amplitudes with four-quark vertices need to be renormalized up to the four-loop
level, while “only” three-loop mixing is necessary in the remaining cases. The matrix elements
are needed up to two loops for the dipole operators, and up to three loops for the four-quark
operators.

The NNLO matching was calculated in Refs. [2, 3]. The three-loop renormalization in the
{Q1, . . . , Q6} and {Q7, Q8} sectors was found in Refs. [4, 5]. The results from Ref. [6] on the
four-loop mixing of Q1, . . . , Q6 into Q7 will be used in our numerical analysis.1

1 The small effect (−0.35% in the branching ratio) of the four-loop mixing [6] of Q1, . . . , Q6 into Q8 is
neglected here. It was not yet known in September 2006 when the current paper was being completed.
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GIM	mechanism:	suppression	of	FCNC	at	loop	level

uThe	effective	Lagrangian reads:

In loop-level processes, particles go o↵ shell and we then expect the Appelquist-Carazzone
decoupling theorem to hold [46]. This tells us that when we take the mass of the internal
particle to infinity, its e↵ects on physics at much lower scales must vanish. But now we are saying
that the heavy particles in fcnc loops do not decouple. In fact, the result of the amplitude is a
function of the form f(m2

t/m
2
W ), which goes to a constant for large values of its argument. What’s

going on?

5.1 Example: b ! s�

A classic example is the loop-level diagram for b ! s�, which was first observed at Cornell, about
halfway through cleo’s lifetime. This was when y.g. was in grad school and his first paper was on
this so-called penguin diagram. The curious etymology of this process is best explained in John
Ellis’ own words, as cited in Shifman’s introduction to the itep Lectures in Particle Physics [47].
Here’s an example of a penguin diagram,

The dependence of b ! s� on the ckm matrix is

M /
X

i

V ⇤
ibVis = 0 , (5.1)

where we sum over the internal quarks, i. This product vanishes identically by unitarity. This
tells us that any part of the diagram that only depends on flavor through the sum

P
i V

⇤
ibVis will

vanish. The only other source of flavor-dependence are the masses of the quarks themselves—recall
that the quark mass matrix is diagonal, but not universal. Any term in M that is independent
of the internal quark mass must necessarily vanish. In the diagram above, we draw this as a
chirality-flipping mass insertion. We conclude that

M =
X

i

V ⇤
ibVisf(mi). (5.2)

We can expand f in a power series. If mi ⌧ mW then f(mi ⌧ mW ) / m2
i /m

2
W . The W indeed

satisfies the decoupling limit. When we take mi large (say mi = mt), however, the argument is
not valid. Thus we know that f(m2

i /m
2
W ) is linear at small values and constant at large values.

The function f is called the Inami–Lim function, because they calculated all of these diagrams
in the 1980s—it wasn’t until the 80s that anyone really believed that the top quark might be so
heavy [48]!

The reason why decoupling is violated is that the diagrams are essentially mediated by the
longitudinal part of the W by the Goldstone Equivalence theorem. Thus the coupling to the
fermions is essentially a Yukawa coupling, which goes like the fermion mass. When you have a
particle whose coupling is proportional mass, then it is clear that decoupling fails—the heavy mass
is compensated by a large coupling. Thus the gim mechanism tells us that one-loop diagrams
carry factors of m2

i /m
2
W , where i is summed over the internal quarks.
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Combining our results for various O(α2
s) corrections to the weak radiative B-meson decay, we

are able to present the first estimate of the branching ratio at the next-to-next-to-leading order in
QCD. We find B(B̄ → Xsγ) = (3.15 ± 0.23) × 10−4 for Eγ > 1.6 GeV in the B̄-meson rest frame.
The four types of uncertainties: nonperturbative (5%), parametric (3%), higher-order (3%) and
mc-interpolation ambiguity (3%) have been added in quadrature to obtain the total error.

PACS numbers: 12.38.Bx, 13.20.He

The inclusive radiative B-meson decay provides im-
portant constraints on the minimal supersymmetric stan-
dard model and many other theories of new physics at the
electroweak scale. The power of such constraints depends
on the accuracy of both the experiments and the stan-
dard model (SM) calculations. The latest measurements
by Belle and BABAR are reported in Refs. [1, 2]. The
world average performed by the Heavy Flavor Averaging
Group [3] for Eγ > 1.6 GeV reads

B(B̄ → Xsγ) =
(

3.55 ± 0.24 +0.09
−0.10 ± 0.03

)

× 10−4. (1)

The combined error in the above result is of the same
size as the expected O(α2

s) next-to-next-to-leading or-
der (NNLO) QCD corrections to the perturbative de-
cay width Γ(b → Xparton

s γ), and larger than the known
nonperturbative corrections to the relation Γ(B̄ →
Xsγ) ≃ Γ(b → Xparton

s γ) [4]–[6]. Thus, calculating the
SM prediction for the b-quark decay rate at the NNLO is
necessary for taking full advantage of the measurements.

Evaluating the O(α2
s) corrections to B(b → Xparton

s γ)
is a very involved task because hundreds of three-loop
on-shell and thousands of four-loop tadpole Feynman di-
agrams need to be computed. In a series of papers [7]–
[14], we have presented partial contributions to this en-
terprise. The purpose of the present Letter is to combine
all the existing results and obtain the first estimate of
the branching ratio at the NNLO. We call it an estimate
rather than a prediction because some of the numeri-
cally important contributions have been found using an
interpolation in the charm quark mass, which introduces
uncertainties that are difficult to quantify.
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FIG. 1: Sample LO diagram for the b → sγ transition.

Let us begin with recalling that the leading-order (LO)
contribution to the considered decay originates from one-
loop diagrams in the SM. An example of such a diagram
is shown in Fig. 1. Dressing this diagram with one or
two virtual gluons gives examples of diagrams that one
encounters at the next-to-leading order (NLO) and the
NNLO. In addition, one should include diagrams describ-
ing the bremsstrahlung of gluons and light quarks.

An additional difficulty in the analysis of the con-
sidered decay is the presence of large logarithms
(αs ln M2

W /m2
b)

n that should be resummed at each or-
der of the perturbation series in αs. To do so, one em-
ploys a low-energy effective theory that arises after de-
coupling the top quark and the heavy electroweak bosons.
Weak interaction vertices (operators) in this theory are
either of dipole type (s̄σµνbFµν , s̄σµνT abGa

µν) or con-
tain four quarks ([s̄Γb][q̄Γ′q]). Coupling constants at
these vertices (Wilson coefficients) are first evaluated
at the electroweak renormalization scale µ0 ∼ mt, MW

by solving the so-called matching conditions. Next,
they are evolved down to the low-energy scale µb ∼ mb

Our goal is to calculate the NNLO QCD corrections to the quantity P (E0). The denominator
on the l.h.s. of Eq. (2.3) is already known at the NNLO level from Refs. [15, 16].

The relevant effective Lagrangian reads

Leff = LQCD×QED(u, d, s, c, b) +
4GF√

2

[

V ∗

tsVtb

8∑

i=1

CiQi + V ∗

usVub

2∑

i=1

Cc
i (Q

u
i − Qi)

]

, (2.4)

where

Qu
1 = (s̄LγµT auL)(ūLγµT abL),

Qu
2 = (s̄LγµuL)(ūLγµbL),

Q1 = (s̄LγµT acL)(c̄LγµT abL),

Q2 = (s̄LγµcL)(c̄LγµbL),

Q3 = (s̄LγµbL)
∑

q(q̄γ
µq),

Q4 = (s̄LγµT abL)
∑

q(q̄γ
µT aq),

Q5 = (s̄Lγµ1
γµ2

γµ3
bL)

∑
q(q̄γ

µ1γµ2γµ3q),

Q6 = (s̄Lγµ1
γµ2

γµ3
T abL)

∑
q(q̄γ

µ1γµ2γµ3T aq),

Q7 = e
16π2 mb(s̄LσµνbR)Fµν ,

Q8 = g
16π2 mb(s̄LσµνT abR)Ga

µν .

(2.5)

The last term in the square bracket of Eq. (2.4) gives no contribution at the Leading Order
(LO) and only a small contribution at the NLO (around +1% in the branching ratio — see
Eq. (3.7) of Ref. [12]). Consequently, we shall neglect its effect on the NNLO QCD correction
and omit terms proportional to Vub in the analytical formulae below. However, our numerical
results will include the Vub terms at the NLO. The same refers to the electroweak corrections
that amount to around −3.7% in P (E0) [12, 17].

The quantity P (E0) depends quadratically on the Wilson coefficients3

P (E0) =
8∑

i,j=1

Ceff
i (µb) Ceff

j (µb) Kij(E0, µb), (2.6)

where the “effective coefficients” are defined by

Ceff
i (µ) =

⎧
⎪⎪⎨

⎪⎪⎩

Ci(µ), for i = 1, ..., 6,

C7(µ) +
∑6

j=1 yjCj(µ), for i = 7,

C8(µ) +
∑6

j=1 zjCj(µ), for i = 8.

(2.7)

The numbers yj and zj are defined so that the leading-order b → sγ and b → sg matrix
elements of the effective Hamiltonian are proportional to the leading-order terms in Ceff

7 and
Ceff

8 , respectively [18]. This means, in particular, that Kij = δi7δj7 +O(αs). In the MS scheme
with fully anticommuting γ5, y⃗ = (0, 0,−1

3 ,−
4
9 ,−

20
3 ,−80

9 ) and z⃗ = (0, 0, 1,−1
6 , 20,−10

3 ) [19].

3 In Eq. (30) of Ref. [7], Kij was denoted by G̃ij/Gu.
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Hadronic	formfactors
u Formfactor:	a	“bag”	that	contains	inside	all	that	we	do	not	know	theoretically.	

uThey	are	subjected	to	various	symmetries	which	restricts	the	number	of	independent	FF’s

u Idea:	we	want	to	calculate	processes	like:

uA	central	role	is	played	by	the	W	boson

u It	mediates	the	processes
u It	is	much	heavier	than	the	hadronic	masses	and	therefore	we	can	expand	in	mH/mW.

u Simplest	example:	W	decay	at	LO

uFirst	process	of	interest:

The object on the left-hand side is simple to calculate. Don’t be confused by the form of the
h`⌫|O`|0i matrix element, it looks like some weird expectation value for, say, the leptonic current—
it doesn’t make sense kinematically on its own, the matrix element isn’t a kinematic object. The
kinematics are split with the hadronic part and are really only accounted for in the phase space
integral. The factor of 1/M2

W combines with coupling constants implicitly in the Os to give the
famous Fermi coupling,

GFp
2
⌘ g2

8M2
W

. (7.7)

The numerical factors are historical and are motivated below (A.1).
The h0|OH |⇡0i might cause some concern. It looks something like a quark current expectation

value, except for the fact that the external state has no explicit quarks—it’s a pion. Sure, a pion
is made of quarks, but it’s also made up of glue and is an actual asymptotic state while quarks
are not. The easiest way to deal with this is to just define this object to be a parameter of our
e↵ective theory. We call it the pion decay constant, f⇡, and we can heuristically define it as

h⇡|O|0i ⇠ f⇡. (7.8)

We’ll get to a more proper and technical definition below; for now just focus on the ideas. Decay
constants capture all of the hard-to-calculate non-perturbative brown muck that keeps the pion
together19. In recent times, lattice qcd calculations have made huge steps in being able to calculate
these objects to the percent level, but in principle we should treat these as additional physical
parameters whose values should be fixed by experiment.

Let’s now examine more complicated hadronic decays. Consider K+ ! ⇡0`+⌫.

Example 7.1. Draw the Feynman diagram for this process. (This should be very basic review!)

u

s̄

u

ū

W+ ⌫`

`

K+ ⇡0

We’ve only drawn the uū content of the ⇡0, but we know by now that the ⇡0 is really the linear
combination (uū � dd̄)/

p
2. Get used to drawing Feynman diagrams quickly in your head. Ex-

perimentalists and flavor physicists deal with processes whose diagrams all have similar topologies
and no longer bother to explicitly draw diagrams for each other.

The matrix element is again simple to write,

A = h⇡0`⌫|O|K+i. (7.9)

The leptonic part of this matrix element is simple, precisely because we again have asymptotic
external states which appear as creation and annihilation operators in O. What about the K+

19‘Brown muck’ is a term coined by Howard Georgi, [56].
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• form factor: this should sound familiar from (non-relativistic) scattering such as Rutherford
scattering. It is the shape correction to the approximation that a scattering object is point-
like (S-wave).

• decay constant: this is a non-perturbative property of mesons that parametrizes their
decay widths to leptons.

• factorization: this is the deep idea that we may separate di↵erent kinds of physics. Physics
at di↵erent scales ought to decouple. We are interested in the factorization of the hadronic
matrix elements from the leptonic matrix elements. This factorization is realized because the
operators that mix hadronic and leptonic pieces are formed by integrating out an intermediate
W at energies much lower than MW .

Let’s familiarize ourselves with the concepts behind these words. We begin by remembering how
we do calculations and start with a simple purely leptonic example. Consider the process W ! `⌫.
The amplitude is written as

A = h`⌫|O|W i , (7.1)

where O is some operator in the Hamiltonian (or Lagrangian up to a sign). We then write the
decay rate for the W to a lepton and its neutrino by

� ⇠
Z

|A|2 ⇥ d(phase space). (7.2)

We know that in this example, the amplitude is trivially A = g/
p
2. You can write down the

relevant tree-level term for O,

O = ¯̀�µW
µ⌫ (7.3)

and do the appropriate Wick contractions with the external states. The point here is that the
external states are asymptotic so that our operator can ‘literally’ be written in terms of them.

Let’s see what happens when we consider hadronic decays. Consider ⇡ ! `⌫. The matrix
element is simple to write,

A = h`⌫|O|⇡+i. (7.4)

The leptonic part of this matrix element is simple, precisely because we again have asymptotic
external states which appear as creation and annihilation operators in O. What about the ⇡+?
Let’s say this pion is a ud̄ combination. We must then create an up–anti-down pair. Because this
is a low energy process (m⇡ ⌧ MW ), we can integrate out the W boson from our theory. The
operator O factorizes into the leptonic and hadronic currents that attached to either end of the
W boson:

O = O`
1

M2
W

OH = (“¯̀�µ⌫”)
1

M2
W

(“d̄�µu”), (7.5)

where we’ve written quotes to indicate that this is a heuristic form of the operators, we’ll write it
out honestly below. (In particular, we’ve been sloppy with factors of, e.g., �5.) This means that
our matrix element should also factorize,

h`⌫|O|⇡+i = h`⌫|O`|0i 1

M2
W

h0|OH |⇡+i. (7.6)

40

• form factor: this should sound familiar from (non-relativistic) scattering such as Rutherford
scattering. It is the shape correction to the approximation that a scattering object is point-
like (S-wave).

• decay constant: this is a non-perturbative property of mesons that parametrizes their
decay widths to leptons.

• factorization: this is the deep idea that we may separate di↵erent kinds of physics. Physics
at di↵erent scales ought to decouple. We are interested in the factorization of the hadronic
matrix elements from the leptonic matrix elements. This factorization is realized because the
operators that mix hadronic and leptonic pieces are formed by integrating out an intermediate
W at energies much lower than MW .

Let’s familiarize ourselves with the concepts behind these words. We begin by remembering how
we do calculations and start with a simple purely leptonic example. Consider the process W ! `⌫.
The amplitude is written as

A = h`⌫|O|W i , (7.1)

where O is some operator in the Hamiltonian (or Lagrangian up to a sign). We then write the
decay rate for the W to a lepton and its neutrino by

� ⇠
Z

|A|2 ⇥ d(phase space). (7.2)

We know that in this example, the amplitude is trivially A = g/
p
2. You can write down the

relevant tree-level term for O,

O = ¯̀�µW
µ⌫ (7.3)

and do the appropriate Wick contractions with the external states. The point here is that the
external states are asymptotic so that our operator can ‘literally’ be written in terms of them.

Let’s see what happens when we consider hadronic decays. Consider ⇡ ! `⌫. The matrix
element is simple to write,

A = h`⌫|O|⇡+i. (7.4)

The leptonic part of this matrix element is simple, precisely because we again have asymptotic
external states which appear as creation and annihilation operators in O. What about the ⇡+?
Let’s say this pion is a ud̄ combination. We must then create an up–anti-down pair. Because this
is a low energy process (m⇡ ⌧ MW ), we can integrate out the W boson from our theory. The
operator O factorizes into the leptonic and hadronic currents that attached to either end of the
W boson:

O = O`
1

M2
W

OH = (“¯̀�µ⌫”)
1

M2
W

(“d̄�µu”), (7.5)

where we’ve written quotes to indicate that this is a heuristic form of the operators, we’ll write it
out honestly below. (In particular, we’ve been sloppy with factors of, e.g., �5.) This means that
our matrix element should also factorize,

h`⌫|O|⇡+i = h`⌫|O`|0i 1

M2
W

h0|OH |⇡+i. (7.6)

40

and	the	observable	is	:

• form factor: this should sound familiar from (non-relativistic) scattering such as Rutherford
scattering. It is the shape correction to the approximation that a scattering object is point-
like (S-wave).

• decay constant: this is a non-perturbative property of mesons that parametrizes their
decay widths to leptons.

• factorization: this is the deep idea that we may separate di↵erent kinds of physics. Physics
at di↵erent scales ought to decouple. We are interested in the factorization of the hadronic
matrix elements from the leptonic matrix elements. This factorization is realized because the
operators that mix hadronic and leptonic pieces are formed by integrating out an intermediate
W at energies much lower than MW .

Let’s familiarize ourselves with the concepts behind these words. We begin by remembering how
we do calculations and start with a simple purely leptonic example. Consider the process W ! `⌫.
The amplitude is written as

A = h`⌫|O|W i , (7.1)

where O is some operator in the Hamiltonian (or Lagrangian up to a sign). We then write the
decay rate for the W to a lepton and its neutrino by

� ⇠
Z

|A|2 ⇥ d(phase space). (7.2)

We know that in this example, the amplitude is trivially A = g/
p
2. You can write down the

relevant tree-level term for O,

O = ¯̀�µW
µ⌫ (7.3)

and do the appropriate Wick contractions with the external states. The point here is that the
external states are asymptotic so that our operator can ‘literally’ be written in terms of them.

Let’s see what happens when we consider hadronic decays. Consider ⇡ ! `⌫. The matrix
element is simple to write,

A = h`⌫|O|⇡+i. (7.4)

The leptonic part of this matrix element is simple, precisely because we again have asymptotic
external states which appear as creation and annihilation operators in O. What about the ⇡+?
Let’s say this pion is a ud̄ combination. We must then create an up–anti-down pair. Because this
is a low energy process (m⇡ ⌧ MW ), we can integrate out the W boson from our theory. The
operator O factorizes into the leptonic and hadronic currents that attached to either end of the
W boson:

O = O`
1

M2
W

OH = (“¯̀�µ⌫”)
1

M2
W

(“d̄�µu”), (7.5)

where we’ve written quotes to indicate that this is a heuristic form of the operators, we’ll write it
out honestly below. (In particular, we’ve been sloppy with factors of, e.g., �5.) This means that
our matrix element should also factorize,

h`⌫|O|⇡+i = h`⌫|O`|0i 1

M2
W

h0|OH |⇡+i. (7.6)

40

• form factor: this should sound familiar from (non-relativistic) scattering such as Rutherford
scattering. It is the shape correction to the approximation that a scattering object is point-
like (S-wave).

• decay constant: this is a non-perturbative property of mesons that parametrizes their
decay widths to leptons.

• factorization: this is the deep idea that we may separate di↵erent kinds of physics. Physics
at di↵erent scales ought to decouple. We are interested in the factorization of the hadronic
matrix elements from the leptonic matrix elements. This factorization is realized because the
operators that mix hadronic and leptonic pieces are formed by integrating out an intermediate
W at energies much lower than MW .

Let’s familiarize ourselves with the concepts behind these words. We begin by remembering how
we do calculations and start with a simple purely leptonic example. Consider the process W ! `⌫.
The amplitude is written as

A = h`⌫|O|W i , (7.1)

where O is some operator in the Hamiltonian (or Lagrangian up to a sign). We then write the
decay rate for the W to a lepton and its neutrino by

� ⇠
Z

|A|2 ⇥ d(phase space). (7.2)

We know that in this example, the amplitude is trivially A = g/
p
2. You can write down the

relevant tree-level term for O,

O = ¯̀�µW
µ⌫ (7.3)

and do the appropriate Wick contractions with the external states. The point here is that the
external states are asymptotic so that our operator can ‘literally’ be written in terms of them.

Let’s see what happens when we consider hadronic decays. Consider ⇡ ! `⌫. The matrix
element is simple to write,

A = h`⌫|O|⇡+i. (7.4)

The leptonic part of this matrix element is simple, precisely because we again have asymptotic
external states which appear as creation and annihilation operators in O. What about the ⇡+?
Let’s say this pion is a ud̄ combination. We must then create an up–anti-down pair. Because this
is a low energy process (m⇡ ⌧ MW ), we can integrate out the W boson from our theory. The
operator O factorizes into the leptonic and hadronic currents that attached to either end of the
W boson:

O = O`
1

M2
W

OH = (“¯̀�µ⌫”)
1

M2
W

(“d̄�µu”), (7.5)

where we’ve written quotes to indicate that this is a heuristic form of the operators, we’ll write it
out honestly below. (In particular, we’ve been sloppy with factors of, e.g., �5.) This means that
our matrix element should also factorize,

h`⌫|O|⇡+i = h`⌫|O`|0i 1

M2
W

h0|OH |⇡+i. (7.6)

40

• form factor: this should sound familiar from (non-relativistic) scattering such as Rutherford
scattering. It is the shape correction to the approximation that a scattering object is point-
like (S-wave).

• decay constant: this is a non-perturbative property of mesons that parametrizes their
decay widths to leptons.

• factorization: this is the deep idea that we may separate di↵erent kinds of physics. Physics
at di↵erent scales ought to decouple. We are interested in the factorization of the hadronic
matrix elements from the leptonic matrix elements. This factorization is realized because the
operators that mix hadronic and leptonic pieces are formed by integrating out an intermediate
W at energies much lower than MW .

Let’s familiarize ourselves with the concepts behind these words. We begin by remembering how
we do calculations and start with a simple purely leptonic example. Consider the process W ! `⌫.
The amplitude is written as

A = h`⌫|O|W i , (7.1)

where O is some operator in the Hamiltonian (or Lagrangian up to a sign). We then write the
decay rate for the W to a lepton and its neutrino by

� ⇠
Z

|A|2 ⇥ d(phase space). (7.2)

We know that in this example, the amplitude is trivially A = g/
p
2. You can write down the

relevant tree-level term for O,

O = ¯̀�µW
µ⌫ (7.3)

and do the appropriate Wick contractions with the external states. The point here is that the
external states are asymptotic so that our operator can ‘literally’ be written in terms of them.

Let’s see what happens when we consider hadronic decays. Consider ⇡ ! `⌫. The matrix
element is simple to write,

A = h`⌫|O|⇡+i. (7.4)

The leptonic part of this matrix element is simple, precisely because we again have asymptotic
external states which appear as creation and annihilation operators in O. What about the ⇡+?
Let’s say this pion is a ud̄ combination. We must then create an up–anti-down pair. Because this
is a low energy process (m⇡ ⌧ MW ), we can integrate out the W boson from our theory. The
operator O factorizes into the leptonic and hadronic currents that attached to either end of the
W boson:

O = O`
1

M2
W

OH = (“¯̀�µ⌫”)
1

M2
W

(“d̄�µu”), (7.5)

where we’ve written quotes to indicate that this is a heuristic form of the operators, we’ll write it
out honestly below. (In particular, we’ve been sloppy with factors of, e.g., �5.) This means that
our matrix element should also factorize,

h`⌫|O|⇡+i = h`⌫|O`|0i 1

M2
W

h0|OH |⇡+i. (7.6)

40

• form factor: this should sound familiar from (non-relativistic) scattering such as Rutherford
scattering. It is the shape correction to the approximation that a scattering object is point-
like (S-wave).

• decay constant: this is a non-perturbative property of mesons that parametrizes their
decay widths to leptons.

• factorization: this is the deep idea that we may separate di↵erent kinds of physics. Physics
at di↵erent scales ought to decouple. We are interested in the factorization of the hadronic
matrix elements from the leptonic matrix elements. This factorization is realized because the
operators that mix hadronic and leptonic pieces are formed by integrating out an intermediate
W at energies much lower than MW .

Let’s familiarize ourselves with the concepts behind these words. We begin by remembering how
we do calculations and start with a simple purely leptonic example. Consider the process W ! `⌫.
The amplitude is written as

A = h`⌫|O|W i , (7.1)

where O is some operator in the Hamiltonian (or Lagrangian up to a sign). We then write the
decay rate for the W to a lepton and its neutrino by

� ⇠
Z

|A|2 ⇥ d(phase space). (7.2)

We know that in this example, the amplitude is trivially A = g/
p
2. You can write down the

relevant tree-level term for O,

O = ¯̀�µW
µ⌫ (7.3)

and do the appropriate Wick contractions with the external states. The point here is that the
external states are asymptotic so that our operator can ‘literally’ be written in terms of them.

Let’s see what happens when we consider hadronic decays. Consider ⇡ ! `⌫. The matrix
element is simple to write,

A = h`⌫|O|⇡+i. (7.4)

The leptonic part of this matrix element is simple, precisely because we again have asymptotic
external states which appear as creation and annihilation operators in O. What about the ⇡+?
Let’s say this pion is a ud̄ combination. We must then create an up–anti-down pair. Because this
is a low energy process (m⇡ ⌧ MW ), we can integrate out the W boson from our theory. The
operator O factorizes into the leptonic and hadronic currents that attached to either end of the
W boson:

O = O`
1

M2
W

OH = (“¯̀�µ⌫”)
1

M2
W

(“d̄�µu”), (7.5)

where we’ve written quotes to indicate that this is a heuristic form of the operators, we’ll write it
out honestly below. (In particular, we’ve been sloppy with factors of, e.g., �5.) This means that
our matrix element should also factorize,

h`⌫|O|⇡+i = h`⌫|O`|0i 1

M2
W

h0|OH |⇡+i. (7.6)

40

• form factor: this should sound familiar from (non-relativistic) scattering such as Rutherford
scattering. It is the shape correction to the approximation that a scattering object is point-
like (S-wave).

• decay constant: this is a non-perturbative property of mesons that parametrizes their
decay widths to leptons.

• factorization: this is the deep idea that we may separate di↵erent kinds of physics. Physics
at di↵erent scales ought to decouple. We are interested in the factorization of the hadronic
matrix elements from the leptonic matrix elements. This factorization is realized because the
operators that mix hadronic and leptonic pieces are formed by integrating out an intermediate
W at energies much lower than MW .

Let’s familiarize ourselves with the concepts behind these words. We begin by remembering how
we do calculations and start with a simple purely leptonic example. Consider the process W ! `⌫.
The amplitude is written as

A = h`⌫|O|W i , (7.1)

where O is some operator in the Hamiltonian (or Lagrangian up to a sign). We then write the
decay rate for the W to a lepton and its neutrino by

� ⇠
Z

|A|2 ⇥ d(phase space). (7.2)

We know that in this example, the amplitude is trivially A = g/
p
2. You can write down the

relevant tree-level term for O,

O = ¯̀�µW
µ⌫ (7.3)

and do the appropriate Wick contractions with the external states. The point here is that the
external states are asymptotic so that our operator can ‘literally’ be written in terms of them.

Let’s see what happens when we consider hadronic decays. Consider ⇡ ! `⌫. The matrix
element is simple to write,

A = h`⌫|O|⇡+i. (7.4)

The leptonic part of this matrix element is simple, precisely because we again have asymptotic
external states which appear as creation and annihilation operators in O. What about the ⇡+?
Let’s say this pion is a ud̄ combination. We must then create an up–anti-down pair. Because this
is a low energy process (m⇡ ⌧ MW ), we can integrate out the W boson from our theory. The
operator O factorizes into the leptonic and hadronic currents that attached to either end of the
W boson:

O = O`
1

M2
W

OH = (“¯̀�µ⌫”)
1

M2
W

(“d̄�µu”), (7.5)

where we’ve written quotes to indicate that this is a heuristic form of the operators, we’ll write it
out honestly below. (In particular, we’ve been sloppy with factors of, e.g., �5.) This means that
our matrix element should also factorize,

h`⌫|O|⇡+i = h`⌫|O`|0i 1

M2
W

h0|OH |⇡+i. (7.6)

40

• form factor: this should sound familiar from (non-relativistic) scattering such as Rutherford
scattering. It is the shape correction to the approximation that a scattering object is point-
like (S-wave).

• decay constant: this is a non-perturbative property of mesons that parametrizes their
decay widths to leptons.

• factorization: this is the deep idea that we may separate di↵erent kinds of physics. Physics
at di↵erent scales ought to decouple. We are interested in the factorization of the hadronic
matrix elements from the leptonic matrix elements. This factorization is realized because the
operators that mix hadronic and leptonic pieces are formed by integrating out an intermediate
W at energies much lower than MW .

Let’s familiarize ourselves with the concepts behind these words. We begin by remembering how
we do calculations and start with a simple purely leptonic example. Consider the process W ! `⌫.
The amplitude is written as

A = h`⌫|O|W i , (7.1)

where O is some operator in the Hamiltonian (or Lagrangian up to a sign). We then write the
decay rate for the W to a lepton and its neutrino by

� ⇠
Z

|A|2 ⇥ d(phase space). (7.2)

We know that in this example, the amplitude is trivially A = g/
p
2. You can write down the

relevant tree-level term for O,

O = ¯̀�µW
µ⌫ (7.3)

and do the appropriate Wick contractions with the external states. The point here is that the
external states are asymptotic so that our operator can ‘literally’ be written in terms of them.

Let’s see what happens when we consider hadronic decays. Consider ⇡ ! `⌫. The matrix
element is simple to write,

A = h`⌫|O|⇡+i. (7.4)

The leptonic part of this matrix element is simple, precisely because we again have asymptotic
external states which appear as creation and annihilation operators in O. What about the ⇡+?
Let’s say this pion is a ud̄ combination. We must then create an up–anti-down pair. Because this
is a low energy process (m⇡ ⌧ MW ), we can integrate out the W boson from our theory. The
operator O factorizes into the leptonic and hadronic currents that attached to either end of the
W boson:

O = O`
1

M2
W

OH = (“¯̀�µ⌫”)
1

M2
W

(“d̄�µu”), (7.5)

where we’ve written quotes to indicate that this is a heuristic form of the operators, we’ll write it
out honestly below. (In particular, we’ve been sloppy with factors of, e.g., �5.) This means that
our matrix element should also factorize,

h`⌫|O|⇡+i = h`⌫|O`|0i 1

M2
W

h0|OH |⇡+i. (7.6)

40

The	hadronic	matrix	element	factorizes

The object on the left-hand side is simple to calculate. Don’t be confused by the form of the
h`⌫|O`|0i matrix element, it looks like some weird expectation value for, say, the leptonic current—
it doesn’t make sense kinematically on its own, the matrix element isn’t a kinematic object. The
kinematics are split with the hadronic part and are really only accounted for in the phase space
integral. The factor of 1/M2

W combines with coupling constants implicitly in the Os to give the
famous Fermi coupling,

GFp
2
⌘ g2

8M2
W

. (7.7)

The numerical factors are historical and are motivated below (A.1).
The h0|OH |⇡0i might cause some concern. It looks something like a quark current expectation

value, except for the fact that the external state has no explicit quarks—it’s a pion. Sure, a pion
is made of quarks, but it’s also made up of glue and is an actual asymptotic state while quarks
are not. The easiest way to deal with this is to just define this object to be a parameter of our
e↵ective theory. We call it the pion decay constant, f⇡, and we can heuristically define it as

h⇡|O|0i ⇠ f⇡. (7.8)

We’ll get to a more proper and technical definition below; for now just focus on the ideas. Decay
constants capture all of the hard-to-calculate non-perturbative brown muck that keeps the pion
together19. In recent times, lattice qcd calculations have made huge steps in being able to calculate
these objects to the percent level, but in principle we should treat these as additional physical
parameters whose values should be fixed by experiment.

Let’s now examine more complicated hadronic decays. Consider K+ ! ⇡0`+⌫.

Example 7.1. Draw the Feynman diagram for this process. (This should be very basic review!)

u

s̄

u

ū

W+ ⌫`

`

K+ ⇡0

We’ve only drawn the uū content of the ⇡0, but we know by now that the ⇡0 is really the linear
combination (uū � dd̄)/

p
2. Get used to drawing Feynman diagrams quickly in your head. Ex-

perimentalists and flavor physicists deal with processes whose diagrams all have similar topologies
and no longer bother to explicitly draw diagrams for each other.

The matrix element is again simple to write,

A = h⇡0`⌫|O|K+i. (7.9)

The leptonic part of this matrix element is simple, precisely because we again have asymptotic
external states which appear as creation and annihilation operators in O. What about the K+

19‘Brown muck’ is a term coined by Howard Georgi, [56].
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Define	“decay	constant”																								

It	absorbs	all	hadronic	physics.	It	is	just	a	number	and	we	can	measure	it	once	and	for	all.
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Hadronic	formfactors
u The	process																							in	more	detail

uThe	operator	O	that	mediates																					should	satisfy:

u Annihilate	the	valence	quarks	of	the	pion.	Therefore:

uThe	matrix	Γ can	be	expanded	in	V,A,S,P,T	structures.	Based	on	spin-parity	considerations	
it	is	the	Axial	part			that	contributes,	i.e.		

uThe	decays	constant	can	be	now	properly	defined	as:

uHow	is							determined?	From	the	same	process:		
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A more recent approach involves the hope that the ads/cft correspondence might be able to
provide a perturbative method to calculate these strongly-coupled objects; this is often referred to
as ads/qcd. Recent progress has led to promising results in meson spectroscopy, but predictions
of actual matrix elements are still ‘undelivered’ [57].

To reiterate the big picture: progress with holographic and lattice techniques notwithstanding,
we cannot calculate hadronic matrix elements from first principles. The best that we can do is to
parameterize our ignorance. But a bit of cleverness can go a long way. Sometimes we can measure
the matrix elements in one process and apply the result to other processes—this is the best case,
one doesn’t even need theory to do this! When this fails, however, we have to be a bit more clever
and use approximate symmetries. The program is as follows

1. Use symmetries to determine which matrix elements are relevant.
2. For an unknown hadronic matrix element, write out the most general linear combination of

dynamical variables (e.g. momenta) which match the Lorentz structure of the matrix element.
(Do not forget the discrete symmetries!)

3. Write the coe�cients of these terms as parameters (decay constants and form factors) that
have to be determined.

4. Use every trick you can to determine which of these terms are relevant.

7.1 The decay constant

Let’s take a closer look at h0|O|⇡+i. The operator O should annihilate the valence quarks of a
pion and so must have the form

O ⇠ ū�d (7.13)

for some Dirac structure �. We can always simplify the Dirac structure into a basis of S, P, V, A, T
(scalar, pseudoscalar, vector, axial vector, tensor). Of these five operators, symmetries force some
of them to vanish.

Example 7.2. Which operators vanish? Suppose we knew that the main contribution come
from either the V = �µ or the A = �µ�5 operator, while the other vanishes. Which one is zero?
Solution: We know that ⇡ is a pseudoscalar and qcd conservs parity. The vacuum |0i is parity-
even, thus O must be parity-odd, i.e. the vector must vanish and the main contribution must come
from the axial operator. Similarly, S = T = 0.

Let’s look at the the axial matrix element h0|ū�µ�5d|⇡i a bit more closely. We don’t know how
to calculate this object, but we saw above that we can parameterize our ignorance in terms of a
decay constant f⇡, which we now o�cially define to be

h0|Aµ|⇡i ⌘ �ipµf⇡ . (7.14)

There is nothing surprising about the structure of the right-hand side. Lorentz structure forces us
to have a pµ on the right-hand side since this is the only vectorial quantity available. The rest of
the right-hand side is an overall coe�cient, which we define to be �if⇡ with mass-dimension 1.
In principle this could have had some dependence on Lorenz scalar quantities, of which we only
have m⇡, but this is not a dynamic variable—it is some fixed value that does not change when we
change the kinematic configuration of the decay.
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It turns out that f⇡ can be measured (see below) and is

f⇡ ⇠ 131 MeV , (7.15)

the order of magnitude here is something you should commit to memory. Sometimes this is be
written in terms of self-adjoint isospin currents and fields as20,

h0|jµ5a|⇡bi = i�abF⇡p
µ F⇡ ⌘ f⇡p

2
⇡ 93 MeV. (7.16)

The theoretical meaning of the decay constant comes from chiral perturbation theory; see [43] for
a review and connections to models of new physics. For our present purposes, it is most useful to
remember that the decay constants parameterize incalculable strong dynamics.

How do we measure f⇡? We should look at the dominant pion decay, ⇡+ ! µ+⌫, which has a
branching ratio of about 99.99%. The amplitude for this decay is given by the simple s-channel
diagram:

d

u

W

µ

⌫

It is straightforward to calculate the amplitude for this diagram,

M(⇡ ! µ⌫) = � g2

4M2
W

f⇡Vud mµµ̄R⌫L. (7.17)

Problem 7.2. A basic Feynman diagram calculation. Derive (7.17). This is a very impor-
tant exercise in qft. Explain the physical significance of the mµ factor.

One can now convert this to a decay width (hint: the pdg has a review section for two- and
three-body decay kinematics),

�(⇡ ! µ⌫) =
G2

F

8⇡
|Vud|2f 2

⇡m
2
µm⇡

✓
1� m2

µ

m2
⇡

◆2

. (7.18)

The term in the parenthesis is the factor coming from the phase space integral; it is conventionally
normalized so that in the limit m` ! 0 the phase space factor goes to 1. What about the factor
of m2

µ? This is clearly the same factor of mµ in (7.17).

Problem 7.3. An exercise in calculating decay rates. Derive (7.18) from (7.17). Hint: If
you’re spending a lot of time with � matrix identities then you’re doing this the hard way.

At first sight this factor seems puzzling: this means that the ⇡ ! µ⌫ decay is dominant over
the ⇡ ! e⌫ decay, even though the latter has a much bigger phase space. How did this factor of
the charged lepton mass appear? This chiral suppression comes from the fact that the pion is
a spin-0 state whereas the operator, mediated by a W boson, is spin-1. Because spin-1 operators
connect fermions of the same chirality, one requires a mass insertion to flip the spin of one of the
final state leptons so that the `⌫ final state conserves angular momentum compared to the initial
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20See chapter 4.3 of Georgi’s Weak Interactions [25].
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It turns out that f⇡ can be measured (see below) and is

f⇡ ⇠ 131 MeV , (7.15)

the order of magnitude here is something you should commit to memory. Sometimes this is be
written in terms of self-adjoint isospin currents and fields as20,
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The theoretical meaning of the decay constant comes from chiral perturbation theory; see [43] for
a review and connections to models of new physics. For our present purposes, it is most useful to
remember that the decay constants parameterize incalculable strong dynamics.

How do we measure f⇡? We should look at the dominant pion decay, ⇡+ ! µ+⌫, which has a
branching ratio of about 99.99%. The amplitude for this decay is given by the simple s-channel
diagram:

d

u

W

µ

⌫

It is straightforward to calculate the amplitude for this diagram,
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Problem 7.2. A basic Feynman diagram calculation. Derive (7.17). This is a very impor-
tant exercise in qft. Explain the physical significance of the mµ factor.

One can now convert this to a decay width (hint: the pdg has a review section for two- and
three-body decay kinematics),
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The term in the parenthesis is the factor coming from the phase space integral; it is conventionally
normalized so that in the limit m` ! 0 the phase space factor goes to 1. What about the factor
of m2

µ? This is clearly the same factor of mµ in (7.17).

Problem 7.3. An exercise in calculating decay rates. Derive (7.18) from (7.17). Hint: If
you’re spending a lot of time with � matrix identities then you’re doing this the hard way.

At first sight this factor seems puzzling: this means that the ⇡ ! µ⌫ decay is dominant over
the ⇡ ! e⌫ decay, even though the latter has a much bigger phase space. How did this factor of
the charged lepton mass appear? This chiral suppression comes from the fact that the pion is
a spin-0 state whereas the operator, mediated by a W boson, is spin-1. Because spin-1 operators
connect fermions of the same chirality, one requires a mass insertion to flip the spin of one of the
final state leptons so that the `⌫ final state conserves angular momentum compared to the initial
pion.

20See chapter 4.3 of Georgi’s Weak Interactions [25].
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and

Note	the	power	of	muon	mass:	“chirality/helicity	suppression”.	Pion	is	spin	0	while	W	is	spin	1.	
Thus	a	power	of	mass	is	needed	to	flip	the	spin	of	the	final	state	leptons.
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Hadronic	formfactors
u What	about	more	complicated	processes?

uSimilar	approach:

u Example	1:

uExample	2:	Bà D*

The object on the left-hand side is simple to calculate. Don’t be confused by the form of the
h`⌫|O`|0i matrix element, it looks like some weird expectation value for, say, the leptonic current—
it doesn’t make sense kinematically on its own, the matrix element isn’t a kinematic object. The
kinematics are split with the hadronic part and are really only accounted for in the phase space
integral. The factor of 1/M2

W combines with coupling constants implicitly in the Os to give the
famous Fermi coupling,

GFp
2
⌘ g2

8M2
W

. (7.7)

The numerical factors are historical and are motivated below (A.1).
The h0|OH |⇡0i might cause some concern. It looks something like a quark current expectation

value, except for the fact that the external state has no explicit quarks—it’s a pion. Sure, a pion
is made of quarks, but it’s also made up of glue and is an actual asymptotic state while quarks
are not. The easiest way to deal with this is to just define this object to be a parameter of our
e↵ective theory. We call it the pion decay constant, f⇡, and we can heuristically define it as

h⇡|O|0i ⇠ f⇡. (7.8)

We’ll get to a more proper and technical definition below; for now just focus on the ideas. Decay
constants capture all of the hard-to-calculate non-perturbative brown muck that keeps the pion
together19. In recent times, lattice qcd calculations have made huge steps in being able to calculate
these objects to the percent level, but in principle we should treat these as additional physical
parameters whose values should be fixed by experiment.

Let’s now examine more complicated hadronic decays. Consider K+ ! ⇡0`+⌫.

Example 7.1. Draw the Feynman diagram for this process. (This should be very basic review!)

u

s̄

u

ū

W+ ⌫`

`

K+ ⇡0

We’ve only drawn the uū content of the ⇡0, but we know by now that the ⇡0 is really the linear
combination (uū � dd̄)/

p
2. Get used to drawing Feynman diagrams quickly in your head. Ex-

perimentalists and flavor physicists deal with processes whose diagrams all have similar topologies
and no longer bother to explicitly draw diagrams for each other.

The matrix element is again simple to write,

A = h⇡0`⌫|O|K+i. (7.9)

The leptonic part of this matrix element is simple, precisely because we again have asymptotic
external states which appear as creation and annihilation operators in O. What about the K+

19‘Brown muck’ is a term coined by Howard Georgi, [56].
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and the ⇡0? We know that K = s̄u and for this decay we only care about the uū part of the ⇡0.
The operator that we need is ū�µs, since we want it to annihilate an anti-s quark and create a u
quark. Of course, what we really want is something that annihilates a kaon and creates a pion.
This is where our qcd ‘language problem’ manifests itself: the quark operator coming from the
Lagrangian is not directly related to the hadronic external states coming out of an experiment.

We certainly have creation and annihilation operators at the quark level, but just because you
annihilate an s̄ and produce a u it does not mean that you have automatically taken a K+ and
turned it into a ⇡. This quark-level operator could generate any number of hadronic processes
with di↵erent external states, say ⇤ ! pµ⌫. So how do we calculate this matrix element? Once
again we appeal to factorization. In particular, we know that heuristically we can write

O = O`
1

M2
W

OH =
�
“¯̀L�

µ⌫L”
� 1

M2
W

(“ūL�µsL”) , (7.10)

where we’ve explicitly separated the leptonic and hadronic sides of the integrated-out W boson
diagram. The quotation marks remind us not to take the actual explicit form of the O`,H operators
that we wrote above too seriously yet, we’ll shortly discuss their actual form. The matrix element
thus factorizes,

h⇡0`⌫|O|K+i = h`⌫|O`|0i 1

M2
W

h⇡|OH |K+i. (7.11)

As we know from above, we’re perfectly happy calculating the leptonic piece, h`⌫|O|0i. The hard
part is the hadronic piece, h⇡|O|Ki, which is deeply entrenched in how qcd converts quarks into
bound states. In the case of a single hadron we ended up packaging this non-perturbative garbage
into a single parameter, the decay constant. What about when we have two hadrons, H1 and H2?
We can define another parameter,

hH1|O|H2i ⇠ F. (7.12)

We call this a form factor, where we again save a technical definition for later. We choose this
name because this looks like scattering: one state H1 coming in and a di↵erent state H2 coming
out. Usually the physical process includes leptons coming out, so form factors are closely related
to semileptonic decays, e.g. B ! D`⌫. Form factors are scale dependent, F (q2), encoding the
extent of hadronic substructure a given scattering can probe. If you hit a hadron with a very high-
energy probe—say, an intermediate boson with large q2—then you start to probe the partonic
configuration of the hadron. In the right scenarios, it is su�cient to understand the form factor at
zero momentum transfer, F (0).

Problem 7.1. Range of q2. For a physical decay of the form M1 ! M2`⌫, what is the range of
possible values of q2? Is q2 time-like or space-like? Hint: q is the momentum from the hadronic
current to the leptonic current.

Being able to calculate these decay constants and form factors would already be a big step.
While there have been many achievements on this front, such as correctly predicting some values
before they are experimentally measured, there’s still a long way to go before the qcd ‘language
problem’ is practically solved. For example, three-body hadronic matrix elements are unlikely to
be determined in the near future. We need to find a way to get around this so that we can take
one non-perturbative result as a parameter and apply it to make predictions of other processes.
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• Factorize	as	usual	to	leading	power	in	mW:

• Introduce	forfmactors:
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7.3 Form factors

Let us introduce form factors with a simple example that will be useful later on: the � decay
of a neutron into a proton, n ! p+e⌫̄. We focus only on the vector current. The relevant matrix
element that we cannot calculate from first principles is

hp+(p0)|d̄�µu|n̄(p)i. (7.28)

This is a ‘brown muck’ object that we’d like to parameterize. To do so we must write out the most
general linear combination of kinematic variables and products of those variables,

hp+(p0)|d̄�µu|n̄(p)i ⇠ apµ + bp0µ, (7.29)

where the coe�cients a and b are our form factors. We know that these can only depend on
Lorentz scalars; there are three of these available: p2, p02, and p · p0. The first two are just masses
and are not dynamical, they don’t change when we change the momenta. The third one is a bona
fide dynamical Lorentz scalar. It is conventional to write this in a di↵erent momentum basis.
Define the momentum q by

q ⌘ p� p0. (7.30)

q2 = p2 + p02 � 2p · p0. (7.31)

This should be a familiar quantity from deep inelastic scattering calculations. We use (p+ p0) and
q as our basis of momenta in this problem. We write our form factors as f± that are functions of
q2, and thus write our matrix element as

hp+(p0)|d̄�µu|n̄(p)i = f+(q
2)(p+ p0)µ + f�(q2)(p� p0)µ. (7.32)

For a more non-trivial example of how to parameterize a form factor with more dynamical
variables, see the following problem.

Problem 7.4. The hD⇤+(pD, ✏)|V µ|B̄(pB)i form factor. Consider the semi-leptonic decay B !
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