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Abstract
These notes represent a summary of three lectures on flavour and CP viola-
tion, given at the CERN’s European School of High Energy Physics in 2014.
They cover flavour physics within the standard model, phenomenology of CP
violation in meson mixing and decays, as well as constraints of flavour ob-
servables on physics beyond the standard model. In preparing the lectures
(and consequently this summary) I drew heavily from several existing excel-
lent and exhaustive sets of lecture notes and reviews on flavour physics and CP
violation [1]. The reader is encouraged to consult those as well as the original
literature for a more detailed study.

1 What is flavour?
In the standard model (SM) the basic constituents of matter are excitations of fermionic fields with spin
1/2. In this context matter flavours refers to several copies of the same gauge representation. Under the
unbroken SM gauge group SU(3)c × U(1)EM these are

– up-type quarks: (3)2/3 : u, c, t,
– down-type quarks: (3)−1/3 : d, s, b,
– chrged leptons: (1)−1 : e, µ, τ ,
– neutrinos: (1)0 : ν1, ν2, ν3,

where the colour representations are given in the brackets, while the electric charges are written as
subscripts. The different flavours of the same gauge representation differ only in their masses.

Ordinary matter is essentially made up of the first generation: u and d quarks are bound within
protons and neutrons, while the electrons form atoms; finally “electron neutrinos", which are an admix-
ture of ν1,2,3, are produced in reactions inside stars. Second and third generation families are produced
only in high-energy particle collisions. They all decay via weak interactions into first generation parti-
cles. One of the big open questions in fundamental physics is why there are thee almost identical replicas
of quarks and leptons and which is the origin of their different masses?

Flavour physics refers to interactions that distinguish between flavours. Within the SM these are
weak and Yukawa (Higgs boson) interactions.

Flavour parameters are those that carry flavour indices. Within the SM these are the nine masses
of charged fermions and four mixing parameters (three angles and one complex CP violating phase).1

Flavour universal interactions are those with couplings proportional to the identity in flavour
space. Within the SM these are strong and electromagnetic interactions (and also weak interactions in
the so-called interactions basis, see below). Such interactions are sometimes also called flavour blind.

Flavour diagonal interactions are those whose couplings are diagonal (in the matter mass basis),
but not necessarily universal. Within the SM these are the Yukawa interactions of the Higgs boson.

1Adding Majorana mass terms for neutrinos introduces three additional neutrino masses plus six mixing parameters (three
mixing angles and three phases).
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What is flavour?
• Ordinary matter essentially first generation:

• u and d quarks bound within protons & neutrons, 

• electrons form atoms; 

• “electron neutrinos", (admixture of ν1,2,3) are 
produced in reactions inside stars. 

• 2nd and 3rd generation families decay via weak 
interactions into first generation particles. 

Why there are thee almost identical replicas of quarks and 
leptons and which is the origin of their different masses?
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What is flavour?
• Flavour physics

• Within SM: weak and Yukawa interactions.

• Flavour parameters

• Within SM: 9 masses of charged fermions          
& 4 mixing parameters (3 angles + 1 phase)

• Flavour universal (flavour blind)

• Within SM: QCD & QED 

• Flavour diagonal

• Within SM: Yukawa interaction
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What is flavour?
• Flavour changing processes

• Flavour changing charged currents: 

• Within SM:  single W exchange at tree-level

• Flavour changing neutral currents:

• Within SM: higher orders in weak expansion
(loops) - often highly suppressed

Flavour changing processes are those where the initial and final flavour-numbers are different (a
flavour number is the number of particles with a certain flavour minus the number of anti-particles of
the same flavour). We can further specify flavour changing charged currents which involve both up-
and down-type quark flavours or both charged lepton and neutrino flavours. Examples of such processes
are the muon decay µ− → e−νiν̄j or the muonic charged kaon decay K− → µ−ν̄i (which corresponds
to the quark-level transition sū → µ−ν̄i). Within the SM such processes are mediated already by a
single W exchange at the tree level (the amplitudes being proportional to the Fermi constant GF ). On
the other hand, flavour changing neutral currents (FCNCs) involve either up- or down- type flavours
but not both; and/or either charged lepton flavours or neutrino flavours but not both. Examples of
such processes are the radiative muon decay µ− → e−γ and the muonic decays of the neutral kaons,
KL → µ+µ− (sd̄ → µ+µ− at the quark level). Within the SM these processes occur at higher orders in
the weak expansion (i.e. via loops) and are often highly suppressed. In connection with flavour changing
interactions, one often speaks also of flavour violation.

1.1 Why is flavour interesting?
Flavour physics can discover new physics (NP) or probe it before it is directly observed in high-energy
experiments. Historical examples of this include:

– The smallness of the ratio Γ(KL → µ+µ−)/Γ(K− → µ−ν̄i) lead to the prediction of the charmed
quark.

– Furthermore, the measurement of the mass difference between the two neutral kaons ∆mK ≡
mKL

−mKS
lead to the prediction of the charm quark mass.

– Similarly, the mass difference between the two neutral B mesons ∆mB ≡ mB0
H

−mB0
L

inferred
a prediction of the top quark mass almost two decades before top quarks (or more precisely, their
decay products) were directly observed in experiments.

– Finally, the observation of the CP violating decay KL → π+π− (i.e the measurement of �K) lead
to the prediction of the third generation of matter.

CP violation: Within the SM there is a single CP violating parameter determining the amount of
CP violation in all flavour changing processes. Successful baryogenesis would require new CP violating
sources.

Solutions of the electroweak (EW) hierarchy problem (in the form of a quadratic sensitivity of
the EW scale to UV physics) require NP to appear at or below the TeV scale. On the other hand, such
NP with a generic flavour structure would predict FCNCs orders of magnitude above the observed rates.
Conversely, flavour physics can probe NP scales up to O(105 TeV). The resulting NP flavour puzzle
refers to the fact that NP at the TeV scale needs to exhibit approximate flavour symmetries.

The SM flavour parameters are both hierarchical (i.e. mu � mc � mt) and mostly very small
(mf �=t � mW,Z,h) . The question whether this points to some unknown underlying flavour dynamics is
sometimes called the SM flavour puzzle.

2 Flavour in the standard model
Any (local) quantum field theory model is specified by both (i) symmetries and the pattern of their
spontaneous breaking; as well as (ii) representations of fermions and scalars. The SM Lagrangian (LSM)
is thus completely determined by specifying the local (gauge) symmetry GSM

local = SU(3)c × SU(2)L ×
U(1)Y which is spontaneously broken to GSM

local → SU(3)c × U(1)EM ; plus the relevant fermionic

Qi
L ∼ (3, 2)1/6 , U i

R ∼ (3, 1)2/3 , Di
R ∼ (3, 1)−1/3 , Li

L ∼ (1, 2)−1/2 , (1)
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Why is flavour 
interesting?

•                       ⇒ prediction of charm quark

•                             ⇒ prediction of charm mass

•                   (εK) ⇒ prediction of 3rd generation

• CP Violation

• Within SM: single CP violating parameter
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Γ(K− → µ−ν̄i)

∆mK ≡ mKL −mKS
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Why is flavour 
interesting?

• Electroweak (EW) hierarchy problem

• requires NP ≤ 1 TeV

• if generic flavour structure ⇒ FCNCs

• flavour probes NP scales ≤105 TeV
NP flavour puzzle
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Why is flavour 
interesting?

• Electroweak (EW) hierarchy problem

• requires NP ≤ 1 TeV

• if generic flavour structure ⇒ FCNCs

• flavour probes NP scales ≤105 TeV

• SM flavour parameters

• hierarchical: mu << mc << mt

• most are small: mf≠t << mW,Z

NP flavour puzzle

SM flavour puzzle
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Flavour in SM

i) Symmetries & their spontaneous breaking

ii) Representations of fermions & scalars

L =?
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Flavour in SM

i) Symmetries & their spontaneous breaking

ii) Representations of fermions & scalars

i)  

ii)

L =?

GSM
local = SU(3)c × SU(2)L × U(1)Y

GSM
local → SU(3)c × U(1)EM

Qi
L ∼ (3, 2)1/6 , U i

R ∼ (3, 1)2/3 ,

Di
R ∼ (3, 1)−1/3 , Li

L ∼ (1, 2)−1/2 ,

φ ∼ (1, 2)1/2 , �φ0� ≡ v√
2
� 174GeV ,



Flavour in SM

• simple and symmetric (g, g’, gs)

• EWSB, 2 params

• SM flavour dynamics, flavour parameters

(where i = 1, 2, 3) and scalar

φ ∼ (1, 2)1/2 , �φ0� ≡ v√
2
� 174GeV , (2)

representations. Above, the first (second) entries in the brackets denote the SU(3)c (SU(2)L) represen-
tations, while the U(1)Y charges are given in the subscripts. Also, �. . .� denotes a vacuum condensate
value. LSM can be conveniently split into three parts

LSM = LSM
kinetic + LSM

EWSB + LSM
Yukawa . (3)

The sum of the gauge-kinetic terms LSM
kinetic is simple and symmetric. It is completely specified by the

SM local symmetry and its matter representations. The three physical parameters associated with this
part of the theory are conventionally chosen to be the three gauge couplings (gs, g and g�) . The EW
symmetry breaking (EWSB) part LSM

EWSB contains two additional parameters. They can be chosen to
correspond to v and the physical Higgs boson mass mh. Finally, all flavour dynamics is contained in
LSM
Yukawa which also involves all the SM flavour parameters.

2.1 Interaction basis
It is convenient to start our discussion in a flavour basis where all the gauge-kinetic terms are diagonal.
This can always be achieved by applying suitable unitary rotations on the matter fields. In this basis

LSM
kinetic = (Dµφ)

†(Dµφ) +
�

i,j=1,2,3

�

ψ=QL,...,ER

ψ̄ii /Dδijψj

− 1

4

�

a=1,...,8

Ga
µνG

a,µν − 1

4

�

a=1,2,3

W a
µνW

a,µν − 1

4
BµνB

µν , (4)

where G, W, and B denote the field strengths of the SU(3)c, SU(2)L and U(1)Y gauge interactions,
respectively. The covariant derivatives Dµ are defined as Dµ = ∂µ + igsGa

µL
a + igW b

µT
b + ig�BµY ,

where La, T a and Y denote the SU(3)c, SU(2)L generators and the U(1)Y charges, respectively. Note
that in this basis, LSM

kinetic is manifestly flavour universal and CP conserving. Similarly

LSM
EWSB = µ2φ†φ− λ(φ†φ)2 , (5)

is also CP and flavour conserving.2 Thus both LSM
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broken spontanouesly by �φ0� . On the other hand U(1)PQ can be defined such that only the Higgs and
Di

R, E
i
R are charged under it and with opposite charges. It is thus broken only by the up-quark Yukawas.

Finally U(1)E refers to flavour universal phase rotations of Ei
R alone and is thus broken by the charged

lepton Yukawas.
2It is also symmetric under SO(4) rotations of the four real scalar fields φ1,2,3,4 contained in φ = (φ1 + iφ2,φ3 + iφ4)
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This approximate symmetry of the SM is sometimes called the custodial symmetry.

3

13



Interaction basis

•

(where i = 1, 2, 3) and scalar

φ ∼ (1, 2)1/2 , �φ0� ≡ v√
2
� 174GeV , (2)

representations. Above, the first (second) entries in the brackets denote the SU(3)c (SU(2)L) represen-
tations, while the U(1)Y charges are given in the subscripts. Also, �. . .� denotes a vacuum condensate
value. LSM can be conveniently split into three parts

LSM = LSM
kinetic + LSM

EWSB + LSM
Yukawa . (3)

The sum of the gauge-kinetic terms LSM
kinetic is simple and symmetric. It is completely specified by the

SM local symmetry and its matter representations. The three physical parameters associated with this
part of the theory are conventionally chosen to be the three gauge couplings (gs, g and g�) . The EW
symmetry breaking (EWSB) part LSM

EWSB contains two additional parameters. They can be chosen to
correspond to v and the physical Higgs boson mass mh. Finally, all flavour dynamics is contained in
LSM
Yukawa which also involves all the SM flavour parameters.

2.1 Interaction basis
It is convenient to start our discussion in a flavour basis where all the gauge-kinetic terms are diagonal.
This can always be achieved by applying suitable unitary rotations on the matter fields. In this basis

LSM
kinetic = (Dµφ)

†(Dµφ) +
�

i,j=1,2,3

�

ψ=QL,...,ER

ψ̄ii /Dδijψj

− 1

4

�

a=1,...,8

Ga
µνG

a,µν − 1

4

�

a=1,2,3

W a
µνW

a,µν − 1

4
BµνB

µν , (4)

where G, W, and B denote the field strengths of the SU(3)c, SU(2)L and U(1)Y gauge interactions,
respectively. The covariant derivatives Dµ are defined as Dµ = ∂µ + igsGa

µL
a + igW b

µT
b + ig�BµY ,

where La, T a and Y denote the SU(3)c, SU(2)L generators and the U(1)Y charges, respectively. Note
that in this basis, LSM

kinetic is manifestly flavour universal and CP conserving. Similarly

LSM
EWSB = µ2φ†φ− λ(φ†φ)2 , (5)

is also CP and flavour conserving.2 Thus both LSM
kinetic and trivially LSM

EWSB have a large flavour symme-
try corresponding to the independent unitary rotations in the flavour space of the five fermionic fields

GSM
flavour = U(3)5 = SU(3)3q × SU(3)2� × U(1)5 ,

SU(3)3q = SU(3)Q × SU(3)U × SU(3)D ,

SU(3)2� = SU(3)L × SU(3)E ,

U(1)5 = U(1)B × U(1)L × U(1)Y × U(1)PQ × U(1)E . (6)

Among the U(1) factors, U(1)B,L are the baryon and lepton number, respectively. U(1)Y is gauged and
broken spontanouesly by �φ0� . On the other hand U(1)PQ can be defined such that only the Higgs and
Di

R, E
i
R are charged under it and with opposite charges. It is thus broken only by the up-quark Yukawas.

Finally U(1)E refers to flavour universal phase rotations of Ei
R alone and is thus broken by the charged

lepton Yukawas.
2It is also symmetric under SO(4) rotations of the four real scalar fields φ1,2,3,4 contained in φ = (φ1 + iφ2,φ3 + iφ4)

T .
This approximate symmetry of the SM is sometimes called the custodial symmetry.

3

(where i = 1, 2, 3) and scalar

φ ∼ (1, 2)1/2 , �φ0� ≡ v√
2
� 174GeV , (2)

representations. Above, the first (second) entries in the brackets denote the SU(3)c (SU(2)L) represen-
tations, while the U(1)Y charges are given in the subscripts. Also, �. . .� denotes a vacuum condensate
value. LSM can be conveniently split into three parts

LSM = LSM
kinetic + LSM

EWSB + LSM
Yukawa . (3)

The sum of the gauge-kinetic terms LSM
kinetic is simple and symmetric. It is completely specified by the

SM local symmetry and its matter representations. The three physical parameters associated with this
part of the theory are conventionally chosen to be the three gauge couplings (gs, g and g�) . The EW
symmetry breaking (EWSB) part LSM

EWSB contains two additional parameters. They can be chosen to
correspond to v and the physical Higgs boson mass mh. Finally, all flavour dynamics is contained in
LSM
Yukawa which also involves all the SM flavour parameters.

2.1 Interaction basis
It is convenient to start our discussion in a flavour basis where all the gauge-kinetic terms are diagonal.
This can always be achieved by applying suitable unitary rotations on the matter fields. In this basis

LSM
kinetic = (Dµφ)

†(Dµφ) +
�

i,j=1,2,3

�

ψ=QL,...,ER

ψ̄ii /Dδijψj

− 1

4

�

a=1,...,8

Ga
µνG

a,µν − 1

4

�

a=1,2,3

W a
µνW

a,µν − 1

4
BµνB

µν , (4)

where G, W, and B denote the field strengths of the SU(3)c, SU(2)L and U(1)Y gauge interactions,
respectively. The covariant derivatives Dµ are defined as Dµ = ∂µ + igsGa

µL
a + igW b

µT
b + ig�BµY ,

where La, T a and Y denote the SU(3)c, SU(2)L generators and the U(1)Y charges, respectively. Note
that in this basis, LSM

kinetic is manifestly flavour universal and CP conserving. Similarly

LSM
EWSB = µ2φ†φ− λ(φ†φ)2 , (5)

is also CP and flavour conserving.2 Thus both LSM
kinetic and trivially LSM

EWSB have a large flavour symme-
try corresponding to the independent unitary rotations in the flavour space of the five fermionic fields

GSM
flavour = U(3)5 = SU(3)3q × SU(3)2� × U(1)5 ,

SU(3)3q = SU(3)Q × SU(3)U × SU(3)D ,

SU(3)2� = SU(3)L × SU(3)E ,

U(1)5 = U(1)B × U(1)L × U(1)Y × U(1)PQ × U(1)E . (6)

Among the U(1) factors, U(1)B,L are the baryon and lepton number, respectively. U(1)Y is gauged and
broken spontanouesly by �φ0� . On the other hand U(1)PQ can be defined such that only the Higgs and
Di

R, E
i
R are charged under it and with opposite charges. It is thus broken only by the up-quark Yukawas.

Finally U(1)E refers to flavour universal phase rotations of Ei
R alone and is thus broken by the charged

lepton Yukawas.
2It is also symmetric under SO(4) rotations of the four real scalar fields φ1,2,3,4 contained in φ = (φ1 + iφ2,φ3 + iφ4)

T .
This approximate symmetry of the SM is sometimes called the custodial symmetry.

3

(where i = 1, 2, 3) and scalar

φ ∼ (1, 2)1/2 , �φ0� ≡ v√
2
� 174GeV , (2)

representations. Above, the first (second) entries in the brackets denote the SU(3)c (SU(2)L) represen-
tations, while the U(1)Y charges are given in the subscripts. Also, �. . .� denotes a vacuum condensate
value. LSM can be conveniently split into three parts

LSM = LSM
kinetic + LSM

EWSB + LSM
Yukawa . (3)

The sum of the gauge-kinetic terms LSM
kinetic is simple and symmetric. It is completely specified by the

SM local symmetry and its matter representations. The three physical parameters associated with this
part of the theory are conventionally chosen to be the three gauge couplings (gs, g and g�) . The EW
symmetry breaking (EWSB) part LSM

EWSB contains two additional parameters. They can be chosen to
correspond to v and the physical Higgs boson mass mh. Finally, all flavour dynamics is contained in
LSM
Yukawa which also involves all the SM flavour parameters.

2.1 Interaction basis
It is convenient to start our discussion in a flavour basis where all the gauge-kinetic terms are diagonal.
This can always be achieved by applying suitable unitary rotations on the matter fields. In this basis

LSM
kinetic = (Dµφ)

†(Dµφ) +
�

i,j=1,2,3

�

ψ=QL,...,ER

ψ̄ii /Dδijψj

− 1

4

�

a=1,...,8

Ga
µνG

a,µν − 1

4

�

a=1,2,3

W a
µνW

a,µν − 1

4
BµνB

µν , (4)

where G, W, and B denote the field strengths of the SU(3)c, SU(2)L and U(1)Y gauge interactions,
respectively. The covariant derivatives Dµ are defined as Dµ = ∂µ + igsGa

µL
a + igW b

µT
b + ig�BµY ,

where La, T a and Y denote the SU(3)c, SU(2)L generators and the U(1)Y charges, respectively. Note
that in this basis, LSM

kinetic is manifestly flavour universal and CP conserving. Similarly

LSM
EWSB = µ2φ†φ− λ(φ†φ)2 , (5)

is also CP and flavour conserving.2 Thus both LSM
kinetic and trivially LSM

EWSB have a large flavour symme-
try corresponding to the independent unitary rotations in the flavour space of the five fermionic fields

GSM
flavour = U(3)5 = SU(3)3q × SU(3)2� × U(1)5 ,

SU(3)3q = SU(3)Q × SU(3)U × SU(3)D ,

SU(3)2� = SU(3)L × SU(3)E ,

U(1)5 = U(1)B × U(1)L × U(1)Y × U(1)PQ × U(1)E . (6)

Among the U(1) factors, U(1)B,L are the baryon and lepton number, respectively. U(1)Y is gauged and
broken spontanouesly by �φ0� . On the other hand U(1)PQ can be defined such that only the Higgs and
Di

R, E
i
R are charged under it and with opposite charges. It is thus broken only by the up-quark Yukawas.

Finally U(1)E refers to flavour universal phase rotations of Ei
R alone and is thus broken by the charged

lepton Yukawas.
2It is also symmetric under SO(4) rotations of the four real scalar fields φ1,2,3,4 contained in φ = (φ1 + iφ2,φ3 + iφ4)

T .
This approximate symmetry of the SM is sometimes called the custodial symmetry.

3

14



Interaction basis

• Exercise: compute embedding of U(1)5 into U(3)5 
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Interaction basis

• in general flavour dependent (unless YF ∝ Iij) & CPV

The Yukawa Lagrangian of the SM

−L
SM
Yukawa = Y ij

d Q̄i
LφD

j
R + Y ij

u Q̄i
Lφ̃U

j
R + Y ij

e L̄iφEj
R + h.c. , (7)

where φ̃ = iσ2φ, is in general flavour dependent (if Yf /∝ I) and CP violating. The pattern of explicit

GSM
flavour breaking by Yf �= 0 is as follows:

– U(1)E is broken by Ye �= 0 ,

– U(1)PQ is broken by Yu · Yd �= 0 and Yu · Ye �= 0 ,

– SU(3)Q × SU(3)U → U(1)u × U(1)c × U(1)t is due to Yu /∝ I ,

– SU(3)Q × SU(3)D → U(1)d × U(1)s × U(1)b is due to Yd /∝ I ,

– the remaining U(1) factors in the quark sector are broken by the fact that [Yu, Yd] �= 0 down to

U(1)B ,

– finally, SU(3)L×SU(3)E → U(1)e×U(1)µ×U(1)τ due to Ye /∝ I . The remaining factor group

also contains the global U(1)L .

Thus, the global symmetry of the SM in presence of the Yukawas is GSM
global(Yf �= 0) = U(1)B×U(1)e×

U(1)µ×U(1)τ . In this language, flavour physics refers to interactions which break the SU(3)3q×SU(3)2�
and are thus flavour violating.

Commonly, a spurion analysis is useful for parameter counting, identification of suppression fac-

tors, and for the idea of minimal flavour violation (MFV) [2]. In this approach we promote the SM

Yukawas to non-dynamical fields with well-defined transformation properties under GSM
flavour

Yu ∼ (3, 3̄, 1)SU(3)3q
, Yd ∼ (3, 1, 3̄)SU(3)3q

, Ye ∼ (3, 3̄)SU(3)2�
. (8)

In the following we will focus on the quark sector.

2.2 Counting the standard model quark flavour parameters
The flavour symmetry breaking pattern described above is useful in counting the number of physical

flavour parameters in the theory. In particular:

1. Consider a theory with a global symmetry group Gf with Ntotal generators.

2. Add interactions with Ngeneral parameters, breaking Gf → Hf with Ntotal −Nbroken generators.

3. Then the Nbroken generators can be used to rotate away Nbroken number of symmetry breaking

parameters.

4. The number of remaining physical parameters is thus Nphysical = Ngeneral −Nbroken .

We can apply this recipe to the SM breaking of U(3)Q×U(3)U×U(3)D → U(1)B . In this case the three

U(3) group rotations are described by unitary 3× 3 matrices containing three real angles and six phases

each. Thus schematically Ntotal = 3×(3+6i) . Consequently Nbroken = Ntotal−1i = 9+17i . The two

quark Yukawas are general 3×3 matrices containing nine complex parameters (Ngeneral = 2×(9+9i)).
Finally, the number of physical parameters is Nphysical = Ngeneral −Nbroken = 9+ 1i, representing six

quark masses, three mixing angles and a single CP violating phase.

2.3 Discrete symmetries of the standard model
Any local Lorentz invariant quantum field theory conserves CPT [3]. It follows that in these theories

(including the SM) T violation equals CP violation. There is no reason, a priori, for C, P and CP to

be related to flavour physics. However, in the SM (and apparently in Nature) this is so. In the SM

4
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– finally, SU(3)L×SU(3)E → U(1)e×U(1)µ×U(1)τ due to Ye /∝ I . The remaining factor group

also contains the global U(1)L .

Thus, the global symmetry of the SM in presence of the Yukawas is GSM
global(Yf �= 0) = U(1)B×U(1)e×

U(1)µ×U(1)τ . In this language, flavour physics refers to interactions which break the SU(3)3q×SU(3)2�
and are thus flavour violating.

Commonly, a spurion analysis is useful for parameter counting, identification of suppression fac-

tors, and for the idea of minimal flavour violation (MFV) [2]. In this approach we promote the SM

Yukawas to non-dynamical fields with well-defined transformation properties under GSM
flavour

Yu ∼ (3, 3̄, 1)SU(3)3q
, Yd ∼ (3, 1, 3̄)SU(3)3q

, Ye ∼ (3, 3̄)SU(3)2�
. (8)

In the following we will focus on the quark sector.

2.2 Counting the standard model quark flavour parameters
The flavour symmetry breaking pattern described above is useful in counting the number of physical

flavour parameters in the theory. In particular:

1. Consider a theory with a global symmetry group Gf with Ntotal generators.

2. Add interactions with Ngeneral parameters, breaking Gf → Hf with Ntotal −Nbroken generators.

3. Then the Nbroken generators can be used to rotate away Nbroken number of symmetry breaking

parameters.

4. The number of remaining physical parameters is thus Nphysical = Ngeneral −Nbroken .

We can apply this recipe to the SM breaking of U(3)Q×U(3)U×U(3)D → U(1)B . In this case the three

U(3) group rotations are described by unitary 3× 3 matrices containing three real angles and six phases

each. Thus schematically Ntotal = 3×(3+6i) . Consequently Nbroken = Ntotal−1i = 9+17i . The two

quark Yukawas are general 3×3 matrices containing nine complex parameters (Ngeneral = 2×(9+9i)).
Finally, the number of physical parameters is Nphysical = Ngeneral −Nbroken = 9+ 1i, representing six

quark masses, three mixing angles and a single CP violating phase.

2.3 Discrete symmetries of the standard model
Any local Lorentz invariant quantum field theory conserves CPT [3]. It follows that in these theories

(including the SM) T violation equals CP violation. There is no reason, a priori, for C, P and CP to

be related to flavour physics. However, in the SM (and apparently in Nature) this is so. In the SM
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Yukawas to non-dynamical fields with well-defined transformation properties under GSM
flavour
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, Yd ∼ (3, 1, 3̄)SU(3)3q
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. (8)

In the following we will focus on the quark sector.

2.2 Counting the standard model quark flavour parameters
The flavour symmetry breaking pattern described above is useful in counting the number of physical

flavour parameters in the theory. In particular:

1. Consider a theory with a global symmetry group Gf with Ntotal generators.

2. Add interactions with Ngeneral parameters, breaking Gf → Hf with Ntotal −Nbroken generators.

3. Then the Nbroken generators can be used to rotate away Nbroken number of symmetry breaking
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We can apply this recipe to the SM breaking of U(3)Q×U(3)U×U(3)D → U(1)B . In this case the three
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Finally, the number of physical parameters is Nphysical = Ngeneral −Nbroken = 9+ 1i, representing six

quark masses, three mixing angles and a single CP violating phase.

2.3 Discrete symmetries of the standard model
Any local Lorentz invariant quantum field theory conserves CPT [3]. It follows that in these theories

(including the SM) T violation equals CP violation. There is no reason, a priori, for C, P and CP to

be related to flavour physics. However, in the SM (and apparently in Nature) this is so. In the SM
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. (8)
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2.3 Discrete symmetries of the standard model
Any local Lorentz invariant quantum field theory conserves CPT [3]. It follows that in these theories

(including the SM) T violation equals CP violation. There is no reason, a priori, for C, P and CP to

be related to flavour physics. However, in the SM (and apparently in Nature) this is so. In the SM
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– U(1)E is broken by Ye �= 0 ,

– U(1)PQ is broken by Yu · Yd �= 0 and Yu · Ye �= 0 ,

– SU(3)Q × SU(3)U → U(1)u × U(1)c × U(1)t is due to Yu /∝ I ,

– SU(3)Q × SU(3)D → U(1)d × U(1)s × U(1)b is due to Yd /∝ I ,

– the remaining U(1) factors in the quark sector are broken by the fact that [Yu, Yd] �= 0 down to

U(1)B ,

– finally, SU(3)L×SU(3)E → U(1)e×U(1)µ×U(1)τ due to Ye /∝ I . The remaining factor group

also contains the global U(1)L .

Thus, the global symmetry of the SM in presence of the Yukawas is GSM
global(Yf �= 0) = U(1)B×U(1)e×

U(1)µ×U(1)τ . In this language, flavour physics refers to interactions which break the SU(3)3q×SU(3)2�
and are thus flavour violating.

Commonly, a spurion analysis is useful for parameter counting, identification of suppression fac-

tors, and for the idea of minimal flavour violation (MFV) [2]. In this approach we promote the SM

Yukawas to non-dynamical fields with well-defined transformation properties under GSM
flavour

Yu ∼ (3, 3̄, 1)SU(3)3q
, Yd ∼ (3, 1, 3̄)SU(3)3q

, Ye ∼ (3, 3̄)SU(3)2�
. (8)

In the following we will focus on the quark sector.

2.2 Counting the standard model quark flavour parameters
The flavour symmetry breaking pattern described above is useful in counting the number of physical

flavour parameters in the theory. In particular:

1. Consider a theory with a global symmetry group Gf with Ntotal generators.

2. Add interactions with Ngeneral parameters, breaking Gf → Hf with Ntotal −Nbroken generators.

3. Then the Nbroken generators can be used to rotate away Nbroken number of symmetry breaking

parameters.

4. The number of remaining physical parameters is thus Nphysical = Ngeneral −Nbroken .

We can apply this recipe to the SM breaking of U(3)Q×U(3)U×U(3)D → U(1)B . In this case the three

U(3) group rotations are described by unitary 3× 3 matrices containing three real angles and six phases

each. Thus schematically Ntotal = 3×(3+6i) . Consequently Nbroken = Ntotal−1i = 9+17i . The two

quark Yukawas are general 3×3 matrices containing nine complex parameters (Ngeneral = 2×(9+9i)).
Finally, the number of physical parameters is Nphysical = Ngeneral −Nbroken = 9+ 1i, representing six

quark masses, three mixing angles and a single CP violating phase.

2.3 Discrete symmetries of the standard model
Any local Lorentz invariant quantum field theory conserves CPT [3]. It follows that in these theories

(including the SM) T violation equals CP violation. There is no reason, a priori, for C, P and CP to

be related to flavour physics. However, in the SM (and apparently in Nature) this is so. In the SM

4

(YU & YD together break remaining U(1) factors to U(1)B)

GSM
global(Yf �= 0) = U(1)B × U(1)e × U(1)µ × U(1)τ
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Interaction basis
• Flavour physics: interactions which break               

are flavour violating

• Spurion analysis: 

• parameter counting

• identification of suppression factors

• idea of Minimal Flavour Violation 

The Yukawa Lagrangian of the SM
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Yu ∼ (3, 3̄, 1)SU(3)3q
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Counting SM quark 
flavour parameters

• global symmetry group Gf with Ntotal generators

• Gf → Hf with Ntotal − Nbroken generators

• Nphysical = Ngeneral − Nbroken 

•
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Counting SM quark 
flavour parameters

• global symmetry group Gf with Ntotal generators

• Gf → Hf with Ntotal − Nbroken generators

• Nphysical = Ngeneral − Nbroken 

• Within SM: U(3)Q×U(3)U×U(3)D →U(1)B

• Ntotal = 3×(3+6i),  Nbroken = Ntotal −1i = 9+17i, 
Ngeneral = 2×(9+9i) (YU, YD)                        
Nphysical = Ngeneral − Nbroken = 9 + 1i
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Discrete SM 
symmetries

• Any local Lorentz invariant QFT conserves CPT   
⇒ CP violation = T violation

• In SM: C & P violation maximally

• C & P change chirality

• Left- & right-handed fields in different gauge reps.

independent of SM parameters
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Discrete SM 
symmetries

• Any local Lorentz invariant QFT conserves CPT   
⇒ CP violation = T violation

• In SM: CP violation depends on parameters

• CP symmetric if 

• Jarlskog invariant

C and P are violated maximally: left-handed and right-handed fermion fields furnish different gauge

representations, while C and P both change the chirality of fermion fields. This maximal C and P

violation within the SM is also independent of the values of the SM parameters. On the other hand, the

CP violation within the SM does depend on the (Yukawa) parameters. The hermiticity of the Lagrangian

namely implies

Yijψ̄
i
Lφψ

j
R + Y ∗

ijψ̄
j
Rφ

†ψi
L

CP→ Yijψ̄
j
Rφ

†ψi
L + Y ∗

ijψ̄
i
Lφψ

j
R . (9)

Thus, the Yukawa Lagrangian will be CP symmetric if Yij = Y ∗
ij . More precisely, the requirement for

CP conservation can be written in terms of the Jarlskog invariant (J) [4] as

J ≡ Im[det(YdY
†
d , YuY

†
u )] = 0 . (10)

2.4 Mass basis
Upon replacing Re(φ0) → (v + h)/

√
2, Yukawa interactions give rise to fermion mass matrices

Mq =
v√
2
Yq . (11)

The mass bassis corresponds, by definition, to diagonal mass matrices. The unitary transformations

between any two bases which leave the gauge-kinetic terms invariant are

QL → VQQL , UR → VUUR , DR → VDDR . (12)

The Yukawa matrices on the other hand transform as

Yu → VQYuV
†
U , Yd → VQYdV

†
D . (13)

The diagonalization of MQ requires bi-unitary transformations

V u
QMuV

†
U = Mdiag

u =
v√
2
λu ; λu = diag(yu, yc, yt) ,

V d
QMdV

†
D = Mdiag

d =
v√
2
λd ; λd = diag(yd, ys, yb) . (14)

While VU,D are unphysical (they leave the gauge-kinetic terms invariant), V u,d
Q produce a physical effect.

In particular, since [Mu,Md] �= 0, a nontrivial mixing matrix V u
QV d†

Q ≡ VCKM �= 1 (due to Cabibbo,

Kobayashi and Maskawa [5]) modifies the charged weak gauge interactions. The resulting SM flavour

Lagrangian in the mass basis is thus

LF
m =

�
q̄i /Dqjδij

�
NC

+
g√
2
ūiL /W

+
V ij
CKMdjL + ūiLλ

ij
u u

j
R

�
v + h√

2

�
+ d̄iLλ

ij
d d

j
R

�
v + h√

2

�
+ h.c. ,

(15)

where (uiL, d
i
L) ≡ QT

L and NC refers to neutral currents (interactions with gluons, the photon and the Z

boson).

3 Testing the CKM description of flavour
Let us recap the main features of quark flavour conversion in the SM: (i) it only proceeds via the three

CKM angles; (ii) is mediated by charged current electroweak interactions; and (iii) these charged current

interactions involve exclusively left-handed fermion fields.
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CKM angles; (ii) is mediated by charged current electroweak interactions; and (iii) these charged current

interactions involve exclusively left-handed fermion fields.
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boson).

3 Testing the CKM description of flavour
Let us recap the main features of quark flavour conversion in the SM: (i) it only proceeds via the three

CKM angles; (ii) is mediated by charged current electroweak interactions; and (iii) these charged current

interactions involve exclusively left-handed fermion fields.

5
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Discrete SM 
symmetries

• Any local Lorentz invariant QFT conserves CPT   
⇒ CP violation = T violation

• Experimental discovery of CPV in kaon decays
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Mass basis
•                                ⇒   

• mass basis corresponds to diagonal Mq

•  

•  

•
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ūiL /W

+
V ij
CKMdjL + ūiLλ
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ij
u u

j
R

�
v + h√

2

�
+ d̄iLλ

ij
d d

j
R

�
v + h√

2

�
+ h.c. ,

(15)

where (uiL, d
i
L) ≡ QT

L and NC refers to neutral currents (interactions with gluons, the photon and the Z

boson).

3 Testing the CKM description of flavour
Let us recap the main features of quark flavour conversion in the SM: (i) it only proceeds via the three

CKM angles; (ii) is mediated by charged current electroweak interactions; and (iii) these charged current

interactions involve exclusively left-handed fermion fields.

5

QL → VQQL , UR → VUUR , DR → VDDR

Yu → VQYuV
†
U , Yd → VQYdV

†
D

C and P are violated maximally: left-handed and right-handed fermion fields furnish different gauge

representations, while C and P both change the chirality of fermion fields. This maximal C and P

violation within the SM is also independent of the values of the SM parameters. On the other hand, the

CP violation within the SM does depend on the (Yukawa) parameters. The hermiticity of the Lagrangian

namely implies

Yijψ̄
i
Lφψ

j
R + Y ∗

ijψ̄
j
Rφ

†ψi
L

CP→ Yijψ̄
j
Rφ

†ψi
L + Y ∗

ijψ̄
i
Lφψ

j
R . (9)

Thus, the Yukawa Lagrangian will be CP symmetric if Yij = Y ∗
ij . More precisely, the requirement for

CP conservation can be written in terms of the Jarlskog invariant (J) [4] as

J ≡ Im[det(YdY
†
d , YuY

†
u )] = 0 . (10)

2.4 Mass basis
Upon replacing Re(φ0) → (v + h)/

√
2, Yukawa interactions give rise to fermion mass matrices

Mq =
v√
2
Yq . (11)

The mass bassis corresponds, by definition, to diagonal mass matrices. The unitary transformations

between any two bases which leave the gauge-kinetic terms invariant are

QL → VQQL , UR → VUUR , DR → VDDR . (12)

The Yukawa matrices on the other hand transform as

Yu → VQYuV
†
U , Yd → VQYdV

†
D . (13)

The diagonalization of MQ requires bi-unitary transformations

V u
QMuV

†
U = Mdiag

u =
v√
2
λu ; λu = diag(yu, yc, yt) ,

V d
QMdV

†
D = Mdiag

d =
v√
2
λd ; λd = diag(yd, ys, yb) . (14)

While VU,D are unphysical (they leave the gauge-kinetic terms invariant), V u,d
Q produce a physical effect.

In particular, since [Mu,Md] �= 0, a nontrivial mixing matrix V u
QV d†

Q ≡ VCKM �= 1 (due to Cabibbo,

Kobayashi and Maskawa [5]) modifies the charged weak gauge interactions. The resulting SM flavour

Lagrangian in the mass basis is thus

LF
m =

�
q̄i /Dqjδij

�
NC

+
g√
2
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ij
u u

j
R

�
v + h√

2

�
+ d̄iLλ

ij
d d

j
R

�
v + h√

2

�
+ h.c. ,

(15)

where (uiL, d
i
L) ≡ QT

L and NC refers to neutral currents (interactions with gluons, the photon and the Z

boson).

3 Testing the CKM description of flavour
Let us recap the main features of quark flavour conversion in the SM: (i) it only proceeds via the three

CKM angles; (ii) is mediated by charged current electroweak interactions; and (iii) these charged current

interactions involve exclusively left-handed fermion fields.

5

C and P are violated maximally: left-handed and right-handed fermion fields furnish different gauge

representations, while C and P both change the chirality of fermion fields. This maximal C and P

violation within the SM is also independent of the values of the SM parameters. On the other hand, the

CP violation within the SM does depend on the (Yukawa) parameters. The hermiticity of the Lagrangian

namely implies

Yijψ̄
i
Lφψ

j
R + Y ∗

ijψ̄
j
Rφ

†ψi
L

CP→ Yijψ̄
j
Rφ

†ψi
L + Y ∗

ijψ̄
i
Lφψ

j
R . (9)

Thus, the Yukawa Lagrangian will be CP symmetric if Yij = Y ∗
ij . More precisely, the requirement for

CP conservation can be written in terms of the Jarlskog invariant (J) [4] as

J ≡ Im[det(YdY
†
d , YuY

†
u )] = 0 . (10)

2.4 Mass basis
Upon replacing Re(φ0) → (v + h)/

√
2, Yukawa interactions give rise to fermion mass matrices

Mq =
v√
2
Yq . (11)

The mass bassis corresponds, by definition, to diagonal mass matrices. The unitary transformations

between any two bases which leave the gauge-kinetic terms invariant are

QL → VQQL , UR → VUUR , DR → VDDR . (12)

The Yukawa matrices on the other hand transform as

Yu → VQYuV
†
U , Yd → VQYdV

†
D . (13)

The diagonalization of MQ requires bi-unitary transformations

V u
QMuV

†
U = Mdiag

u =
v√
2
λu ; λu = diag(yu, yc, yt) ,

V d
QMdV

†
D = Mdiag

d =
v√
2
λd ; λd = diag(yd, ys, yb) . (14)

While VU,D are unphysical (they leave the gauge-kinetic terms invariant), V u,d
Q produce a physical effect.

In particular, since [Mu,Md] �= 0, a nontrivial mixing matrix V u
QV d†

Q ≡ VCKM �= 1 (due to Cabibbo,

Kobayashi and Maskawa [5]) modifies the charged weak gauge interactions. The resulting SM flavour

Lagrangian in the mass basis is thus

LF
m =

�
q̄i /Dqjδij

�
NC

+
g√
2
ūiL /W

+
V ij
CKMdjL + ūiLλ
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ūiL /W

+
V ij
CKMdjL + ūiLλ
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ij
u u

j
R

�
v + h√

2

�
+ d̄iLλ

ij
d d

j
R

�
v + h√

2

�
+ h.c. ,

(15)

where (uiL, d
i
L) ≡ QT

L and NC refers to neutral currents (interactions with gluons, the photon and the Z

boson).
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Let us recap the main features of quark flavour conversion in the SM: (i) it only proceeds via the three

CKM angles; (ii) is mediated by charged current electroweak interactions; and (iii) these charged current

interactions involve exclusively left-handed fermion fields.
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NC = neutral currents (g,γ,Z)
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Mass basis

• Exercise: Show that NC’s are diagonal

• Exercise:Show that in absence of neutrino masses 
there is no mixing in the leptonic sector

31



Testing the CKM
• Flavour conversion in SM: 

• fully parametrized by 3 CKM angles

• mediated by charged current weak interactions

• these involve left-handed fields only
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where

λd = diag(yd, ys, yb) , λu = diag(yu, yc, yt) , yq =
mq

v
. (1.7)

Alternatively we could choose a gauge-invariant basis where Yd = V λd and Yu = λu. Since the flavor

symmetry do not allow the diagonalization from the left of both Yd and Yu, in both cases we are left with

a non-trivial unitary mixing matrix, V , which is nothing but the Cabibbo-Kobayashi-Maskawa (CKM)

mixing matrix [7, 8].

A generic unitary 3 × 3 [N × N ] complex unitary matrix depends on three [N(N − 1)/2] real

rotational angles and six [N(N + 1)/2] complex phases. Having chosen a quark basis where the Yd and

Yu have the form in (1.6) leaves us with a residual invariance under the flavor group which allows us to

eliminate five of the six complex phases in V (the relative phases of the various quark fields). As a result,

the physical parameters in V are four: three real angles and one complex CP-violating phase. The full

set of parameters controlling the breaking of the quark flavor symmetry in the SM is composed by the

six quark masses in λu,d and the four parameters of V .

For practical purposes it is often convenient to work in the mass eigenstate basis of both up- and

and down-type quarks. This can be achieved rotating independently the up and down components of the

quark doublet QL, or moving the CKM matrix from the Yukawa sector to the charged weak current in

LSM
gauge:

Jµ
W

��
quarks

= ūiLγ
µdiL

u,d mass−basis−→ ūiLVijγ
µdjL . (1.8)

However, it must be stressed that V originates from the Yukawa sector (in particular by the miss-

alignment of Yu and Yd in the SU(3)QL subgroup of Gq): in absence of Yukawa couplings we can

always set Vij = δij .

To summarize, quark flavor physics within the SM is characterized by a large flavor symmetry, Gq,

defined by the gauge sector, whose only breaking sources are the two Yukawa couplings Yd and Yu. The

CKM matrix arises by the miss-alignment of Yu and Yd in flavor space.

2 Some properties of the CKM matrix
The standard parametrization of the CKM matrix [9] in terms of three rotational angles (θij) and one

complex phase (δ) is

V =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb





=




c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −s23c12 − s12c23s13eiδ c23c13



 , (1.9)

where cij = cos θij and sij = sin θij (i, j = 1, 2, 3).

The off-diagonal elements of the CKM matrix show a strongly hierarchical pattern: |Vus| and

|Vcd| are close to 0.22, the elements |Vcb| and |Vts| are of order 4 × 10−2
whereas |Vub| and |Vtd| are of

order 5× 10−3
. The Wolfenstein parametrization, namely the expansion of the CKM matrix elements in

powers of the small parameter λ
.
= |Vus| ≈ 0.22, is a convenient way to exhibit this hierarchy in a more

explicit way [10]:

V =




1− λ2

2 λ Aλ3(�− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− �− iη) −Aλ2 1



+O(λ4) , (1.10)

where A, �, and η are free parameters of order 1. Because of the smallness of λ and the fact that for each

element the expansion parameter is actually λ2
, this is a rapidly converging expansion.
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a non-trivial unitary mixing matrix, V , which is nothing but the Cabibbo-Kobayashi-Maskawa (CKM)
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A generic unitary 3 × 3 [N × N ] complex unitary matrix depends on three [N(N − 1)/2] real

rotational angles and six [N(N + 1)/2] complex phases. Having chosen a quark basis where the Yd and

Yu have the form in (1.6) leaves us with a residual invariance under the flavor group which allows us to

eliminate five of the six complex phases in V (the relative phases of the various quark fields). As a result,

the physical parameters in V are four: three real angles and one complex CP-violating phase. The full

set of parameters controlling the breaking of the quark flavor symmetry in the SM is composed by the

six quark masses in λu,d and the four parameters of V .

For practical purposes it is often convenient to work in the mass eigenstate basis of both up- and

and down-type quarks. This can be achieved rotating independently the up and down components of the

quark doublet QL, or moving the CKM matrix from the Yukawa sector to the charged weak current in
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= ūiLγ
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However, it must be stressed that V originates from the Yukawa sector (in particular by the miss-

alignment of Yu and Yd in the SU(3)QL subgroup of Gq): in absence of Yukawa couplings we can

always set Vij = δij .

To summarize, quark flavor physics within the SM is characterized by a large flavor symmetry, Gq,

defined by the gauge sector, whose only breaking sources are the two Yukawa couplings Yd and Yu. The

CKM matrix arises by the miss-alignment of Yu and Yd in flavor space.

2 Some properties of the CKM matrix
The standard parametrization of the CKM matrix [9] in terms of three rotational angles (θij) and one

complex phase (δ) is

V =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


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=




c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −s23c12 − s12c23s13eiδ c23c13



 , (1.9)

where cij = cos θij and sij = sin θij (i, j = 1, 2, 3).

The off-diagonal elements of the CKM matrix show a strongly hierarchical pattern: |Vus| and

|Vcd| are close to 0.22, the elements |Vcb| and |Vts| are of order 4 × 10−2
whereas |Vub| and |Vtd| are of

order 5× 10−3
. The Wolfenstein parametrization, namely the expansion of the CKM matrix elements in

powers of the small parameter λ
.
= |Vus| ≈ 0.22, is a convenient way to exhibit this hierarchy in a more

explicit way [10]:

V =


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1− λ2

2 λ Aλ3(�− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− �− iη) −Aλ2 1
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where A, �, and η are free parameters of order 1. Because of the smallness of λ and the fact that for each

element the expansion parameter is actually λ2
, this is a rapidly converging expansion.
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where

λd = diag(yd, ys, yb) , λu = diag(yu, yc, yt) , yq =
mq

v
. (1.7)

Alternatively we could choose a gauge-invariant basis where Yd = V λd and Yu = λu. Since the flavor

symmetry do not allow the diagonalization from the left of both Yd and Yu, in both cases we are left with

a non-trivial unitary mixing matrix, V , which is nothing but the Cabibbo-Kobayashi-Maskawa (CKM)

mixing matrix [7, 8].

A generic unitary 3 × 3 [N × N ] complex unitary matrix depends on three [N(N − 1)/2] real

rotational angles and six [N(N + 1)/2] complex phases. Having chosen a quark basis where the Yd and

Yu have the form in (1.6) leaves us with a residual invariance under the flavor group which allows us to

eliminate five of the six complex phases in V (the relative phases of the various quark fields). As a result,

the physical parameters in V are four: three real angles and one complex CP-violating phase. The full

set of parameters controlling the breaking of the quark flavor symmetry in the SM is composed by the

six quark masses in λu,d and the four parameters of V .

For practical purposes it is often convenient to work in the mass eigenstate basis of both up- and

and down-type quarks. This can be achieved rotating independently the up and down components of the

quark doublet QL, or moving the CKM matrix from the Yukawa sector to the charged weak current in
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However, it must be stressed that V originates from the Yukawa sector (in particular by the miss-

alignment of Yu and Yd in the SU(3)QL subgroup of Gq): in absence of Yukawa couplings we can

always set Vij = δij .

To summarize, quark flavor physics within the SM is characterized by a large flavor symmetry, Gq,

defined by the gauge sector, whose only breaking sources are the two Yukawa couplings Yd and Yu. The

CKM matrix arises by the miss-alignment of Yu and Yd in flavor space.

2 Some properties of the CKM matrix
The standard parametrization of the CKM matrix [9] in terms of three rotational angles (θij) and one

complex phase (δ) is

V =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


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=




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−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −s23c12 − s12c23s13eiδ c23c13



 , (1.9)

where cij = cos θij and sij = sin θij (i, j = 1, 2, 3).

The off-diagonal elements of the CKM matrix show a strongly hierarchical pattern: |Vus| and

|Vcd| are close to 0.22, the elements |Vcb| and |Vts| are of order 4 × 10−2
whereas |Vub| and |Vtd| are of

order 5× 10−3
. The Wolfenstein parametrization, namely the expansion of the CKM matrix elements in

powers of the small parameter λ
.
= |Vus| ≈ 0.22, is a convenient way to exhibit this hierarchy in a more

explicit way [10]:
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where A, �, and η are free parameters of order 1. Because of the smallness of λ and the fact that for each

element the expansion parameter is actually λ2
, this is a rapidly converging expansion.
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For practical purposes it is often convenient to work in the mass eigenstate basis of both up- and

and down-type quarks. This can be achieved rotating independently the up and down components of the

quark doublet QL, or moving the CKM matrix from the Yukawa sector to the charged weak current in

LSM
gauge:

Jµ
W

��
quarks

= ūiLγ
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alignment of Yu and Yd in the SU(3)QL subgroup of Gq): in absence of Yukawa couplings we can
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To summarize, quark flavor physics within the SM is characterized by a large flavor symmetry, Gq,

defined by the gauge sector, whose only breaking sources are the two Yukawa couplings Yd and Yu. The

CKM matrix arises by the miss-alignment of Yu and Yd in flavor space.
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V =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb





=




c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −s23c12 − s12c23s13eiδ c23c13
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where cij = cos θij and sij = sin θij (i, j = 1, 2, 3).

The off-diagonal elements of the CKM matrix show a strongly hierarchical pattern: |Vus| and

|Vcd| are close to 0.22, the elements |Vcb| and |Vts| are of order 4 × 10−2
whereas |Vub| and |Vtd| are of
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powers of the small parameter λ
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Alternatively we could choose a gauge-invariant basis where Yd = V λd and Yu = λu. Since the flavor

symmetry do not allow the diagonalization from the left of both Yd and Yu, in both cases we are left with

a non-trivial unitary mixing matrix, V , which is nothing but the Cabibbo-Kobayashi-Maskawa (CKM)

mixing matrix [7, 8].

A generic unitary 3 × 3 [N × N ] complex unitary matrix depends on three [N(N − 1)/2] real
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Yu have the form in (1.6) leaves us with a residual invariance under the flavor group which allows us to

eliminate five of the six complex phases in V (the relative phases of the various quark fields). As a result,

the physical parameters in V are four: three real angles and one complex CP-violating phase. The full

set of parameters controlling the breaking of the quark flavor symmetry in the SM is composed by the

six quark masses in λu,d and the four parameters of V .

For practical purposes it is often convenient to work in the mass eigenstate basis of both up- and

and down-type quarks. This can be achieved rotating independently the up and down components of the
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However, it must be stressed that V originates from the Yukawa sector (in particular by the miss-

alignment of Yu and Yd in the SU(3)QL subgroup of Gq): in absence of Yukawa couplings we can

always set Vij = δij .

To summarize, quark flavor physics within the SM is characterized by a large flavor symmetry, Gq,

defined by the gauge sector, whose only breaking sources are the two Yukawa couplings Yd and Yu. The

CKM matrix arises by the miss-alignment of Yu and Yd in flavor space.

2 Some properties of the CKM matrix
The standard parametrization of the CKM matrix [9] in terms of three rotational angles (θij) and one

complex phase (δ) is
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where cij = cos θij and sij = sin θij (i, j = 1, 2, 3).

The off-diagonal elements of the CKM matrix show a strongly hierarchical pattern: |Vus| and

|Vcd| are close to 0.22, the elements |Vcb| and |Vts| are of order 4 × 10−2
whereas |Vub| and |Vtd| are of
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Alternatively we could choose a gauge-invariant basis where Yd = V λd and Yu = λu. Since the flavor

symmetry do not allow the diagonalization from the left of both Yd and Yu, in both cases we are left with

a non-trivial unitary mixing matrix, V , which is nothing but the Cabibbo-Kobayashi-Maskawa (CKM)
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rotational angles and six [N(N + 1)/2] complex phases. Having chosen a quark basis where the Yd and
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defined by the gauge sector, whose only breaking sources are the two Yukawa couplings Yd and Yu. The
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where cij = cos θij and sij = sin θij (i, j = 1, 2, 3).

The off-diagonal elements of the CKM matrix show a strongly hierarchical pattern: |Vus| and

|Vcd| are close to 0.22, the elements |Vcb| and |Vts| are of order 4 × 10−2
whereas |Vub| and |Vtd| are of

order 5× 10−3
. The Wolfenstein parametrization, namely the expansion of the CKM matrix elements in

powers of the small parameter λ
.
= |Vus| ≈ 0.22, is a convenient way to exhibit this hierarchy in a more
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V =




1− λ2

2 λ Aλ3(�− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− �− iη) −Aλ2 1



+O(λ4) , (1.10)
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The Wolfenstein parametrization is certainly more transparent than the standard parametrization.

However, if one requires sufficient level of accuracy, the terms of O(λ4) and O(λ5) have to be in-

cluded in phenomenological applications. This can be achieved in many different ways, according to the

convention adopted. The simplest (and nowadays commonly adopted) choice is obtained defining the

parameters {λ, A, �, η} in terms of the angles of the exact parametrization in Eq. (1.9) as follows:

λ
.
= s12 , Aλ2 .

= s23 , Aλ3(�− iη)
.
= s13e

−iδ . (1.11)

The change of variables {sij , δ} → {λ, A, �, η} in Eq. (1.9) leads to an exact parametrization of the

CKM matrix in terms of the Wolfenstein parameters. Expanding this expression up to O(λ5) leads to




1− 1

2λ
2 − 1

8λ
4 λ+O(λ7) Aλ3(�− iη)

−λ+ 1
2A

2λ5[1− 2(�+ iη)] 1− 1
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2
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The advantage of this generalization of the Wolfenstein parametrization is the absence of relevant cor-

rections to Vus, Vcd, Vub and Vcb, and a simple change in Vtd, which facilitate the implementation of

experimental constraints.

The unitarity of the CKM matrix implies the following relations between its elements:

I)
�

k=1...3

V ∗
ikVki = 1 , II)

�

k=1...3

V ∗
ikVkj �=i . (1.14)

These relations are a distinctive feature of the SM, where the CKM matrix is the only source of quark

flavor mixing. Their experimental verification is therefore a useful tool to set bounds, or possibly reveal,

new sources of flavor symmetry breaking. Among the relations of type II, the one obtained for i = 1
and j = 3, namely

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (1.15)

or
VudV

∗
ub

VcdV
∗
cb

+
VtdV

∗
tb

VcdV
∗
cb

+ 1 = 0 ↔ [�̄+ iη̄] + [(1− �̄)− iη̄] + 1 = 0 ,

is particularly interesting since it involves the sum of three terms all of the same order in λ and is usually

represented as a unitarity triangle in the complex plane, as shown in Fig. 1.1. It is worth to stress that

Eq. (1.15) is invariant under any phase transformation of the quark fields. Under such transformations

the triangle in Fig. 1.1 is rotated in the complex plane, but its angles and the sides remain unchanged.

Both angles and sides of the unitary triangle are indeed observable quantities which can be measured in

suitable experiments.

3 Present status of CKM fits
The values of |Vus| and |Vcb|, or λ and A in the parametrization (1.12), are determined with good accuracy

from K → π�ν and B → Xc�ν decays, respectively. According to the recent analysis of the UTfit

collaboration [13] their numerical values are

λ = 0.2259± 0.0006 , A = 0.824± 0.013 . (1.16)

Using these results, all the other constraints on the elements of the CKM matrix can be expressed as

constraints on �̄ and η̄ (or constraints on the CKM unitarity triangle in Fig. 1.1). The list of the most

sensitive observables used to determine �̄ and η̄ in the SM includes:
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where

λd = diag(yd, ys, yb) , λu = diag(yu, yc, yt) , yq =
mq

v
. (1.7)
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��
quarks

= ūiLγ
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
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
c12c13 s12c13 s13e−iδ
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 , (1.9)
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.
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V =




1− λ2

2 λ Aλ3(�− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− �− iη) −Aλ2 1



+O(λ4) , (1.10)

where A, �, and η are free parameters of order 1. Because of the smallness of λ and the fact that for each

element the expansion parameter is actually λ2
, this is a rapidly converging expansion.
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.
= s13e

−iδ . (1.11)
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• most interesting for i=1, j=3

• all three terms on LHS of same order in λ

�

k

V ∗
ikVjk = δij ,

�

k

V ∗
kiVkj = δij .

3.1 Parametrisation of the CKM matrix
We start by fixing the permutation of quark generations via mass ordering. The resulting CKM matrix
has the form

VCKM =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



 . (16)

Experimentally, VCKM exhbits a strong hierarchical pattern in off-diagonal elements [6]

|Vud| � |Vcs| � |Vtb| � 1 , |Vus| � |Vcd| � 0.22 ,

|Vcb| � |Vts| � 4× 10−2 , |Vub| � |Vtd| � 5× 10−3 . (17)

Such structure can be made explicit in the Wolfenstein expansion [7] in λ ≡ |Vus| � 0.22

VCKM =




1− λ2

2 λ Aλ3(ρ− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1



+O(λ4) . (18)

The four parameters in this parametrisation λ, A, ρ and η can be mapped exactly to the four physical
CKM parameters at any order in the λ expansion. All are of the order O(0.1− 1) and the CP violating
phase is encoded in the imaginary contribution proportional to η. Current experimental precision already
requires that in phenomenological applications, expansion at least to order O(λ4) should be taken into
account.

3.2 Unitarity of the CKM
Being a unitary matrix, one can derive unitarity conditions on the rows and columns of the CKM matrix,
in particular

�

k

V ∗
ikVjk = δij ,

�

k

V ∗
kiVkj = δij . (19)

Phenomenologically, the most interesting condition applies for i = 1 and j = 3

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 , (20)

simply because all the three terms on the left hand side are of the same order in λ. The equation defines
a triangle in the complex plane. Normalizing one of the sides to unity

VudV ∗
ub

VcdV ∗
cb

+
VtdV ∗

tb

VcdV ∗
cb

+ 1 = 0 , (21)

one can re-express it in terms of the Wolfenstein parameters (up to O(λ5))

[ρ̄+ iη̄] + [(1− ρ̄)− iη̄] + 1 = 0 , (22)

where ρ̄ = ρ(1 − λ2/2) + O(λ4) and η̄ = η(1 − λ2/2) + O(λ4) . The angles (denoted by α, β and
γ in Fig. 1) and sides of this triangle are invariant under phase transformations of quark fields and are
observable quantities.
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Unitarity of CKM
|Vus|(λ) from K → π�ν

|Vcb| (A) from B → Xc�ν

|Vub|2 ∝ ρ̄2 + η̄2 from B → Xu�ν

SψKS = sin 2β =
2η̄(1− ρ̄)

(1− ρ̄)2 + η̄2

eiγ =
ρ̄+ iη̄

ρ̄2 + η̄2

α = π − β − γ

∆md

∆ms
∝

����
Vtd

Vts

����
2

= λ2[(1− ρ̄)2 + η̄2]

�K

λ = 0.2253(9)

A = 0.822(12)
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Unitarity of CKM
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(B→D K rates)
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Unitarity of CKM
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Unitarity of CKM
• Very likely, CPV in flavour changing processes is 

dominated by CKM phase & Kobayashi-Maskawa 
mechanism of CPV is at work

• Reparametrisation invariant measure of CPV

•  

• Jarlskog determinant in SM

3.3 Self consistency of the CKM assumption
The CKM description of quark flavour conversion has been tested experimentally to great precision. In
particular

– |Vus| (λ) can be extracted from the semileptonic kaon decay K → π�ν with a precision of three
per-mille: λ = 0.2253(9) [6] .

– |Vcb| (A) can be determined from semileptonic B meson decay width measurements B → Xc�ν
to a precision of two percent: A = 0.822(12) [6, 8] .

– Then, |Vub| ∝
�
ρ̄2 + η̄2 can be extracted using charmless semileptonic decays of B mesons

B → Xu�ν .
– The time-dependent CP asymmetry in the decay B → ψKS (SψKS � sin 2β = 2η̄(1− ρ̄)/[(1−
ρ̄)2 + η̄2]) has been measured to great precision at the B factory experiments Belle and BaBar.

– The rates B → DK decays depend on the phase exp(iγ) = (ρ+ iη)/(ρ2 + η2) .
– Similarly, the rates of B → ππ, ρπ, ρρ depend on the angle α = π − β − γ .
– The ratio of neutral B and Bs meson mass diferences ∆md/∆ms ∝ |Vtd/Vts|

2 = λ2
�
(1− ρ̄)2 + η̄2

�

exhibits another non-trivial constraint in the (ρ̄, η̄) plane.
– Finally, CP violation in K → ππ decays (�K) depends in a complicate way on (ρ̄, η̄).

Combined, these measurements lead to an impressive agreement with the best fit ranges for ρ and η (see
also Fig. 1 and Ref. [9]) [8]

ρ = 0.130± 0.024 , η = 0.362± 0.014 . (23)

Note that |η| � |ρ| implies that the CKM phase defined in this way is O(1) . We can also conclude
that, very likely, CP violation in flavour changing processes is dominated by the CKM phase and that the
Kobayashi-Maskawa mechanism of CP violation is at work. Again one can define a reparametrisation
invariant measure of CP violation

Im[VijV
∗
kjVklV

∗
il ] = JKM

�
�ikm�jln , (24)

where JKM = λ6A2η = O(10−5) . Written in this form it is clear the CP violation in the SM is
suppressed by small mixing among the quark generations. The Jarlskog determinant in the SM can then
be written compactly as

J = JKM

�

i>j

m2
i −m2

j

v2
= O(10−22) . (25)

We see that compared to JKM , J is further suppressed by the large quark mass hierarchies.

4 Closer look at CP violation in neutral meson mixing and decays
For simplicity, we will focus on the neutral B meson sistem with the flavour eigenstates B0 ∼ b̄d and
B̄0 ∼ bd̄. Since in general, these are not CP eigenstates, we have

CP |B0� = eiξB |B̄0� ,
CP |B̄0� = e−iξB |B0� . (26)

Stating from an initial superposition state at t = 0 |ψ(0)� = a(0)|B0�+ b(0)|B̄0�, the time evolution of
such a system can in general be described as

|ψ(t)� = a(t)|B0�+ b(t)|B̄0�+ c1(t)|f1�+ c2(t)|f2�+ . . . , (27)
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CPV in neutral meson 
mixing and decays

• Focus on the neutral B meson system: flavour states

• Time evolution
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The time evolution of the neutral meson system can finally be parametrized in terms of states
|B0(t)� corresponding to |B0� at initial time t = 0, and |B̄0(t)� corresponding to |B̄0� at t = 0

|B0(t)� = g+(t)|B
0� − q

p
g−(t)|B̄

0� ,

|B̄0(t)� = g+(t)|B̄
0� − q

p
g−(t)|B

0� , (31)

where
g± ≡ 1

2

�
e−mH t−ΓH t/2

± e−mLt−ΓLt/2
�
. (32)

The decay of the two mass eigenstates to some some final state f after time t is described by the decay
amplitudes

�f |H|B0� ≡ Af ,

�f̄ |H|B0� ≡ Af̄ . (33)

The time-dependent decay rates are then given by

dΓ(|B0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Af |
2×

�
1 + |λf |

2

2
cosh

∆Γ t

2
+

1− |λf |
2

2
cos∆mt

+Reλf sinh
∆Γ t

2
− Imλf sin∆mt

�
,

dΓ(|B̄0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Āf |
2×

�
1 + |λ̄f |

2

2
cosh

∆Γ t

2
+

1− |λ̄f |
2

2
cos∆mt

+Reλ̄f sinh
∆Γ t

2
− Imλ̄f sin∆mt

�
, (34)

where N0 is the overall flux normalization,

λf ≡ q

p

Āf

Af
, λ̄f ≡ p

q

Af

Āf
=

1

λf
, (35)

and analogously for decays to f̄ . The various terms in the above tiem-evolution can be understood as
follwing

– Terms proportional to |Af |
2, |Āf |

2 describe a decay without net oscillation.
– Terms proportional to |λf |

2, |λ̄f |
2 describe a decays following net oscillations.

– Terms proportional to sin∆mt, sinh∆Γt/2 describe interference between the above two cases.
– CP violation in interference is possible only if Im(λf ) �= 0 .

Such effects can be observed in neutral B meson decays to CP eigenstates via a time-dependent CP
asymmetry

AfCP
(t) ≡

dΓ
dt

�
B̄0(0) → fCP (t)

�
− dΓ

dt

�
B0(0) → fCP (t)

�

dΓ
dt

�
B̄0(0) → fCP (t)

�
+ dΓ

dt [B
0(0) → fCP (t)]

. (36)

In the B (and also Bs) system experimentally ∆Γ � ∆m and so |q/p| � 1 . In this limit, the full
expression for Af greatly simplifies and can be written as

Af (t) = Sf sin(∆mt)− Cf cos(∆mt) , (37)

where

Sf ≡
2 Im(λf )

1 + |λf |
2
, Cf ≡

1− |λf |
2

1 + |λf |
2
. (38)
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The time evolution of the neutral meson system can finally be parametrized in terms of states
|B0(t)� corresponding to |B0� at initial time t = 0, and |B̄0(t)� corresponding to |B̄0� at t = 0

|B0(t)� = g+(t)|B
0� − q

p
g−(t)|B̄

0� ,

|B̄0(t)� = g+(t)|B̄
0� − q

p
g−(t)|B

0� , (31)

where
g± ≡ 1

2

�
e−mH t−ΓH t/2

± e−mLt−ΓLt/2
�
. (32)

The decay of the two mass eigenstates to some some final state f after time t is described by the decay
amplitudes

�f |H|B0� ≡ Af ,

�f̄ |H|B0� ≡ Af̄ . (33)

The time-dependent decay rates are then given by

dΓ(|B0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Af |
2×

�
1 + |λf |

2

2
cosh

∆Γ t

2
+

1− |λf |
2

2
cos∆mt

+Reλf sinh
∆Γ t

2
− Imλf sin∆mt

�
,

dΓ(|B̄0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Āf |
2×

�
1 + |λ̄f |

2

2
cosh

∆Γ t

2
+

1− |λ̄f |
2

2
cos∆mt

+Reλ̄f sinh
∆Γ t

2
− Imλ̄f sin∆mt

�
, (34)

where N0 is the overall flux normalization,

λf ≡ q

p

Āf

Af
, λ̄f ≡ p

q

Af

Āf
=

1

λf
, (35)

and analogously for decays to f̄ . The various terms in the above tiem-evolution can be understood as
follwing

– Terms proportional to |Af |
2, |Āf |

2 describe a decay without net oscillation.
– Terms proportional to |λf |

2, |λ̄f |
2 describe a decays following net oscillations.

– Terms proportional to sin∆mt, sinh∆Γt/2 describe interference between the above two cases.
– CP violation in interference is possible only if Im(λf ) �= 0 .

Such effects can be observed in neutral B meson decays to CP eigenstates via a time-dependent CP
asymmetry

AfCP
(t) ≡

dΓ
dt

�
B̄0(0) → fCP (t)

�
− dΓ

dt

�
B0(0) → fCP (t)

�

dΓ
dt

�
B̄0(0) → fCP (t)

�
+ dΓ

dt [B
0(0) → fCP (t)]

. (36)

In the B (and also Bs) system experimentally ∆Γ � ∆m and so |q/p| � 1 . In this limit, the full
expression for Af greatly simplifies and can be written as

Af (t) = Sf sin(∆mt)− Cf cos(∆mt) , (37)

where

Sf ≡
2 Im(λf )

1 + |λf |
2
, Cf ≡

1− |λf |
2

1 + |λf |
2
. (38)
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The time evolution of the neutral meson system can finally be parametrized in terms of states
|B0(t)� corresponding to |B0� at initial time t = 0, and |B̄0(t)� corresponding to |B̄0� at t = 0

|B0(t)� = g+(t)|B
0� − q

p
g−(t)|B̄

0� ,

|B̄0(t)� = g+(t)|B̄
0� − q

p
g−(t)|B

0� , (31)

where
g± ≡ 1

2

�
e−mH t−ΓH t/2

± e−mLt−ΓLt/2
�
. (32)

The decay of the two mass eigenstates to some some final state f after time t is described by the decay
amplitudes

�f |H|B0� ≡ Af ,

�f̄ |H|B0� ≡ Af̄ . (33)

The time-dependent decay rates are then given by

dΓ(|B0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Af |
2×

�
1 + |λf |

2

2
cosh

∆Γ t

2
+

1− |λf |
2

2
cos∆mt

+Reλf sinh
∆Γ t

2
− Imλf sin∆mt

�
,

dΓ(|B̄0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Āf |
2×

�
1 + |λ̄f |

2

2
cosh

∆Γ t

2
+

1− |λ̄f |
2

2
cos∆mt

+Reλ̄f sinh
∆Γ t

2
− Imλ̄f sin∆mt

�
, (34)

where N0 is the overall flux normalization,

λf ≡ q

p

Āf

Af
, λ̄f ≡ p

q

Af

Āf
=

1

λf
, (35)

and analogously for decays to f̄ . The various terms in the above tiem-evolution can be understood as
follwing

– Terms proportional to |Af |
2, |Āf |

2 describe a decay without net oscillation.
– Terms proportional to |λf |

2, |λ̄f |
2 describe a decays following net oscillations.

– Terms proportional to sin∆mt, sinh∆Γt/2 describe interference between the above two cases.
– CP violation in interference is possible only if Im(λf ) �= 0 .

Such effects can be observed in neutral B meson decays to CP eigenstates via a time-dependent CP
asymmetry

AfCP
(t) ≡

dΓ
dt

�
B̄0(0) → fCP (t)

�
− dΓ

dt

�
B0(0) → fCP (t)

�

dΓ
dt

�
B̄0(0) → fCP (t)

�
+ dΓ

dt [B
0(0) → fCP (t)]

. (36)

In the B (and also Bs) system experimentally ∆Γ � ∆m and so |q/p| � 1 . In this limit, the full
expression for Af greatly simplifies and can be written as

Af (t) = Sf sin(∆mt)− Cf cos(∆mt) , (37)

where

Sf ≡
2 Im(λf )

1 + |λf |
2
, Cf ≡

1− |λf |
2

1 + |λf |
2
. (38)
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The time evolution of the neutral meson system can finally be parametrized in terms of states
|B0(t)� corresponding to |B0� at initial time t = 0, and |B̄0(t)� corresponding to |B̄0� at t = 0

|B0(t)� = g+(t)|B
0� − q

p
g−(t)|B̄

0� ,

|B̄0(t)� = g+(t)|B̄
0� − q

p
g−(t)|B

0� , (31)

where
g± ≡ 1

2

�
e−mH t−ΓH t/2

± e−mLt−ΓLt/2
�
. (32)

The decay of the two mass eigenstates to some some final state f after time t is described by the decay
amplitudes

�f |H|B0� ≡ Af ,

�f̄ |H|B0� ≡ Af̄ . (33)

The time-dependent decay rates are then given by

dΓ(|B0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Af |
2×

�
1 + |λf |

2

2
cosh

∆Γ t

2
+

1− |λf |
2

2
cos∆mt

+Reλf sinh
∆Γ t

2
− Imλf sin∆mt

�
,

dΓ(|B̄0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Āf |
2×

�
1 + |λ̄f |

2

2
cosh

∆Γ t

2
+

1− |λ̄f |
2

2
cos∆mt

+Reλ̄f sinh
∆Γ t

2
− Imλ̄f sin∆mt

�
, (34)

where N0 is the overall flux normalization,

λf ≡ q

p

Āf

Af
, λ̄f ≡ p

q

Af

Āf
=

1

λf
, (35)

and analogously for decays to f̄ . The various terms in the above tiem-evolution can be understood as
follwing

– Terms proportional to |Af |
2, |Āf |

2 describe a decay without net oscillation.
– Terms proportional to |λf |

2, |λ̄f |
2 describe a decays following net oscillations.

– Terms proportional to sin∆mt, sinh∆Γt/2 describe interference between the above two cases.
– CP violation in interference is possible only if Im(λf ) �= 0 .

Such effects can be observed in neutral B meson decays to CP eigenstates via a time-dependent CP
asymmetry

AfCP
(t) ≡

dΓ
dt

�
B̄0(0) → fCP (t)

�
− dΓ

dt

�
B0(0) → fCP (t)

�

dΓ
dt

�
B̄0(0) → fCP (t)

�
+ dΓ

dt [B
0(0) → fCP (t)]

. (36)

In the B (and also Bs) system experimentally ∆Γ � ∆m and so |q/p| � 1 . In this limit, the full
expression for Af greatly simplifies and can be written as

Af (t) = Sf sin(∆mt)− Cf cos(∆mt) , (37)

where

Sf ≡
2 Im(λf )

1 + |λf |
2
, Cf ≡

1− |λf |
2

1 + |λf |
2
. (38)
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CPV in neutral meson 
mixing and decays

• Time evolution:

• Decay to final state after time t:

The time evolution of the neutral meson system can finally be parametrized in terms of states
|B0(t)� corresponding to |B0� at initial time t = 0, and |B̄0(t)� corresponding to |B̄0� at t = 0

|B0(t)� = g+(t)|B
0� − q

p
g−(t)|B̄

0� ,

|B̄0(t)� = g+(t)|B̄
0� − q

p
g−(t)|B

0� , (31)

where
g± ≡ 1

2

�
e−mH t−ΓH t/2

± e−mLt−ΓLt/2
�
. (32)

The decay of the two mass eigenstates to some some final state f after time t is described by the decay
amplitudes

�f |H|B0� ≡ Af ,

�f̄ |H|B0� ≡ Af̄ . (33)

The time-dependent decay rates are then given by

dΓ(|B0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Af |
2×

�
1 + |λf |

2

2
cosh

∆Γ t

2
+

1− |λf |
2

2
cos∆mt

+Reλf sinh
∆Γ t

2
− Imλf sin∆mt

�
,

dΓ(|B̄0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Āf |
2×

�
1 + |λ̄f |

2

2
cosh

∆Γ t

2
+

1− |λ̄f |
2

2
cos∆mt

+Reλ̄f sinh
∆Γ t

2
− Imλ̄f sin∆mt

�
, (34)

where N0 is the overall flux normalization,

λf ≡ q

p

Āf

Af
, λ̄f ≡ p

q

Af

Āf
=

1

λf
, (35)

and analogously for decays to f̄ . The various terms in the above tiem-evolution can be understood as
follwing

– Terms proportional to |Af |
2, |Āf |

2 describe a decay without net oscillation.
– Terms proportional to |λf |

2, |λ̄f |
2 describe a decays following net oscillations.

– Terms proportional to sin∆mt, sinh∆Γt/2 describe interference between the above two cases.
– CP violation in interference is possible only if Im(λf ) �= 0 .

Such effects can be observed in neutral B meson decays to CP eigenstates via a time-dependent CP
asymmetry

AfCP
(t) ≡

dΓ
dt

�
B̄0(0) → fCP (t)

�
− dΓ

dt

�
B0(0) → fCP (t)

�

dΓ
dt

�
B̄0(0) → fCP (t)

�
+ dΓ

dt [B
0(0) → fCP (t)]

. (36)

In the B (and also Bs) system experimentally ∆Γ � ∆m and so |q/p| � 1 . In this limit, the full
expression for Af greatly simplifies and can be written as

Af (t) = Sf sin(∆mt)− Cf cos(∆mt) , (37)

where

Sf ≡
2 Im(λf )

1 + |λf |
2
, Cf ≡

1− |λf |
2

1 + |λf |
2
. (38)
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The time evolution of the neutral meson system can finally be parametrized in terms of states
|B0(t)� corresponding to |B0� at initial time t = 0, and |B̄0(t)� corresponding to |B̄0� at t = 0

|B0(t)� = g+(t)|B
0� − q

p
g−(t)|B̄

0� ,

|B̄0(t)� = g+(t)|B̄
0� − q

p
g−(t)|B

0� , (31)

where
g± ≡ 1

2

�
e−mH t−ΓH t/2

± e−mLt−ΓLt/2
�
. (32)

The decay of the two mass eigenstates to some some final state f after time t is described by the decay
amplitudes

�f |H|B0� ≡ Af ,

�f̄ |H|B0� ≡ Af̄ . (33)

The time-dependent decay rates are then given by

dΓ(|B0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Af |
2×

�
1 + |λf |

2

2
cosh

∆Γ t

2
+

1− |λf |
2

2
cos∆mt

+Reλf sinh
∆Γ t

2
− Imλf sin∆mt

�
,

dΓ(|B̄0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Āf |
2×

�
1 + |λ̄f |

2

2
cosh

∆Γ t

2
+

1− |λ̄f |
2

2
cos∆mt

+Reλ̄f sinh
∆Γ t

2
− Imλ̄f sin∆mt

�
, (34)

where N0 is the overall flux normalization,

λf ≡ q

p

Āf

Af
, λ̄f ≡ p

q

Af

Āf
=

1

λf
, (35)

and analogously for decays to f̄ . The various terms in the above tiem-evolution can be understood as
follwing

– Terms proportional to |Af |
2, |Āf |

2 describe a decay without net oscillation.
– Terms proportional to |λf |

2, |λ̄f |
2 describe a decays following net oscillations.

– Terms proportional to sin∆mt, sinh∆Γt/2 describe interference between the above two cases.
– CP violation in interference is possible only if Im(λf ) �= 0 .

Such effects can be observed in neutral B meson decays to CP eigenstates via a time-dependent CP
asymmetry

AfCP
(t) ≡

dΓ
dt

�
B̄0(0) → fCP (t)

�
− dΓ

dt

�
B0(0) → fCP (t)

�

dΓ
dt

�
B̄0(0) → fCP (t)

�
+ dΓ

dt [B
0(0) → fCP (t)]

. (36)

In the B (and also Bs) system experimentally ∆Γ � ∆m and so |q/p| � 1 . In this limit, the full
expression for Af greatly simplifies and can be written as

Af (t) = Sf sin(∆mt)− Cf cos(∆mt) , (37)

where

Sf ≡
2 Im(λf )

1 + |λf |
2
, Cf ≡

1− |λf |
2

1 + |λf |
2
. (38)
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The time evolution of the neutral meson system can finally be parametrized in terms of states
|B0(t)� corresponding to |B0� at initial time t = 0, and |B̄0(t)� corresponding to |B̄0� at t = 0

|B0(t)� = g+(t)|B
0� − q

p
g−(t)|B̄

0� ,

|B̄0(t)� = g+(t)|B̄
0� − q

p
g−(t)|B

0� , (31)

where
g± ≡ 1

2

�
e−mH t−ΓH t/2

± e−mLt−ΓLt/2
�
. (32)

The decay of the two mass eigenstates to some some final state f after time t is described by the decay
amplitudes

�f |H|B0� ≡ Af ,

�f̄ |H|B0� ≡ Af̄ . (33)

The time-dependent decay rates are then given by

dΓ(|B0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Af |
2×

�
1 + |λf |

2

2
cosh

∆Γ t

2
+

1− |λf |
2

2
cos∆mt

+Reλf sinh
∆Γ t

2
− Imλf sin∆mt

�
,

dΓ(|B̄0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Āf |
2×

�
1 + |λ̄f |

2

2
cosh

∆Γ t

2
+

1− |λ̄f |
2

2
cos∆mt

+Reλ̄f sinh
∆Γ t

2
− Imλ̄f sin∆mt

�
, (34)

where N0 is the overall flux normalization,

λf ≡ q

p

Āf

Af
, λ̄f ≡ p

q

Af

Āf
=

1

λf
, (35)

and analogously for decays to f̄ . The various terms in the above tiem-evolution can be understood as
follwing

– Terms proportional to |Af |
2, |Āf |

2 describe a decay without net oscillation.
– Terms proportional to |λf |

2, |λ̄f |
2 describe a decays following net oscillations.

– Terms proportional to sin∆mt, sinh∆Γt/2 describe interference between the above two cases.
– CP violation in interference is possible only if Im(λf ) �= 0 .

Such effects can be observed in neutral B meson decays to CP eigenstates via a time-dependent CP
asymmetry

AfCP
(t) ≡

dΓ
dt

�
B̄0(0) → fCP (t)

�
− dΓ

dt

�
B0(0) → fCP (t)

�

dΓ
dt

�
B̄0(0) → fCP (t)

�
+ dΓ

dt [B
0(0) → fCP (t)]

. (36)

In the B (and also Bs) system experimentally ∆Γ � ∆m and so |q/p| � 1 . In this limit, the full
expression for Af greatly simplifies and can be written as

Af (t) = Sf sin(∆mt)− Cf cos(∆mt) , (37)

where

Sf ≡
2 Im(λf )

1 + |λf |
2
, Cf ≡

1− |λf |
2

1 + |λf |
2
. (38)
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CPV in neutral meson 
mixing and decays

• Decay to final state after time t:

• N0 - flux norm., 

The time evolution of the neutral meson system can finally be parametrized in terms of states
|B0(t)� corresponding to |B0� at initial time t = 0, and |B̄0(t)� corresponding to |B̄0� at t = 0

|B0(t)� = g+(t)|B
0� − q

p
g−(t)|B̄

0� ,

|B̄0(t)� = g+(t)|B̄
0� − q

p
g−(t)|B

0� , (31)

where
g± ≡ 1

2

�
e−mH t−ΓH t/2

± e−mLt−ΓLt/2
�
. (32)

The decay of the two mass eigenstates to some some final state f after time t is described by the decay
amplitudes

�f |H|B0� ≡ Af ,

�f̄ |H|B0� ≡ Af̄ . (33)

The time-dependent decay rates are then given by

dΓ(|B0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Af |
2×

�
1 + |λf |

2

2
cosh

∆Γ t

2
+

1− |λf |
2

2
cos∆mt

+Reλf sinh
∆Γ t

2
− Imλf sin∆mt

�
,

dΓ(|B̄0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Āf |
2×

�
1 + |λ̄f |

2

2
cosh

∆Γ t

2
+

1− |λ̄f |
2

2
cos∆mt

+Reλ̄f sinh
∆Γ t

2
− Imλ̄f sin∆mt

�
, (34)

where N0 is the overall flux normalization,

λf ≡ q

p

Āf

Af
, λ̄f ≡ p

q

Af

Āf
=

1

λf
, (35)

and analogously for decays to f̄ . The various terms in the above tiem-evolution can be understood as
follwing

– Terms proportional to |Af |
2, |Āf |

2 describe a decay without net oscillation.
– Terms proportional to |λf |

2, |λ̄f |
2 describe a decays following net oscillations.

– Terms proportional to sin∆mt, sinh∆Γt/2 describe interference between the above two cases.
– CP violation in interference is possible only if Im(λf ) �= 0 .

Such effects can be observed in neutral B meson decays to CP eigenstates via a time-dependent CP
asymmetry

AfCP
(t) ≡

dΓ
dt

�
B̄0(0) → fCP (t)

�
− dΓ

dt

�
B0(0) → fCP (t)

�

dΓ
dt

�
B̄0(0) → fCP (t)

�
+ dΓ

dt [B
0(0) → fCP (t)]

. (36)

In the B (and also Bs) system experimentally ∆Γ � ∆m and so |q/p| � 1 . In this limit, the full
expression for Af greatly simplifies and can be written as

Af (t) = Sf sin(∆mt)− Cf cos(∆mt) , (37)

where

Sf ≡
2 Im(λf )

1 + |λf |
2
, Cf ≡

1− |λf |
2

1 + |λf |
2
. (38)
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The time evolution of the neutral meson system can finally be parametrized in terms of states
|B0(t)� corresponding to |B0� at initial time t = 0, and |B̄0(t)� corresponding to |B̄0� at t = 0

|B0(t)� = g+(t)|B
0� − q

p
g−(t)|B̄

0� ,

|B̄0(t)� = g+(t)|B̄
0� − q

p
g−(t)|B

0� , (31)

where
g± ≡ 1

2

�
e−mH t−ΓH t/2

± e−mLt−ΓLt/2
�
. (32)

The decay of the two mass eigenstates to some some final state f after time t is described by the decay
amplitudes

�f |H|B0� ≡ Af ,

�f̄ |H|B0� ≡ Af̄ . (33)

The time-dependent decay rates are then given by

dΓ(|B0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Af |
2×

�
1 + |λf |

2

2
cosh

∆Γ t

2
+

1− |λf |
2

2
cos∆mt

+Reλf sinh
∆Γ t

2
− Imλf sin∆mt

�
,

dΓ(|B̄0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Āf |
2×

�
1 + |λ̄f |

2

2
cosh

∆Γ t

2
+

1− |λ̄f |
2

2
cos∆mt

+Reλ̄f sinh
∆Γ t

2
− Imλ̄f sin∆mt

�
, (34)

where N0 is the overall flux normalization,

λf ≡ q

p

Āf

Af
, λ̄f ≡ p

q

Af

Āf
=

1

λf
, (35)

and analogously for decays to f̄ . The various terms in the above tiem-evolution can be understood as
follwing

– Terms proportional to |Af |
2, |Āf |

2 describe a decay without net oscillation.
– Terms proportional to |λf |

2, |λ̄f |
2 describe a decays following net oscillations.

– Terms proportional to sin∆mt, sinh∆Γt/2 describe interference between the above two cases.
– CP violation in interference is possible only if Im(λf ) �= 0 .

Such effects can be observed in neutral B meson decays to CP eigenstates via a time-dependent CP
asymmetry

AfCP
(t) ≡

dΓ
dt

�
B̄0(0) → fCP (t)

�
− dΓ

dt

�
B0(0) → fCP (t)

�

dΓ
dt

�
B̄0(0) → fCP (t)

�
+ dΓ

dt [B
0(0) → fCP (t)]

. (36)

In the B (and also Bs) system experimentally ∆Γ � ∆m and so |q/p| � 1 . In this limit, the full
expression for Af greatly simplifies and can be written as

Af (t) = Sf sin(∆mt)− Cf cos(∆mt) , (37)

where

Sf ≡
2 Im(λf )

1 + |λf |
2
, Cf ≡

1− |λf |
2

1 + |λf |
2
. (38)
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The time evolution of the neutral meson system can finally be parametrized in terms of states
|B0(t)� corresponding to |B0� at initial time t = 0, and |B̄0(t)� corresponding to |B̄0� at t = 0

|B0(t)� = g+(t)|B
0� − q

p
g−(t)|B̄

0� ,

|B̄0(t)� = g+(t)|B̄
0� − q

p
g−(t)|B

0� , (31)

where
g± ≡ 1

2

�
e−mH t−ΓH t/2

± e−mLt−ΓLt/2
�
. (32)

The decay of the two mass eigenstates to some some final state f after time t is described by the decay
amplitudes

�f |H|B0� ≡ Af ,

�f̄ |H|B0� ≡ Af̄ . (33)

The time-dependent decay rates are then given by

dΓ(|B0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Af |
2×

�
1 + |λf |

2

2
cosh

∆Γ t

2
+

1− |λf |
2

2
cos∆mt

+Reλf sinh
∆Γ t

2
− Imλf sin∆mt

�
,

dΓ(|B̄0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Āf |
2×

�
1 + |λ̄f |

2

2
cosh

∆Γ t

2
+

1− |λ̄f |
2

2
cos∆mt

+Reλ̄f sinh
∆Γ t

2
− Imλ̄f sin∆mt

�
, (34)

where N0 is the overall flux normalization,

λf ≡ q

p

Āf

Af
, λ̄f ≡ p

q

Af

Āf
=

1

λf
, (35)

and analogously for decays to f̄ . The various terms in the above tiem-evolution can be understood as
follwing

– Terms proportional to |Af |
2, |Āf |

2 describe a decay without net oscillation.
– Terms proportional to |λf |

2, |λ̄f |
2 describe a decays following net oscillations.

– Terms proportional to sin∆mt, sinh∆Γt/2 describe interference between the above two cases.
– CP violation in interference is possible only if Im(λf ) �= 0 .

Such effects can be observed in neutral B meson decays to CP eigenstates via a time-dependent CP
asymmetry

AfCP
(t) ≡

dΓ
dt

�
B̄0(0) → fCP (t)

�
− dΓ

dt

�
B0(0) → fCP (t)

�

dΓ
dt

�
B̄0(0) → fCP (t)

�
+ dΓ

dt [B
0(0) → fCP (t)]

. (36)

In the B (and also Bs) system experimentally ∆Γ � ∆m and so |q/p| � 1 . In this limit, the full
expression for Af greatly simplifies and can be written as

Af (t) = Sf sin(∆mt)− Cf cos(∆mt) , (37)

where

Sf ≡
2 Im(λf )

1 + |λf |
2
, Cf ≡

1− |λf |
2

1 + |λf |
2
. (38)
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59



CPV in neutral meson 
mixing and decays

• Terms proportional to                 describe a decay 
without net oscillation.

• Terms proportional to                describe a decays 
following net oscillations. 

• Terms proportional to sin(∆mt), sinh(∆Γt/2) 
describe interference between the above two cases. 

• CP violation in interference is possible only if       
Im(λf) ≠ 0 .

The time evolution of the neutral meson system can finally be parametrized in terms of states
|B0(t)� corresponding to |B0� at initial time t = 0, and |B̄0(t)� corresponding to |B̄0� at t = 0

|B0(t)� = g+(t)|B
0� − q

p
g−(t)|B̄

0� ,

|B̄0(t)� = g+(t)|B̄
0� − q

p
g−(t)|B

0� , (31)

where
g± ≡ 1

2

�
e−mH t−ΓH t/2

± e−mLt−ΓLt/2
�
. (32)

The decay of the two mass eigenstates to some some final state f after time t is described by the decay
amplitudes

�f |H|B0� ≡ Af ,

�f̄ |H|B0� ≡ Af̄ . (33)

The time-dependent decay rates are then given by

dΓ(|B0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Af |
2×

�
1 + |λf |

2

2
cosh

∆Γ t

2
+

1− |λf |
2

2
cos∆mt

+Reλf sinh
∆Γ t

2
− Imλf sin∆mt

�
,

dΓ(|B̄0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Āf |
2×

�
1 + |λ̄f |

2

2
cosh

∆Γ t

2
+

1− |λ̄f |
2

2
cos∆mt

+Reλ̄f sinh
∆Γ t

2
− Imλ̄f sin∆mt

�
, (34)

where N0 is the overall flux normalization,

λf ≡ q

p

Āf

Af
, λ̄f ≡ p

q

Af

Āf
=

1

λf
, (35)

and analogously for decays to f̄ . The various terms in the above tiem-evolution can be understood as
follwing

– Terms proportional to |Af |
2, |Āf |

2 describe a decay without net oscillation.
– Terms proportional to |λf |

2, |λ̄f |
2 describe a decays following net oscillations.

– Terms proportional to sin∆mt, sinh∆Γt/2 describe interference between the above two cases.
– CP violation in interference is possible only if Im(λf ) �= 0 .

Such effects can be observed in neutral B meson decays to CP eigenstates via a time-dependent CP
asymmetry

AfCP
(t) ≡

dΓ
dt

�
B̄0(0) → fCP (t)

�
− dΓ

dt

�
B0(0) → fCP (t)

�

dΓ
dt

�
B̄0(0) → fCP (t)

�
+ dΓ

dt [B
0(0) → fCP (t)]

. (36)

In the B (and also Bs) system experimentally ∆Γ � ∆m and so |q/p| � 1 . In this limit, the full
expression for Af greatly simplifies and can be written as

Af (t) = Sf sin(∆mt)− Cf cos(∆mt) , (37)

where

Sf ≡
2 Im(λf )

1 + |λf |
2
, Cf ≡

1− |λf |
2

1 + |λf |
2
. (38)
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The time evolution of the neutral meson system can finally be parametrized in terms of states
|B0(t)� corresponding to |B0� at initial time t = 0, and |B̄0(t)� corresponding to |B̄0� at t = 0

|B0(t)� = g+(t)|B
0� − q

p
g−(t)|B̄

0� ,

|B̄0(t)� = g+(t)|B̄
0� − q

p
g−(t)|B

0� , (31)

where
g± ≡ 1

2

�
e−mH t−ΓH t/2

± e−mLt−ΓLt/2
�
. (32)

The decay of the two mass eigenstates to some some final state f after time t is described by the decay
amplitudes

�f |H|B0� ≡ Af ,

�f̄ |H|B0� ≡ Af̄ . (33)

The time-dependent decay rates are then given by

dΓ(|B0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Af |
2×

�
1 + |λf |

2

2
cosh

∆Γ t

2
+

1− |λf |
2

2
cos∆mt

+Reλf sinh
∆Γ t

2
− Imλf sin∆mt

�
,

dΓ(|B̄0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Āf |
2×

�
1 + |λ̄f |

2

2
cosh

∆Γ t

2
+

1− |λ̄f |
2

2
cos∆mt

+Reλ̄f sinh
∆Γ t

2
− Imλ̄f sin∆mt

�
, (34)

where N0 is the overall flux normalization,

λf ≡ q

p

Āf

Af
, λ̄f ≡ p

q

Af

Āf
=

1

λf
, (35)

and analogously for decays to f̄ . The various terms in the above tiem-evolution can be understood as
follwing

– Terms proportional to |Af |
2, |Āf |

2 describe a decay without net oscillation.
– Terms proportional to |λf |

2, |λ̄f |
2 describe a decays following net oscillations.

– Terms proportional to sin∆mt, sinh∆Γt/2 describe interference between the above two cases.
– CP violation in interference is possible only if Im(λf ) �= 0 .

Such effects can be observed in neutral B meson decays to CP eigenstates via a time-dependent CP
asymmetry

AfCP
(t) ≡

dΓ
dt

�
B̄0(0) → fCP (t)

�
− dΓ

dt

�
B0(0) → fCP (t)

�

dΓ
dt

�
B̄0(0) → fCP (t)

�
+ dΓ

dt [B
0(0) → fCP (t)]

. (36)

In the B (and also Bs) system experimentally ∆Γ � ∆m and so |q/p| � 1 . In this limit, the full
expression for Af greatly simplifies and can be written as

Af (t) = Sf sin(∆mt)− Cf cos(∆mt) , (37)

where

Sf ≡
2 Im(λf )

1 + |λf |
2
, Cf ≡

1− |λf |
2

1 + |λf |
2
. (38)
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CPV in neutral meson 
mixing and decays

• CP violation in neutral B meson decays to CP 
eigenstates

• In the B (& Bs) system experimentally ∆Γ<<∆m  
⇒ |q/p| ≈ 1: 

The time evolution of the neutral meson system can finally be parametrized in terms of states
|B0(t)� corresponding to |B0� at initial time t = 0, and |B̄0(t)� corresponding to |B̄0� at t = 0

|B0(t)� = g+(t)|B
0� − q

p
g−(t)|B̄

0� ,

|B̄0(t)� = g+(t)|B̄
0� − q

p
g−(t)|B

0� , (31)

where
g± ≡ 1

2

�
e−mH t−ΓH t/2

± e−mLt−ΓLt/2
�
. (32)

The decay of the two mass eigenstates to some some final state f after time t is described by the decay
amplitudes

�f |H|B0� ≡ Af ,

�f̄ |H|B0� ≡ Af̄ . (33)

The time-dependent decay rates are then given by

dΓ(|B0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Af |
2×

�
1 + |λf |

2

2
cosh

∆Γ t

2
+

1− |λf |
2

2
cos∆mt

+Reλf sinh
∆Γ t

2
− Imλf sin∆mt

�
,

dΓ(|B̄0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Āf |
2×

�
1 + |λ̄f |

2

2
cosh

∆Γ t

2
+

1− |λ̄f |
2

2
cos∆mt

+Reλ̄f sinh
∆Γ t

2
− Imλ̄f sin∆mt

�
, (34)

where N0 is the overall flux normalization,

λf ≡ q

p

Āf

Af
, λ̄f ≡ p

q

Af

Āf
=

1

λf
, (35)

and analogously for decays to f̄ . The various terms in the above tiem-evolution can be understood as
follwing

– Terms proportional to |Af |
2, |Āf |

2 describe a decay without net oscillation.
– Terms proportional to |λf |

2, |λ̄f |
2 describe a decays following net oscillations.

– Terms proportional to sin∆mt, sinh∆Γt/2 describe interference between the above two cases.
– CP violation in interference is possible only if Im(λf ) �= 0 .

Such effects can be observed in neutral B meson decays to CP eigenstates via a time-dependent CP
asymmetry

AfCP
(t) ≡

dΓ
dt

�
B̄0(0) → fCP (t)

�
− dΓ

dt

�
B0(0) → fCP (t)

�

dΓ
dt

�
B̄0(0) → fCP (t)

�
+ dΓ

dt [B
0(0) → fCP (t)]

. (36)

In the B (and also Bs) system experimentally ∆Γ � ∆m and so |q/p| � 1 . In this limit, the full
expression for Af greatly simplifies and can be written as

Af (t) = Sf sin(∆mt)− Cf cos(∆mt) , (37)

where

Sf ≡
2 Im(λf )

1 + |λf |
2
, Cf ≡

1− |λf |
2

1 + |λf |
2
. (38)
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The time evolution of the neutral meson system can finally be parametrized in terms of states
|B0(t)� corresponding to |B0� at initial time t = 0, and |B̄0(t)� corresponding to |B̄0� at t = 0

|B0(t)� = g+(t)|B
0� − q

p
g−(t)|B̄

0� ,

|B̄0(t)� = g+(t)|B̄
0� − q

p
g−(t)|B

0� , (31)

where
g± ≡ 1

2

�
e−mH t−ΓH t/2

± e−mLt−ΓLt/2
�
. (32)

The decay of the two mass eigenstates to some some final state f after time t is described by the decay
amplitudes

�f |H|B0� ≡ Af ,

�f̄ |H|B0� ≡ Af̄ . (33)

The time-dependent decay rates are then given by

dΓ(|B0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Af |
2×

�
1 + |λf |

2

2
cosh

∆Γ t

2
+

1− |λf |
2

2
cos∆mt

+Reλf sinh
∆Γ t

2
− Imλf sin∆mt

�
,

dΓ(|B̄0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Āf |
2×

�
1 + |λ̄f |

2

2
cosh

∆Γ t

2
+

1− |λ̄f |
2

2
cos∆mt

+Reλ̄f sinh
∆Γ t

2
− Imλ̄f sin∆mt

�
, (34)

where N0 is the overall flux normalization,

λf ≡ q

p

Āf

Af
, λ̄f ≡ p

q

Af

Āf
=

1

λf
, (35)

and analogously for decays to f̄ . The various terms in the above tiem-evolution can be understood as
follwing

– Terms proportional to |Af |
2, |Āf |

2 describe a decay without net oscillation.
– Terms proportional to |λf |

2, |λ̄f |
2 describe a decays following net oscillations.

– Terms proportional to sin∆mt, sinh∆Γt/2 describe interference between the above two cases.
– CP violation in interference is possible only if Im(λf ) �= 0 .

Such effects can be observed in neutral B meson decays to CP eigenstates via a time-dependent CP
asymmetry

AfCP
(t) ≡

dΓ
dt

�
B̄0(0) → fCP (t)

�
− dΓ

dt

�
B0(0) → fCP (t)

�

dΓ
dt

�
B̄0(0) → fCP (t)

�
+ dΓ

dt [B
0(0) → fCP (t)]

. (36)

In the B (and also Bs) system experimentally ∆Γ � ∆m and so |q/p| � 1 . In this limit, the full
expression for Af greatly simplifies and can be written as

Af (t) = Sf sin(∆mt)− Cf cos(∆mt) , (37)

where

Sf ≡
2 Im(λf )

1 + |λf |
2
, Cf ≡

1− |λf |
2

1 + |λf |
2
. (38)
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The time evolution of the neutral meson system can finally be parametrized in terms of states
|B0(t)� corresponding to |B0� at initial time t = 0, and |B̄0(t)� corresponding to |B̄0� at t = 0

|B0(t)� = g+(t)|B
0� − q

p
g−(t)|B̄

0� ,

|B̄0(t)� = g+(t)|B̄
0� − q

p
g−(t)|B

0� , (31)

where
g± ≡ 1

2

�
e−mH t−ΓH t/2

± e−mLt−ΓLt/2
�
. (32)

The decay of the two mass eigenstates to some some final state f after time t is described by the decay
amplitudes

�f |H|B0� ≡ Af ,

�f̄ |H|B0� ≡ Af̄ . (33)

The time-dependent decay rates are then given by

dΓ(|B0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Af |
2×

�
1 + |λf |

2

2
cosh

∆Γ t

2
+

1− |λf |
2

2
cos∆mt

+Reλf sinh
∆Γ t

2
− Imλf sin∆mt

�
,

dΓ(|B̄0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Āf |
2×

�
1 + |λ̄f |

2

2
cosh

∆Γ t

2
+

1− |λ̄f |
2

2
cos∆mt

+Reλ̄f sinh
∆Γ t

2
− Imλ̄f sin∆mt

�
, (34)

where N0 is the overall flux normalization,

λf ≡ q

p

Āf

Af
, λ̄f ≡ p

q

Af

Āf
=

1

λf
, (35)

and analogously for decays to f̄ . The various terms in the above tiem-evolution can be understood as
follwing

– Terms proportional to |Af |
2, |Āf |

2 describe a decay without net oscillation.
– Terms proportional to |λf |

2, |λ̄f |
2 describe a decays following net oscillations.

– Terms proportional to sin∆mt, sinh∆Γt/2 describe interference between the above two cases.
– CP violation in interference is possible only if Im(λf ) �= 0 .

Such effects can be observed in neutral B meson decays to CP eigenstates via a time-dependent CP
asymmetry

AfCP
(t) ≡

dΓ
dt

�
B̄0(0) → fCP (t)

�
− dΓ

dt

�
B0(0) → fCP (t)

�

dΓ
dt

�
B̄0(0) → fCP (t)

�
+ dΓ

dt [B
0(0) → fCP (t)]

. (36)

In the B (and also Bs) system experimentally ∆Γ � ∆m and so |q/p| � 1 . In this limit, the full
expression for Af greatly simplifies and can be written as

Af (t) = Sf sin(∆mt)− Cf cos(∆mt) , (37)

where

Sf ≡
2 Im(λf )

1 + |λf |
2
, Cf ≡

1− |λf |
2

1 + |λf |
2
. (38)
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The time evolution of the neutral meson system can finally be parametrized in terms of states
|B0(t)� corresponding to |B0� at initial time t = 0, and |B̄0(t)� corresponding to |B̄0� at t = 0

|B0(t)� = g+(t)|B
0� − q

p
g−(t)|B̄

0� ,

|B̄0(t)� = g+(t)|B̄
0� − q

p
g−(t)|B

0� , (31)

where
g± ≡ 1

2

�
e−mH t−ΓH t/2

± e−mLt−ΓLt/2
�
. (32)

The decay of the two mass eigenstates to some some final state f after time t is described by the decay
amplitudes

�f |H|B0� ≡ Af ,

�f̄ |H|B0� ≡ Af̄ . (33)

The time-dependent decay rates are then given by

dΓ(|B0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Af |
2×

�
1 + |λf |

2

2
cosh

∆Γ t

2
+

1− |λf |
2

2
cos∆mt

+Reλf sinh
∆Γ t

2
− Imλf sin∆mt

�
,

dΓ(|B̄0(0)�) → |f(t)�
dt

= N0e
−Γ t

|Āf |
2×

�
1 + |λ̄f |

2

2
cosh

∆Γ t

2
+

1− |λ̄f |
2

2
cos∆mt

+Reλ̄f sinh
∆Γ t

2
− Imλ̄f sin∆mt

�
, (34)

where N0 is the overall flux normalization,

λf ≡ q

p

Āf

Af
, λ̄f ≡ p

q

Af

Āf
=

1

λf
, (35)

and analogously for decays to f̄ . The various terms in the above tiem-evolution can be understood as
follwing

– Terms proportional to |Af |
2, |Āf |

2 describe a decay without net oscillation.
– Terms proportional to |λf |

2, |λ̄f |
2 describe a decays following net oscillations.

– Terms proportional to sin∆mt, sinh∆Γt/2 describe interference between the above two cases.
– CP violation in interference is possible only if Im(λf ) �= 0 .

Such effects can be observed in neutral B meson decays to CP eigenstates via a time-dependent CP
asymmetry

AfCP
(t) ≡

dΓ
dt

�
B̄0(0) → fCP (t)

�
− dΓ

dt

�
B0(0) → fCP (t)

�

dΓ
dt

�
B̄0(0) → fCP (t)

�
+ dΓ

dt [B
0(0) → fCP (t)]

. (36)

In the B (and also Bs) system experimentally ∆Γ � ∆m and so |q/p| � 1 . In this limit, the full
expression for Af greatly simplifies and can be written as

Af (t) = Sf sin(∆mt)− Cf cos(∆mt) , (37)

where

Sf ≡
2 Im(λf )

1 + |λf |
2
, Cf ≡

1− |λf |
2

1 + |λf |
2
. (38)
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Phases in decay 
amplitudes

• B → f  : amplitude Af 

• B → f  : amplitude Af.

• complex parameters in L appear complex conjugated 
after CP ⇒ opposite signs

• CP odd weak phases

• on-shell intermediate states (even for real L) ⇒ same 
signs (CP even) - strong phases

_ _ __

CP conjugation ⇔⇔
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Phases in decay 
amplitudes

• a1,2,... contributions to amplitude with different 
phases

• δ1,2... strong phases 

• φ1,2... weak phases 

4.1 Phases in decay amplitudes
Consider the decay B → f described by the amplitude Af and its CP conjugate process B̄ → f̄
associated with the amplitude Āf̄ . Any complex parameter in the theory Lagrangian entering the two

amplitudes will appear complex conjugated after CP and will thus appear with opposite signs in Af and

Āf̄ . The associated CP odd phases are conventionally called weak phases. In the SM they are induced

via W exchanges. Note that single amplitude phases are convention dependent and thus not physical.

Only differences between phases of different amplitudes are physical.

On the other hand, on-shell intermediate states in scattering or decay ampitudes can produce phase

changes even if the relevant Lagrangian is real. These are thus independent of CP. They will appear with

same signs in both Af and Āf̄ . These CP even phases are often reffered to as strong phases. In the SM

they are due to strong interaction induced re-scattering. Again, only relative phases between amplitudes

are physical.

In general, one can thus write both decay amplitudes as

Af = |a1|e
i(δ1+φ1) + |a2|e

i(δ2+φ2) + . . . ,

Āf̄ = |a1|e
i(δ1−φ1) + |a2|e

i(δ2−φ2) + . . . , (39)

where a1,2,... are contributions to the amplitude with different phases, δ1,2... are the strong phases and

φ1,2... are the weak phases.

4.2 CP violation in B → ψKS

To a good approximation, the B → ψKS decays are described by a just single weak decay amplitude to

a CP eigenstate (with CP eigenvalue ηf )

Af = |af |e
i(δf+φf ) ,

Āf = |af |e
i(δf−φf )ηf , (40)

so that λf = ηf (q/p) exp(−2iφf ) . In the neutral B system |Γ12| � |M12|, since it is due to O(G2
F )

long distance effects, which are suppressed by small CKM elements (a fact also verified experimentally

since ∆Γ � ∆m). Then one can write

�
q

p

�2

=
M∗

12 − i
2Γ

∗
12

M12 − i
2Γ12

� e2iξB , (41)

and thus λf � ηf exp[i(ξB−2φf )], leading to a simple expression for the time-dependent CP asymmetry

Af (t), in particular

SfCP � ηf sin(ξB − 2φf ) . (42)

In the SM, ξB and φf are exactly computable in terms of the CKM elements. In particular

ξB = −Arg(M12) � −Arg[(V ∗
tbVtd)

2] = −Arg

�
V ∗
tbVtd

VtbV ∗
td

�
, (43)

while

−e−2iφf =
Ā(B)

ψKS

A(B)
ψKS

= −VcbV ∗
cs aT + . . .

V ∗
cbVcs aT + . . .

eiξK � −VcbV ∗
cs

V ∗
cbVcs

V ∗
cdVcs

VcdV ∗
cs

. (44)

In the above equation, the dots denote additional amplitudes suppressed by small coefficients and CKM

elements. Also, in the second step we have taken into account the phase projection of the neutral kaon
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CPV in B → ψKS

•  In Bd system |Γ12|<<|M12|, due to O(GF2) long 
distance effects, suppressed by small CKM elements
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Āf = |af |e
i(δf−φf )ηf , (40)

so that λf = ηf (q/p) exp(−2iφf ) . In the neutral B system |Γ12| � |M12|, since it is due to O(G2
F )

long distance effects, which are suppressed by small CKM elements (a fact also verified experimentally

since ∆Γ � ∆m). Then one can write

�
q

p

�2

=
M∗

12 − i
2Γ

∗
12

M12 − i
2Γ12

� e2iξB , (41)

and thus λf � ηf exp[i(ξB−2φf )], leading to a simple expression for the time-dependent CP asymmetry

Af (t), in particular

SfCP � ηf sin(ξB − 2φf ) . (42)

In the SM, ξB and φf are exactly computable in terms of the CKM elements. In particular

ξB = −Arg(M12) � −Arg[(V ∗
tbVtd)

2] = −Arg

�
V ∗
tbVtd

VtbV ∗
td

�
, (43)

while

−e−2iφf =
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associated with the amplitude Āf̄ . Any complex parameter in the theory Lagrangian entering the two

amplitudes will appear complex conjugated after CP and will thus appear with opposite signs in Af and
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CPV in B → ψKS
• In SM: 

4.1 Phases in decay amplitudes
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CPV in B → ψKS
• In SM: 

4.1 Phases in decay amplitudes
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where a1,2,... are contributions to the amplitude with different phases, δ1,2... are the strong phases and
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4.2 CP violation in B → ψKS
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long distance effects, which are suppressed by small CKM elements (a fact also verified experimentally
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associated with the amplitude Āf̄ . Any complex parameter in the theory Lagrangian entering the two

amplitudes will appear complex conjugated after CP and will thus appear with opposite signs in Af and
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same signs in both Af and Āf̄ . These CP even phases are often reffered to as strong phases. In the SM

they are due to strong interaction induced re-scattering. Again, only relative phases between amplitudes

are physical.

In general, one can thus write both decay amplitudes as

Af = |a1|e
i(δ1+φ1) + |a2|e

i(δ2+φ2) + . . . ,
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K − K oscillations 
forming KS 

flavour eigenstates onto the mass eigenstate KS due to K − K̄ oscillations (analogous to Eq. (43)).
Combining Eqs. (43) and (44) we thus obtain

λ(B)
ψKS

�
V ∗
tbVtd

VtbV ∗
td

VcbV ∗
cd

V ∗
cbVcd

= −e−2iβ . (45)

The observable S(B)
ψKS

� sin 2β (note that C(B)
ψKS

� 0) demonstrates CP violation in interference between
the mixing and decay amplitudes. Experimentally, it has been measured to an accuracy of ∼ 1% at the
B factories [6].

4.3 CP violation in Bs mixing
Establishing CP violation in the Bs system is considerably more challenging. The golden channel is
the decay Bs → ψφ . Since it is an admixture of different CP eigenestates (represented by the different
polarizations of the two vector mesons in the final state), an angular analysis is required for the extraction
of the CP violating phase. In addition, Bs oscillations are much faster than those of Bd, namely

∆ms

∆md
∼ |M s

12

|Md
12|

∝
����
Vts

Vtd

����
2

∼ 30 . (46)

Finally, ∆Γs effects in the time evolution cannot be neglected compared to ∆ms. In the SM λ(Bs)
ψφ =

− exp[i(ξBs − 2φψφ)] evaluates to [10]
�
S(Bs)
ψφ

�

SM
= 2Arg

V ∗
tbVts

V ∗
cbVcs

= 0.036(1) , (47)

which is still small compared to the currently attainable experimental precision of S(Bs)
ψφ = −0.02(4) [11].

4.4 CP violation in B decays to CP conjugate states
This form of measurements is interesting if B0 → f̄ and B̄0 → f transitions are forbidden. In this case
|Af | = |Āf̄ | and |Af̄ | = |Āf | = 0 and one can define a CP asymmetry
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2

���pq
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+
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2 � Im
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M12
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+O

�����
Γ12

M12

����
2
�

, (48)

where in the last step we have again used the fact the |Γ12| � |M12| in the B system. Note that the
above asymmetry is accessible with a time-independent measurement. It also represents CP violation in
mixing, simetimes termed indirect CP violation . An illustrative example is the wrong sign semileptonic
decay asymmetry

a(d)SL =
Γ(B̄0 → X�+ν)− Γ(B0 → X�−ν̄)

Γ(B̄0 → X�+ν) + Γ(B0 → X�−ν̄)
, (49)

with the SM expectation of a(d)SL = −8(2)× 10−4 [10] .

4.5 CP violation in charged B decays
The possibility of CP violation in charged B decays is of special interest in the case of B± → DK±,
since D− D̄ oscillations allow for interference of two tree-level dominated decay amplitudes, in partic-
ular

B− → D0K− : b → cūs ,

11
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where in the last step we have again used the fact the |Γ12| � |M12| in the B system. Note that the
above asymmetry is accessible with a time-independent measurement. It also represents CP violation in
mixing, simetimes termed indirect CP violation . An illustrative example is the wrong sign semileptonic
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flavour eigenstates onto the mass eigenstate KS due to K − K̄ oscillations (analogous to Eq. (43)).
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mixing, simetimes termed indirect CP violation . An illustrative example is the wrong sign semileptonic
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|Af | = |Āf̄ | and |Af̄ | = |Āf | = 0 and one can define a CP asymmetry

dΓ
dt

�
B̄0(0) → f(t)

�
− dΓ

dt

�
B0(0) → f̄(t)

�

dΓ
dt

�
B̄0(0) → f(t)

�
+ dΓ

dt

�
B0(0) → f̄(t)

� =

���pq
���
2
−
��� qp
���
2

���pq
���
2
+
��� qp
���
2 � Im

�
Γ12

M12

�
+O

�����
Γ12

M12

����
2
�

, (48)

where in the last step we have again used the fact the |Γ12| � |M12| in the B system. Note that the
above asymmetry is accessible with a time-independent measurement. It also represents CP violation in
mixing, simetimes termed indirect CP violation . An illustrative example is the wrong sign semileptonic
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with the SM expectation of a(d)SL = −8(2)× 10−4 [10] .

4.5 CP violation in charged B decays
The possibility of CP violation in charged B decays is of special interest in the case of B± → DK±,
since D− D̄ oscillations allow for interference of two tree-level dominated decay amplitudes, in partic-
ular

B− → D0K− : b → cūs ,
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Experimentally measured to an accuracy of ∼ 1%
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Fig. 8. Time dependence of tagged B → ψK decays (top), and CP asymmetry (below).

relation between λψKS,L and sin 2β depends on model dependent estimates

of |P/T |, which are below unity, so one expects it to be of order

����
VubV ∗

us

VcbV ∗
cs

P

T

���� <∼ 10
−2 . (46)

The absence of detectable direct CP violation does not in itself bound this.

To fully utilize future LHCb and Belle II data, better estimates are needed.

The first evidence for CP violation outside the kaon sector was the

BaBar and Belle measurements of SψK . The current world average is [18]

sin 2β = 0.682± 0.019 . (47)

This is consistent with other constraints, and showed that CP violation in

quark mixing is an O(1) effect, which is simply suppressed in K decays by

small flavor violation suppressing the 3rd generation’s contributions.

φs ≡ −2βs from B → ψφ The analogous CP asymmetry in Bs decay,

sensitive to BSM contributions to Bs –Bs mixing, is Bs → ψφ. Since the

final state consists of two vector mesons, it is a combination of CP -even

(L = 0, 2) and CP -odd (L = 1) partial waves. What is actually measured is

the time dependent CP asymmetry for each CP component of the ψK+K−

and ψπ+π−
final states. The SM prediction is suppressed compared to β by

λ2
, and is rather precise, βs = 0.0182+0.0007

−0.0006 [23]. The latest LHCb result

using 3 fb
−1

data is [24] (Fig. 9 shows all measurements)

φs ≡ −2βs = −0.010± 0.039 , (48)

which has an uncertainty approaching that of 2β, suggesting that the “room
for new physics” in Bs mixing is no longer larger than in Bd (more below).



CPV in Bs mixing
• Golden channel: Bs → ψφ  

•  angular analysis required

• Bs oscillations much faster than those of Bd

• ∆Γs effects cannot be neglected

flavour eigenstates onto the mass eigenstate KS due to K − K̄ oscillations (analogous to Eq. (43)).
Combining Eqs. (43) and (44) we thus obtain
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The observable S(B)
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� sin 2β (note that C(B)
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� 0) demonstrates CP violation in interference between
the mixing and decay amplitudes. Experimentally, it has been measured to an accuracy of ∼ 1% at the
B factories [6].

4.3 CP violation in Bs mixing
Establishing CP violation in the Bs system is considerably more challenging. The golden channel is
the decay Bs → ψφ . Since it is an admixture of different CP eigenestates (represented by the different
polarizations of the two vector mesons in the final state), an angular analysis is required for the extraction
of the CP violating phase. In addition, Bs oscillations are much faster than those of Bd, namely
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Finally, ∆Γs effects in the time evolution cannot be neglected compared to ∆ms. In the SM λ(Bs)
ψφ =

− exp[i(ξBs − 2φψφ)] evaluates to [10]
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= 0.036(1) , (47)

which is still small compared to the currently attainable experimental precision of S(Bs)
ψφ = −0.02(4) [11].

4.4 CP violation in B decays to CP conjugate states
This form of measurements is interesting if B0 → f̄ and B̄0 → f transitions are forbidden. In this case
|Af | = |Āf̄ | and |Af̄ | = |Āf | = 0 and one can define a CP asymmetry
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where in the last step we have again used the fact the |Γ12| � |M12| in the B system. Note that the
above asymmetry is accessible with a time-independent measurement. It also represents CP violation in
mixing, simetimes termed indirect CP violation . An illustrative example is the wrong sign semileptonic
decay asymmetry

a(d)SL =
Γ(B̄0 → X�+ν)− Γ(B0 → X�−ν̄)

Γ(B̄0 → X�+ν) + Γ(B0 → X�−ν̄)
, (49)

with the SM expectation of a(d)SL = −8(2)× 10−4 [10] .

4.5 CP violation in charged B decays
The possibility of CP violation in charged B decays is of special interest in the case of B± → DK±,
since D− D̄ oscillations allow for interference of two tree-level dominated decay amplitudes, in partic-
ular

B− → D0K− : b → cūs ,

11
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• In SM: λ(Bs)

ψφ = − exp[i(ξBs − 2φψφ)]

flavour eigenstates onto the mass eigenstate KS due to K − K̄ oscillations (analogous to Eq. (43)).
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the decay Bs → ψφ . Since it is an admixture of different CP eigenestates (represented by the different
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where in the last step we have again used the fact the |Γ12| � |M12| in the B system. Note that the
above asymmetry is accessible with a time-independent measurement. It also represents CP violation in
mixing, simetimes termed indirect CP violation . An illustrative example is the wrong sign semileptonic
decay asymmetry

a(d)SL =
Γ(B̄0 → X�+ν)− Γ(B0 → X�−ν̄)

Γ(B̄0 → X�+ν) + Γ(B0 → X�−ν̄)
, (49)

with the SM expectation of a(d)SL = −8(2)× 10−4 [10] .

4.5 CP violation in charged B decays
The possibility of CP violation in charged B decays is of special interest in the case of B± → DK±,
since D− D̄ oscillations allow for interference of two tree-level dominated decay amplitudes, in partic-
ular

B− → D0K− : b → cūs ,

11
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• Exercise: Show that if B → ππ is dominated by a 
single (tree) amplitude, then Sππ = sin(2α)

λ(Bs)
ψφ = − exp[i(ξBs − 2φψφ)]

flavour eigenstates onto the mass eigenstate KS due to K − K̄ oscillations (analogous to Eq. (43)).
Combining Eqs. (43) and (44) we thus obtain
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The observable S(B)
ψKS

� sin 2β (note that C(B)
ψKS

� 0) demonstrates CP violation in interference between
the mixing and decay amplitudes. Experimentally, it has been measured to an accuracy of ∼ 1% at the
B factories [6].

4.3 CP violation in Bs mixing
Establishing CP violation in the Bs system is considerably more challenging. The golden channel is
the decay Bs → ψφ . Since it is an admixture of different CP eigenestates (represented by the different
polarizations of the two vector mesons in the final state), an angular analysis is required for the extraction
of the CP violating phase. In addition, Bs oscillations are much faster than those of Bd, namely
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Finally, ∆Γs effects in the time evolution cannot be neglected compared to ∆ms. In the SM λ(Bs)
ψφ =
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which is still small compared to the currently attainable experimental precision of S(Bs)
ψφ = −0.02(4) [11].

4.4 CP violation in B decays to CP conjugate states
This form of measurements is interesting if B0 → f̄ and B̄0 → f transitions are forbidden. In this case
|Af | = |Āf̄ | and |Af̄ | = |Āf | = 0 and one can define a CP asymmetry
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where in the last step we have again used the fact the |Γ12| � |M12| in the B system. Note that the
above asymmetry is accessible with a time-independent measurement. It also represents CP violation in
mixing, simetimes termed indirect CP violation . An illustrative example is the wrong sign semileptonic
decay asymmetry

a(d)SL =
Γ(B̄0 → X�+ν)− Γ(B0 → X�−ν̄)

Γ(B̄0 → X�+ν) + Γ(B0 → X�−ν̄)
, (49)

with the SM expectation of a(d)SL = −8(2)× 10−4 [10] .

4.5 CP violation in charged B decays
The possibility of CP violation in charged B decays is of special interest in the case of B± → DK±,
since D− D̄ oscillations allow for interference of two tree-level dominated decay amplitudes, in partic-
ular

B− → D0K− : b → cūs ,

11

flavour eigenstates onto the mass eigenstate KS due to K − K̄ oscillations (analogous to Eq. (43)).
Combining Eqs. (43) and (44) we thus obtain
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The observable S(B)
ψKS

� sin 2β (note that C(B)
ψKS

� 0) demonstrates CP violation in interference between
the mixing and decay amplitudes. Experimentally, it has been measured to an accuracy of ∼ 1% at the
B factories [6].

4.3 CP violation in Bs mixing
Establishing CP violation in the Bs system is considerably more challenging. The golden channel is
the decay Bs → ψφ . Since it is an admixture of different CP eigenestates (represented by the different
polarizations of the two vector mesons in the final state), an angular analysis is required for the extraction
of the CP violating phase. In addition, Bs oscillations are much faster than those of Bd, namely
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Finally, ∆Γs effects in the time evolution cannot be neglected compared to ∆ms. In the SM λ(Bs)
ψφ =

− exp[i(ξBs − 2φψφ)] evaluates to [10]
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= 0.036(1) , (47)

which is still small compared to the currently attainable experimental precision of S(Bs)
ψφ = −0.02(4) [11].

4.4 CP violation in B decays to CP conjugate states
This form of measurements is interesting if B0 → f̄ and B̄0 → f transitions are forbidden. In this case
|Af | = |Āf̄ | and |Af̄ | = |Āf | = 0 and one can define a CP asymmetry
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where in the last step we have again used the fact the |Γ12| � |M12| in the B system. Note that the
above asymmetry is accessible with a time-independent measurement. It also represents CP violation in
mixing, simetimes termed indirect CP violation . An illustrative example is the wrong sign semileptonic
decay asymmetry

a(d)SL =
Γ(B̄0 → X�+ν)− Γ(B0 → X�−ν̄)

Γ(B̄0 → X�+ν) + Γ(B0 → X�−ν̄)
, (49)

with the SM expectation of a(d)SL = −8(2)× 10−4 [10] .

4.5 CP violation in charged B decays
The possibility of CP violation in charged B decays is of special interest in the case of B± → DK±,
since D− D̄ oscillations allow for interference of two tree-level dominated decay amplitudes, in partic-
ular

B− → D0K− : b → cūs ,

11
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single (tree) amplitude, then Sππ = sin(2α)

λ(Bs)
ψφ = − exp[i(ξBs − 2φψφ)]

flavour eigenstates onto the mass eigenstate KS due to K − K̄ oscillations (analogous to Eq. (43)).
Combining Eqs. (43) and (44) we thus obtain
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VtbV ∗
td
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V ∗
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The observable S(B)
ψKS

� sin 2β (note that C(B)
ψKS

� 0) demonstrates CP violation in interference between
the mixing and decay amplitudes. Experimentally, it has been measured to an accuracy of ∼ 1% at the
B factories [6].

4.3 CP violation in Bs mixing
Establishing CP violation in the Bs system is considerably more challenging. The golden channel is
the decay Bs → ψφ . Since it is an admixture of different CP eigenestates (represented by the different
polarizations of the two vector mesons in the final state), an angular analysis is required for the extraction
of the CP violating phase. In addition, Bs oscillations are much faster than those of Bd, namely
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Finally, ∆Γs effects in the time evolution cannot be neglected compared to ∆ms. In the SM λ(Bs)
ψφ =

− exp[i(ξBs − 2φψφ)] evaluates to [10]
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V ∗
tbVts

V ∗
cbVcs

= 0.036(1) , (47)

which is still small compared to the currently attainable experimental precision of S(Bs)
ψφ = −0.02(4) [11].

4.4 CP violation in B decays to CP conjugate states
This form of measurements is interesting if B0 → f̄ and B̄0 → f transitions are forbidden. In this case
|Af | = |Āf̄ | and |Af̄ | = |Āf | = 0 and one can define a CP asymmetry
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where in the last step we have again used the fact the |Γ12| � |M12| in the B system. Note that the
above asymmetry is accessible with a time-independent measurement. It also represents CP violation in
mixing, simetimes termed indirect CP violation . An illustrative example is the wrong sign semileptonic
decay asymmetry

a(d)SL =
Γ(B̄0 → X�+ν)− Γ(B0 → X�−ν̄)

Γ(B̄0 → X�+ν) + Γ(B0 → X�−ν̄)
, (49)

with the SM expectation of a(d)SL = −8(2)× 10−4 [10] .

4.5 CP violation in charged B decays
The possibility of CP violation in charged B decays is of special interest in the case of B± → DK±,
since D− D̄ oscillations allow for interference of two tree-level dominated decay amplitudes, in partic-
ular

B− → D0K− : b → cūs ,

11
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CP violation in B decays 
to CP conjugate states
• If B0 → f  and B0 → f  forbidden:

flavour eigenstates onto the mass eigenstate KS due to K − K̄ oscillations (analogous to Eq. (43)).
Combining Eqs. (43) and (44) we thus obtain
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V ∗
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= −e−2iβ . (45)

The observable S(B)
ψKS

� sin 2β (note that C(B)
ψKS

� 0) demonstrates CP violation in interference between
the mixing and decay amplitudes. Experimentally, it has been measured to an accuracy of ∼ 1% at the
B factories [6].

4.3 CP violation in Bs mixing
Establishing CP violation in the Bs system is considerably more challenging. The golden channel is
the decay Bs → ψφ . Since it is an admixture of different CP eigenestates (represented by the different
polarizations of the two vector mesons in the final state), an angular analysis is required for the extraction
of the CP violating phase. In addition, Bs oscillations are much faster than those of Bd, namely
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Finally, ∆Γs effects in the time evolution cannot be neglected compared to ∆ms. In the SM λ(Bs)
ψφ =

− exp[i(ξBs − 2φψφ)] evaluates to [10]
�
S(Bs)
ψφ
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= 2Arg

V ∗
tbVts

V ∗
cbVcs

= 0.036(1) , (47)

which is still small compared to the currently attainable experimental precision of S(Bs)
ψφ = −0.02(4) [11].

4.4 CP violation in B decays to CP conjugate states
This form of measurements is interesting if B0 → f̄ and B̄0 → f transitions are forbidden. In this case
|Af | = |Āf̄ | and |Af̄ | = |Āf | = 0 and one can define a CP asymmetry
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where in the last step we have again used the fact the |Γ12| � |M12| in the B system. Note that the
above asymmetry is accessible with a time-independent measurement. It also represents CP violation in
mixing, simetimes termed indirect CP violation . An illustrative example is the wrong sign semileptonic
decay asymmetry

a(d)SL =
Γ(B̄0 → X�+ν)− Γ(B0 → X�−ν̄)

Γ(B̄0 → X�+ν) + Γ(B0 → X�−ν̄)
, (49)

with the SM expectation of a(d)SL = −8(2)× 10−4 [10] .

4.5 CP violation in charged B decays
The possibility of CP violation in charged B decays is of special interest in the case of B± → DK±,
since D− D̄ oscillations allow for interference of two tree-level dominated decay amplitudes, in partic-
ular

B− → D0K− : b → cūs ,

11
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flavour eigenstates onto the mass eigenstate KS due to K − K̄ oscillations (analogous to Eq. (43)).
Combining Eqs. (43) and (44) we thus obtain
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The observable S(B)
ψKS

� sin 2β (note that C(B)
ψKS

� 0) demonstrates CP violation in interference between
the mixing and decay amplitudes. Experimentally, it has been measured to an accuracy of ∼ 1% at the
B factories [6].

4.3 CP violation in Bs mixing
Establishing CP violation in the Bs system is considerably more challenging. The golden channel is
the decay Bs → ψφ . Since it is an admixture of different CP eigenestates (represented by the different
polarizations of the two vector mesons in the final state), an angular analysis is required for the extraction
of the CP violating phase. In addition, Bs oscillations are much faster than those of Bd, namely
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Finally, ∆Γs effects in the time evolution cannot be neglected compared to ∆ms. In the SM λ(Bs)
ψφ =

− exp[i(ξBs − 2φψφ)] evaluates to [10]
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= 0.036(1) , (47)

which is still small compared to the currently attainable experimental precision of S(Bs)
ψφ = −0.02(4) [11].

4.4 CP violation in B decays to CP conjugate states
This form of measurements is interesting if B0 → f̄ and B̄0 → f transitions are forbidden. In this case
|Af | = |Āf̄ | and |Af̄ | = |Āf | = 0 and one can define a CP asymmetry
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where in the last step we have again used the fact the |Γ12| � |M12| in the B system. Note that the
above asymmetry is accessible with a time-independent measurement. It also represents CP violation in
mixing, simetimes termed indirect CP violation . An illustrative example is the wrong sign semileptonic
decay asymmetry

a(d)SL =
Γ(B̄0 → X�+ν)− Γ(B0 → X�−ν̄)

Γ(B̄0 → X�+ν) + Γ(B0 → X�−ν̄)
, (49)

with the SM expectation of a(d)SL = −8(2)× 10−4 [10] .

4.5 CP violation in charged B decays
The possibility of CP violation in charged B decays is of special interest in the case of B± → DK±,
since D− D̄ oscillations allow for interference of two tree-level dominated decay amplitudes, in partic-
ular

B− → D0K− : b → cūs ,

11
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• In SM: 

flavour eigenstates onto the mass eigenstate KS due to K − K̄ oscillations (analogous to Eq. (43)).
Combining Eqs. (43) and (44) we thus obtain
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The observable S(B)
ψKS

� sin 2β (note that C(B)
ψKS

� 0) demonstrates CP violation in interference between
the mixing and decay amplitudes. Experimentally, it has been measured to an accuracy of ∼ 1% at the
B factories [6].

4.3 CP violation in Bs mixing
Establishing CP violation in the Bs system is considerably more challenging. The golden channel is
the decay Bs → ψφ . Since it is an admixture of different CP eigenestates (represented by the different
polarizations of the two vector mesons in the final state), an angular analysis is required for the extraction
of the CP violating phase. In addition, Bs oscillations are much faster than those of Bd, namely
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Finally, ∆Γs effects in the time evolution cannot be neglected compared to ∆ms. In the SM λ(Bs)
ψφ =

− exp[i(ξBs − 2φψφ)] evaluates to [10]
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= 0.036(1) , (47)

which is still small compared to the currently attainable experimental precision of S(Bs)
ψφ = −0.02(4) [11].

4.4 CP violation in B decays to CP conjugate states
This form of measurements is interesting if B0 → f̄ and B̄0 → f transitions are forbidden. In this case
|Af | = |Āf̄ | and |Af̄ | = |Āf | = 0 and one can define a CP asymmetry
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where in the last step we have again used the fact the |Γ12| � |M12| in the B system. Note that the
above asymmetry is accessible with a time-independent measurement. It also represents CP violation in
mixing, simetimes termed indirect CP violation . An illustrative example is the wrong sign semileptonic
decay asymmetry

a(d)SL =
Γ(B̄0 → X�+ν)− Γ(B0 → X�−ν̄)

Γ(B̄0 → X�+ν) + Γ(B0 → X�−ν̄)
, (49)

with the SM expectation of a(d)SL = −8(2)× 10−4 [10] .

4.5 CP violation in charged B decays
The possibility of CP violation in charged B decays is of special interest in the case of B± → DK±,
since D− D̄ oscillations allow for interference of two tree-level dominated decay amplitudes, in partic-
ular

B− → D0K− : b → cūs ,

11
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flavour eigenstates onto the mass eigenstate KS due to K − K̄ oscillations (analogous to Eq. (43)).
Combining Eqs. (43) and (44) we thus obtain
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The observable S(B)
ψKS

� sin 2β (note that C(B)
ψKS

� 0) demonstrates CP violation in interference between
the mixing and decay amplitudes. Experimentally, it has been measured to an accuracy of ∼ 1% at the
B factories [6].

4.3 CP violation in Bs mixing
Establishing CP violation in the Bs system is considerably more challenging. The golden channel is
the decay Bs → ψφ . Since it is an admixture of different CP eigenestates (represented by the different
polarizations of the two vector mesons in the final state), an angular analysis is required for the extraction
of the CP violating phase. In addition, Bs oscillations are much faster than those of Bd, namely
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Finally, ∆Γs effects in the time evolution cannot be neglected compared to ∆ms. In the SM λ(Bs)
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which is still small compared to the currently attainable experimental precision of S(Bs)
ψφ = −0.02(4) [11].

4.4 CP violation in B decays to CP conjugate states
This form of measurements is interesting if B0 → f̄ and B̄0 → f transitions are forbidden. In this case
|Af | = |Āf̄ | and |Af̄ | = |Āf | = 0 and one can define a CP asymmetry
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where in the last step we have again used the fact the |Γ12| � |M12| in the B system. Note that the
above asymmetry is accessible with a time-independent measurement. It also represents CP violation in
mixing, simetimes termed indirect CP violation . An illustrative example is the wrong sign semileptonic
decay asymmetry

a(d)SL =
Γ(B̄0 → X�+ν)− Γ(B0 → X�−ν̄)

Γ(B̄0 → X�+ν) + Γ(B0 → X�−ν̄)
, (49)

with the SM expectation of a(d)SL = −8(2)× 10−4 [10] .

4.5 CP violation in charged B decays
The possibility of CP violation in charged B decays is of special interest in the case of B± → DK±,
since D− D̄ oscillations allow for interference of two tree-level dominated decay amplitudes, in partic-
ular

B− → D0K− : b → cūs ,

11

flavour eigenstates onto the mass eigenstate KS due to K − K̄ oscillations (analogous to Eq. (43)).
Combining Eqs. (43) and (44) we thus obtain
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The observable S(B)
ψKS

� sin 2β (note that C(B)
ψKS

� 0) demonstrates CP violation in interference between
the mixing and decay amplitudes. Experimentally, it has been measured to an accuracy of ∼ 1% at the
B factories [6].

4.3 CP violation in Bs mixing
Establishing CP violation in the Bs system is considerably more challenging. The golden channel is
the decay Bs → ψφ . Since it is an admixture of different CP eigenestates (represented by the different
polarizations of the two vector mesons in the final state), an angular analysis is required for the extraction
of the CP violating phase. In addition, Bs oscillations are much faster than those of Bd, namely
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Finally, ∆Γs effects in the time evolution cannot be neglected compared to ∆ms. In the SM λ(Bs)
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which is still small compared to the currently attainable experimental precision of S(Bs)
ψφ = −0.02(4) [11].

4.4 CP violation in B decays to CP conjugate states
This form of measurements is interesting if B0 → f̄ and B̄0 → f transitions are forbidden. In this case
|Af | = |Āf̄ | and |Af̄ | = |Āf | = 0 and one can define a CP asymmetry
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where in the last step we have again used the fact the |Γ12| � |M12| in the B system. Note that the
above asymmetry is accessible with a time-independent measurement. It also represents CP violation in
mixing, simetimes termed indirect CP violation . An illustrative example is the wrong sign semileptonic
decay asymmetry

a(d)SL =
Γ(B̄0 → X�+ν)− Γ(B0 → X�−ν̄)

Γ(B̄0 → X�+ν) + Γ(B0 → X�−ν̄)
, (49)

with the SM expectation of a(d)SL = −8(2)× 10−4 [10] .

4.5 CP violation in charged B decays
The possibility of CP violation in charged B decays is of special interest in the case of B± → DK±,
since D− D̄ oscillations allow for interference of two tree-level dominated decay amplitudes, in partic-
ular

B− → D0K− : b → cūs ,

11

flavour eigenstates onto the mass eigenstate KS due to K − K̄ oscillations (analogous to Eq. (43)).
Combining Eqs. (43) and (44) we thus obtain
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The observable S(B)
ψKS

� sin 2β (note that C(B)
ψKS

� 0) demonstrates CP violation in interference between
the mixing and decay amplitudes. Experimentally, it has been measured to an accuracy of ∼ 1% at the
B factories [6].

4.3 CP violation in Bs mixing
Establishing CP violation in the Bs system is considerably more challenging. The golden channel is
the decay Bs → ψφ . Since it is an admixture of different CP eigenestates (represented by the different
polarizations of the two vector mesons in the final state), an angular analysis is required for the extraction
of the CP violating phase. In addition, Bs oscillations are much faster than those of Bd, namely
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which is still small compared to the currently attainable experimental precision of S(Bs)
ψφ = −0.02(4) [11].
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where in the last step we have again used the fact the |Γ12| � |M12| in the B system. Note that the
above asymmetry is accessible with a time-independent measurement. It also represents CP violation in
mixing, simetimes termed indirect CP violation . An illustrative example is the wrong sign semileptonic
decay asymmetry

a(d)SL =
Γ(B̄0 → X�+ν)− Γ(B0 → X�−ν̄)

Γ(B̄0 → X�+ν) + Γ(B0 → X�−ν̄)
, (49)

with the SM expectation of a(d)SL = −8(2)× 10−4 [10] .

4.5 CP violation in charged B decays
The possibility of CP violation in charged B decays is of special interest in the case of B± → DK±,
since D− D̄ oscillations allow for interference of two tree-level dominated decay amplitudes, in partic-
ular

B− → D0K− : b → cūs ,
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CP violation in charged 
B decays

• Interesting example:

• Particularly transparent in D decays to CP 
eigenstates

flavour eigenstates onto the mass eigenstate KS due to K − K̄ oscillations (analogous to Eq. (43)).
Combining Eqs. (43) and (44) we thus obtain

λ(B)
ψKS

�
V ∗
tbVtd

VtbV ∗
td

VcbV ∗
cd

V ∗
cbVcd

= −e−2iβ . (45)

The observable S(B)
ψKS

� sin 2β (note that C(B)
ψKS

� 0) demonstrates CP violation in interference between
the mixing and decay amplitudes. Experimentally, it has been measured to an accuracy of ∼ 1% at the
B factories [6].

4.3 CP violation in Bs mixing
Establishing CP violation in the Bs system is considerably more challenging. The golden channel is
the decay Bs → ψφ . Since it is an admixture of different CP eigenestates (represented by the different
polarizations of the two vector mesons in the final state), an angular analysis is required for the extraction
of the CP violating phase. In addition, Bs oscillations are much faster than those of Bd, namely
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Finally, ∆Γs effects in the time evolution cannot be neglected compared to ∆ms. In the SM λ(Bs)
ψφ =

− exp[i(ξBs − 2φψφ)] evaluates to [10]
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= 0.036(1) , (47)

which is still small compared to the currently attainable experimental precision of S(Bs)
ψφ = −0.02(4) [11].

4.4 CP violation in B decays to CP conjugate states
This form of measurements is interesting if B0 → f̄ and B̄0 → f transitions are forbidden. In this case
|Af | = |Āf̄ | and |Af̄ | = |Āf | = 0 and one can define a CP asymmetry
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where in the last step we have again used the fact the |Γ12| � |M12| in the B system. Note that the
above asymmetry is accessible with a time-independent measurement. It also represents CP violation in
mixing, simetimes termed indirect CP violation . An illustrative example is the wrong sign semileptonic
decay asymmetry

a(d)SL =
Γ(B̄0 → X�+ν)− Γ(B0 → X�−ν̄)

Γ(B̄0 → X�+ν) + Γ(B0 → X�−ν̄)
, (49)

with the SM expectation of a(d)SL = −8(2)× 10−4 [10] .

4.5 CP violation in charged B decays
The possibility of CP violation in charged B decays is of special interest in the case of B± → DK±,
since D− D̄ oscillations allow for interference of two tree-level dominated decay amplitudes, in partic-
ular

B− → D0K− : b → cūs ,

11

flavour eigenstates onto the mass eigenstate KS due to K − K̄ oscillations (analogous to Eq. (43)).
Combining Eqs. (43) and (44) we thus obtain

λ(B)
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VtbV ∗
td

VcbV ∗
cd

V ∗
cbVcd

= −e−2iβ . (45)

The observable S(B)
ψKS

� sin 2β (note that C(B)
ψKS

� 0) demonstrates CP violation in interference between
the mixing and decay amplitudes. Experimentally, it has been measured to an accuracy of ∼ 1% at the
B factories [6].

4.3 CP violation in Bs mixing
Establishing CP violation in the Bs system is considerably more challenging. The golden channel is
the decay Bs → ψφ . Since it is an admixture of different CP eigenestates (represented by the different
polarizations of the two vector mesons in the final state), an angular analysis is required for the extraction
of the CP violating phase. In addition, Bs oscillations are much faster than those of Bd, namely

∆ms

∆md
∼ |M s

12

|Md
12|

∝
����
Vts

Vtd

����
2

∼ 30 . (46)

Finally, ∆Γs effects in the time evolution cannot be neglected compared to ∆ms. In the SM λ(Bs)
ψφ =

− exp[i(ξBs − 2φψφ)] evaluates to [10]
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= 2Arg

V ∗
tbVts

V ∗
cbVcs

= 0.036(1) , (47)

which is still small compared to the currently attainable experimental precision of S(Bs)
ψφ = −0.02(4) [11].

4.4 CP violation in B decays to CP conjugate states
This form of measurements is interesting if B0 → f̄ and B̄0 → f transitions are forbidden. In this case
|Af | = |Āf̄ | and |Af̄ | = |Āf | = 0 and one can define a CP asymmetry
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where in the last step we have again used the fact the |Γ12| � |M12| in the B system. Note that the
above asymmetry is accessible with a time-independent measurement. It also represents CP violation in
mixing, simetimes termed indirect CP violation . An illustrative example is the wrong sign semileptonic
decay asymmetry

a(d)SL =
Γ(B̄0 → X�+ν)− Γ(B0 → X�−ν̄)

Γ(B̄0 → X�+ν) + Γ(B0 → X�−ν̄)
, (49)

with the SM expectation of a(d)SL = −8(2)× 10−4 [10] .

4.5 CP violation in charged B decays
The possibility of CP violation in charged B decays is of special interest in the case of B± → DK±,
since D− D̄ oscillations allow for interference of two tree-level dominated decay amplitudes, in partic-
ular

B− → D0K− : b → cūs ,

11
B− → D̄0K− : b → c̄us . (50)

The resulting phenomenology is particularly transparent by focusing on subsequent D decays to CP
eigenstates [12]

D0 → fCP : c → dd̄u , ss̄u ,

D̄0 → fCP : c̄ → dd̄ū , ss̄ū . (51)

In the SM the ratio of the two decay amplitudes is then
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where we have used the definition of the angle γ ≡ Arg(−VudV ∗
ub/VcdV ∗

cb) � 70◦ [6] and have collected
the hadronic amplitude ratios into rB and the associated strong phases in δB .

The virtue of these modes is that in principle all unknown parameters can be determined by
measuring several available decay rates only, which are CP even quantities. In particular
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�
. (53)

can be used to extract the three hadronic parameters (A0, rB and δB) as well as γ . Since no B mixing
is involved, these measurements are sensitive to CP violation in decay also termed direct CP violation.
The determination of γ in this way is theoretically extremely clean, in particular, since CP violation in
D − D̄ mixing is negligible. Experimentally, it is advantageous to have both a large rB and large δB .
Therefore, it is welcome that such approach can be adapted also for D-decay products, which are non
CP eigenstates [13].

5 Flavour and New Physics
Let us first consider how much NP can still contribute to flavour observables, given the current exper-
imental and theoretical precision. For example, given the good agreement of SM tree-level mediated
processes with experiment, one can perform basic tests of CKM unitarity. Taking only the moduli of the
first row CKM elements:

– |Vud| which can be extracted from 0+ → 0+eν super-allowed nuclear β decays, yielding |Vud| =
0.97425(22) [6] ;

– |Vus| which is determined from the semileptonic kaon decays K+ → π+�ν, yielding |Vus| =
0.2237(13) [6] ;

– finally, |Vub| which is measured using charmless semileptonic B decays B → Xu�ν, yelding
|Vub| = 4.2(5)× 10−3 [6] ;

one can form the following CKM unitarity constraint [14]

|Vud|2 + |Vus|2 + |Vub|2 − 1 = −0.0008(7) . (54)
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The resulting phenomenology is particularly transparent by focusing on subsequent D decays to CP
eigenstates [12]

D0 → fCP : c → dd̄u , ss̄u ,

D̄0 → fCP : c̄ → dd̄ū , ss̄ū . (51)
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where we have used the definition of the angle γ ≡ Arg(−VudV ∗
ub/VcdV ∗

cb) � 70◦ [6] and have collected
the hadronic amplitude ratios into rB and the associated strong phases in δB .

The virtue of these modes is that in principle all unknown parameters can be determined by
measuring several available decay rates only, which are CP even quantities. In particular
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can be used to extract the three hadronic parameters (A0, rB and δB) as well as γ . Since no B mixing
is involved, these measurements are sensitive to CP violation in decay also termed direct CP violation.
The determination of γ in this way is theoretically extremely clean, in particular, since CP violation in
D − D̄ mixing is negligible. Experimentally, it is advantageous to have both a large rB and large δB .
Therefore, it is welcome that such approach can be adapted also for D-decay products, which are non
CP eigenstates [13].

5 Flavour and New Physics
Let us first consider how much NP can still contribute to flavour observables, given the current exper-
imental and theoretical precision. For example, given the good agreement of SM tree-level mediated
processes with experiment, one can perform basic tests of CKM unitarity. Taking only the moduli of the
first row CKM elements:

– |Vud| which can be extracted from 0+ → 0+eν super-allowed nuclear β decays, yielding |Vud| =
0.97425(22) [6] ;

– |Vus| which is determined from the semileptonic kaon decays K+ → π+�ν, yielding |Vus| =
0.2237(13) [6] ;

– finally, |Vub| which is measured using charmless semileptonic B decays B → Xu�ν, yelding
|Vub| = 4.2(5)× 10−3 [6] ;

one can form the following CKM unitarity constraint [14]

|Vud|2 + |Vus|2 + |Vub|2 − 1 = −0.0008(7) . (54)
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CP violation in charged 
B decays

• In SM:

•  

• Several decay rates: CPV in decay (direct CPV)

B− → D̄0K− : b → c̄us . (50)

The resulting phenomenology is particularly transparent by focusing on subsequent D decays to CP
eigenstates [12]

D0 → fCP : c → dd̄u , ss̄u ,

D̄0 → fCP : c̄ → dd̄ū , ss̄ū . (51)
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where we have used the definition of the angle γ ≡ Arg(−VudV ∗
ub/VcdV ∗

cb) � 70◦ [6] and have collected
the hadronic amplitude ratios into rB and the associated strong phases in δB .

The virtue of these modes is that in principle all unknown parameters can be determined by
measuring several available decay rates only, which are CP even quantities. In particular
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can be used to extract the three hadronic parameters (A0, rB and δB) as well as γ . Since no B mixing
is involved, these measurements are sensitive to CP violation in decay also termed direct CP violation.
The determination of γ in this way is theoretically extremely clean, in particular, since CP violation in
D − D̄ mixing is negligible. Experimentally, it is advantageous to have both a large rB and large δB .
Therefore, it is welcome that such approach can be adapted also for D-decay products, which are non
CP eigenstates [13].

5 Flavour and New Physics
Let us first consider how much NP can still contribute to flavour observables, given the current exper-
imental and theoretical precision. For example, given the good agreement of SM tree-level mediated
processes with experiment, one can perform basic tests of CKM unitarity. Taking only the moduli of the
first row CKM elements:

– |Vud| which can be extracted from 0+ → 0+eν super-allowed nuclear β decays, yielding |Vud| =
0.97425(22) [6] ;

– |Vus| which is determined from the semileptonic kaon decays K+ → π+�ν, yielding |Vus| =
0.2237(13) [6] ;

– finally, |Vub| which is measured using charmless semileptonic B decays B → Xu�ν, yelding
|Vub| = 4.2(5)× 10−3 [6] ;

one can form the following CKM unitarity constraint [14]

|Vud|2 + |Vus|2 + |Vub|2 − 1 = −0.0008(7) . (54)
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the hadronic amplitude ratios into rB and the associated strong phases in δB .

The virtue of these modes is that in principle all unknown parameters can be determined by
measuring several available decay rates only, which are CP even quantities. In particular
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can be used to extract the three hadronic parameters (A0, rB and δB) as well as γ . Since no B mixing
is involved, these measurements are sensitive to CP violation in decay also termed direct CP violation.
The determination of γ in this way is theoretically extremely clean, in particular, since CP violation in
D − D̄ mixing is negligible. Experimentally, it is advantageous to have both a large rB and large δB .
Therefore, it is welcome that such approach can be adapted also for D-decay products, which are non
CP eigenstates [13].

5 Flavour and New Physics
Let us first consider how much NP can still contribute to flavour observables, given the current exper-
imental and theoretical precision. For example, given the good agreement of SM tree-level mediated
processes with experiment, one can perform basic tests of CKM unitarity. Taking only the moduli of the
first row CKM elements:

– |Vud| which can be extracted from 0+ → 0+eν super-allowed nuclear β decays, yielding |Vud| =
0.97425(22) [6] ;

– |Vus| which is determined from the semileptonic kaon decays K+ → π+�ν, yielding |Vus| =
0.2237(13) [6] ;

– finally, |Vub| which is measured using charmless semileptonic B decays B → Xu�ν, yelding
|Vub| = 4.2(5)× 10−3 [6] ;

one can form the following CKM unitarity constraint [14]

|Vud|2 + |Vus|2 + |Vub|2 − 1 = −0.0008(7) . (54)
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Flavour & New Physics
• How much can NP still contribute to flavour 

observables?

• Example:

• |Vud| extracted from 0+→0+eν super-allowed 
nuclear β decays

• |Vus| from semileptonic kaon decays K+→π+lν

• |Vub| measured using charmless semileptonic B 
decays B→Xulν
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The resulting phenomenology is particularly transparent by focusing on subsequent D decays to CP
eigenstates [12]
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where we have used the definition of the angle γ ≡ Arg(−VudV ∗
ub/VcdV ∗

cb) � 70◦ [6] and have collected
the hadronic amplitude ratios into rB and the associated strong phases in δB .

The virtue of these modes is that in principle all unknown parameters can be determined by
measuring several available decay rates only, which are CP even quantities. In particular
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can be used to extract the three hadronic parameters (A0, rB and δB) as well as γ . Since no B mixing
is involved, these measurements are sensitive to CP violation in decay also termed direct CP violation.
The determination of γ in this way is theoretically extremely clean, in particular, since CP violation in
D − D̄ mixing is negligible. Experimentally, it is advantageous to have both a large rB and large δB .
Therefore, it is welcome that such approach can be adapted also for D-decay products, which are non
CP eigenstates [13].

5 Flavour and New Physics
Let us first consider how much NP can still contribute to flavour observables, given the current exper-
imental and theoretical precision. For example, given the good agreement of SM tree-level mediated
processes with experiment, one can perform basic tests of CKM unitarity. Taking only the moduli of the
first row CKM elements:

– |Vud| which can be extracted from 0+ → 0+eν super-allowed nuclear β decays, yielding |Vud| =
0.97425(22) [6] ;

– |Vus| which is determined from the semileptonic kaon decays K+ → π+�ν, yielding |Vus| =
0.2237(13) [6] ;

– finally, |Vub| which is measured using charmless semileptonic B decays B → Xu�ν, yelding
|Vub| = 4.2(5)× 10−3 [6] ;

one can form the following CKM unitarity constraint [14]

|Vud|2 + |Vus|2 + |Vub|2 − 1 = −0.0008(7) . (54)
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Flavour & New Physics
• Consider NP contributions to observables which are 

(loop, CKM) suppressed in SM

• Can use CKM determination from tree-level 
observables:

• |Vud|, |Vus|, |Vcb| and |Vub| as well as γ from B → 
DK decays

• ⇒ allows to predict SM contributions also to loop 
suppressed observables!
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NP in B mixing
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NP in B mixing
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The NP flavour puzzle
• SM is not a complete theory of Nature

• (quantum) description of gravity < 1019 GeV

• neutrino masses < 1015 GeV

• EW fine-tuning suggests NP @ 4πv ∼ 1 TeV
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The NP flavour puzzle
• SM is not a complete theory of Nature
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The NP flavour puzzle
• SM as effective field theory

• valid below cut-off scale Λ

• for natural theory: 

• NP flavour puzzle:                                            
If there is NP at the TeV scale, why haven’t we seen 
its effects in flavour observables?

2. It does not include neutrino masses. This further limits its validity down to below the maxi-

mal scale at which new degrees of freedom can accommodate at least two massive neutrinos

msee−saw � 1015 GeV.

3. The fine-tuning of the EW symmetry breaking scale compared to the large scales in the above

points 1. and 2. suggests NP already at scales of the order 4πv ∼ 1 TeV .
3

Given the SM is merely an effective field theory valid below a cut-off energy scale Λ, one needs to

consider additional terms in the theory Lagrangian consisting of SM field operators with canonical

dimensions d > 4:

L = LSM +
�

d>4

�

n

c(d)n

Λd−4
O

(d)
n . (58)

In a natural theory one expects c(d)n ∼ O(1) unless the relevant operators are forbidden or suppressed by

symmetries. For Λ ∼ TeV and without imposing additional symmetries beyond the gauged SM ones, the

above condition is severely violated for several O
(6)
n , which contribute to flavour changing processes.

This constitutes the so-called NP flavour puzzle , which can be articulated through the following ques-

tion: If there is NP at the TeV scale, why haven’t we seen its effects in flavour observables? Naively,

one could argue, that the same it true for NP violating baryon and lepton numbers. However, B and L
are (classically) exact accidental symmetries of the SM, while in the SM the flavour symmetry is already

broken explicitly.

5.3 Bounds on new physics from ∆F = 2 processes
The NP flavour puzzle can be demonstrated perhaps most dramatically in the case ∆F = 2 FCNCs.

In the SM the dispersive contributions to ∆F = 2 processes of down-quarks are typically dominated

by box diagrams with the top quarks appearing in the loop. These contributions can be schematically

written as
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+ . . . , (59)

where M = K0, B0, Bs, di,j denote meson valence quarks, F (x) ∼ O(1) is the relevant loop function

normalized to F (∞) = 1 , while the dots denote corrections due to charm quark contributions, which

are numerically relevant only in the case of K − K̄ mixing. Note that the prefactor can be rewritten

completely in terms of the fundamental flavour parameters (Yukawas) in the unbroken theory
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t
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tiVtj)
2 =

(YuY ∗
u )ij

128π2m2
t
, (60)

which can be interpreted as due to Goldstone Higgs exchanges in the gaugeless (g → 0) limit of the

SM.

The relevant hadronic matrix elements between the external M and M̄ mesons can be written as

�M̄ |(d̄iLγµd
j
L)(d̄

i
Lγ

µdjL)|M� = 2

3
f2
Mm2

M B̂M , (61)

where the relevant meson decay constant fM is defined via �0|diγµγ5dj |M(p)� ≡ ipµfM , while B̂M ∼
O(1) is called the bag parameter. These two hadronic quantities can be computed numerically using

lattice QCD methods.The tremendous progress in these calculations over the past 30 years is reflected

in the precise values of [15]

fB = 0.186(4) GeV , B̂B = 1.27(10) ,

3
Incidentally, the TeV mass scale can also be associated with the explanation of the cosmological dark matter, if the later is

in the form of a thermal particle relic.
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where M = K0, B0, Bs, di,j denote meson valence quarks, F (x) ∼ O(1) is the relevant loop function

normalized to F (∞) = 1 , while the dots denote corrections due to charm quark contributions, which

are numerically relevant only in the case of K − K̄ mixing. Note that the prefactor can be rewritten
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where the relevant meson decay constant fM is defined via �0|diγµγ5dj |M(p)� ≡ ipµfM , while B̂M ∼
O(1) is called the bag parameter. These two hadronic quantities can be computed numerically using

lattice QCD methods.The tremendous progress in these calculations over the past 30 years is reflected

in the precise values of [15]

fB = 0.186(4) GeV , B̂B = 1.27(10) ,

3
Incidentally, the TeV mass scale can also be associated with the explanation of the cosmological dark matter, if the later is

in the form of a thermal particle relic.
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The NP flavour puzzle
• SM as effective field theory

• Flavour as indirect probe of BSM physics beyond 
direct reach
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NP in ΔF=2
• In SM:(                        )
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above condition is severely violated for several O
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n , which contribute to flavour changing processes.
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tion: If there is NP at the TeV scale, why haven’t we seen its effects in flavour observables? Naively,

one could argue, that the same it true for NP violating baryon and lepton numbers. However, B and L
are (classically) exact accidental symmetries of the SM, while in the SM the flavour symmetry is already

broken explicitly.

5.3 Bounds on new physics from ∆F = 2 processes
The NP flavour puzzle can be demonstrated perhaps most dramatically in the case ∆F = 2 FCNCs.

In the SM the dispersive contributions to ∆F = 2 processes of down-quarks are typically dominated
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where M = K0, B0, Bs, di,j denote meson valence quarks, F (x) ∼ O(1) is the relevant loop function

normalized to F (∞) = 1 , while the dots denote corrections due to charm quark contributions, which

are numerically relevant only in the case of K − K̄ mixing. Note that the prefactor can be rewritten
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where the relevant meson decay constant fM is defined via �0|diγµγ5dj |M(p)� ≡ ipµfM , while B̂M ∼
O(1) is called the bag parameter. These two hadronic quantities can be computed numerically using

lattice QCD methods.The tremendous progress in these calculations over the past 30 years is reflected
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in the form of a thermal particle relic.

14

2. It does not include neutrino masses. This further limits its validity down to below the maxi-

mal scale at which new degrees of freedom can accommodate at least two massive neutrinos

msee−saw � 1015 GeV.

3. The fine-tuning of the EW symmetry breaking scale compared to the large scales in the above

points 1. and 2. suggests NP already at scales of the order 4πv ∼ 1 TeV .
3

Given the SM is merely an effective field theory valid below a cut-off energy scale Λ, one needs to

consider additional terms in the theory Lagrangian consisting of SM field operators with canonical

dimensions d > 4:

L = LSM +
�

d>4

�

n

c(d)n

Λd−4
O

(d)
n . (58)

In a natural theory one expects c(d)n ∼ O(1) unless the relevant operators are forbidden or suppressed by

symmetries. For Λ ∼ TeV and without imposing additional symmetries beyond the gauged SM ones, the

above condition is severely violated for several O
(6)
n , which contribute to flavour changing processes.

This constitutes the so-called NP flavour puzzle , which can be articulated through the following ques-

tion: If there is NP at the TeV scale, why haven’t we seen its effects in flavour observables? Naively,

one could argue, that the same it true for NP violating baryon and lepton numbers. However, B and L
are (classically) exact accidental symmetries of the SM, while in the SM the flavour symmetry is already

broken explicitly.

5.3 Bounds on new physics from ∆F = 2 processes
The NP flavour puzzle can be demonstrated perhaps most dramatically in the case ∆F = 2 FCNCs.

In the SM the dispersive contributions to ∆F = 2 processes of down-quarks are typically dominated

by box diagrams with the top quarks appearing in the loop. These contributions can be schematically

written as

MSM
12 =

G2
Fm

2
t

16π2
(V ∗

tiVtj)
2 �M̄ |(d̄iLγµd

j
L)

2
|M�F

�
m2

t

m2
W

�
+ . . . , (59)

where M = K0, B0, Bs, di,j denote meson valence quarks, F (x) ∼ O(1) is the relevant loop function
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3
Incidentally, the TeV mass scale can also be associated with the explanation of the cosmological dark matter, if the later is

in the form of a thermal particle relic.
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Fig. 4: Constraints in the (a) r2d–2θd plane, and (b) hd–σd plane, assuming that new physics contributions to
tree-level processes are negligible [12]

5 The new physics flavour puzzle
It is clear that the Standard Model is not a complete theory of Nature:

1. It does not include gravity, and therefore it cannot be valid at energy scales above mPlanck ∼
1019 GeV.

2. It does not allow for neutrino masses, and therefore it cannot be valid at energy scales above
mseesaw ∼ 1015 GeV.

3. The fine-tuning problem of the Higgs mass and the puzzle of dark matter suggest that the scale
where the SM is replaced with a more fundamental theory is actually much lower, ΛNP ! 1 TeV.

Given that the SM is only an effective low-energy theory, non-renormalizable terms must be added to
LSM of Eq. (4). These are terms of dimension higher than four in the fields which, therefore, have
couplings that are inversely proportional to the scale of new physics ΛNP. For example, the lowest-
dimension non-renormalizable terms are dimension five:

− Ldim−5
Yukawa =

Zν
ij

ΛNP
LI
LiL

I
Ljφφ+ h.c. (44)

These are the seesaw terms, leading to neutrino masses. We shall return to the topic of neutrino masses
in Section 8.

Exercise 5: How does the global symmetry breaking pattern (14) change when (44) is taken into
account?

Exercise 6: What is the number of physical lepton flavour parameters in this case? Identify these
parameters in the mass basis.

As concerns quark flavour physics, consider, for example, the following dimension-six, four-
fermion, flavour-changing operators:

L∆F=2 =
zsd
Λ2
NP

(dLγµsL)
2 +

zcu
Λ2
NP

(cLγµuL)
2 +

zbd
Λ2
NP

(dLγµbL)
2 +

zbs
Λ2
NP

(sLγµbL)
2. (45)

Each of these terms contributes to the mass splitting between the corresponding two neutral mesons.
For example, the term L∆B=2 ∝ (dLγµbL)2 contributes to ∆mB, the mass difference between the two
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Fig. 4: Constraints in the (a) r2d–2θd plane, and (b) hd–σd plane, assuming that new physics contributions to
tree-level processes are negligible [12]

5 The new physics flavour puzzle
It is clear that the Standard Model is not a complete theory of Nature:

1. It does not include gravity, and therefore it cannot be valid at energy scales above mPlanck ∼
1019 GeV.

2. It does not allow for neutrino masses, and therefore it cannot be valid at energy scales above
mseesaw ∼ 1015 GeV.

3. The fine-tuning problem of the Higgs mass and the puzzle of dark matter suggest that the scale
where the SM is replaced with a more fundamental theory is actually much lower, ΛNP ! 1 TeV.

Given that the SM is only an effective low-energy theory, non-renormalizable terms must be added to
LSM of Eq. (4). These are terms of dimension higher than four in the fields which, therefore, have
couplings that are inversely proportional to the scale of new physics ΛNP. For example, the lowest-
dimension non-renormalizable terms are dimension five:

− Ldim−5
Yukawa =

Zν
ij

ΛNP
LI
LiL

I
Ljφφ+ h.c. (44)

These are the seesaw terms, leading to neutrino masses. We shall return to the topic of neutrino masses
in Section 8.

Exercise 5: How does the global symmetry breaking pattern (14) change when (44) is taken into
account?

Exercise 6: What is the number of physical lepton flavour parameters in this case? Identify these
parameters in the mass basis.

As concerns quark flavour physics, consider, for example, the following dimension-six, four-
fermion, flavour-changing operators:

L∆F=2 =
zsd
Λ2
NP

(dLγµsL)
2 +

zcu
Λ2
NP

(cLγµuL)
2 +

zbd
Λ2
NP

(dLγµbL)
2 +

zbs
Λ2
NP

(sLγµbL)
2. (45)

Each of these terms contributes to the mass splitting between the corresponding two neutral mesons.
For example, the term L∆B=2 ∝ (dLγµbL)2 contributes to ∆mB, the mass difference between the two
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neutral B-mesons. We useMB
12 =

1
2mB

〈B0|L∆F=2|B
0〉 and

〈B0|(dLaγµbLa)(dLbγµbLb)|B
0〉 = −1

3
m2

Bf
2
BBB. (46)

Analogous expressions hold for the other neutral mesons2. This leads to ∆mB/mB = 2|MB
12|/mB ∼

(|zbd|/3)(fB/ΛNP)2. Experiments give, for CP conserving observables (the experimental evidence for
∆mD is at the 3σ level):

∆mK/mK ∼ 7.0× 10−15,

∆mD/mD ∼ 8.7× 10−15,

∆mB/mB ∼ 6.3× 10−14,

∆mBs/mBs ∼ 2.1× 10−12, (47)

and for CP violating ones

εK ∼ 2.3× 10−3,

AΓ/yCP ∼< 0.2,

SψKS
= 0.67± 0.02,

Sψφ ∼< 1. (48)

These measurements give then the following constraints:

ΛNP ∼>























√
zsd 1× 103 TeV ∆mK

√
zcu 1× 103 TeV ∆mD

√
zbd 4× 102 TeV ∆mB

√
zbs 7× 101 TeV ∆mBs

(49)

and, for maximal phases,

ΛNP ∼>























√
zsd 2× 104 TeV εK

√
zcu 3× 103 TeV AΓ

√
zbd 8× 102 TeV SψK√
zbs 7× 101 TeV Sψφ

(50)

If the new physics has a generic flavour structure, that is zij = O(1), then its scale must be above
103–104 TeV (or, if the leading contributions involve electroweak loops, above 102–103 TeV).3

If indeed ΛNP ' TeV, it means that we have misinterpreted the hints from the fine-tuning problem
and the dark matter puzzle. There is, however, another way to look at these constraints:

zsd ∼< 8× 10−7 (ΛNP/TeV)2,
zcu ∼< 5× 10−7 (ΛNP/TeV)2,
zbd ∼< 5× 10−6 (ΛNP/TeV)2,
zbs ∼< 2× 10−4 (ΛNP/TeV)2, (51)

zIsd ∼< 6× 10−9 (ΛNP/TeV)2,
2The PDG [11] quotes the following values, extracted from leptonic charged meson decays: fK ≈ 0.16 GeV, fD ≈

0.23 GeV, fB ≈ 0.18 GeV. We further use fBs
≈ 0.20 GeV.

3The bounds from the corresponding four-fermi terms with LR structure, instead of the LL structure of Eq. (45), are even
stronger.
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Fig. 4: Constraints in the (a) r2d–2θd plane, and (b) hd–σd plane, assuming that new physics contributions to
tree-level processes are negligible [12]

5 The new physics flavour puzzle
It is clear that the Standard Model is not a complete theory of Nature:

1. It does not include gravity, and therefore it cannot be valid at energy scales above mPlanck ∼
1019 GeV.

2. It does not allow for neutrino masses, and therefore it cannot be valid at energy scales above
mseesaw ∼ 1015 GeV.

3. The fine-tuning problem of the Higgs mass and the puzzle of dark matter suggest that the scale
where the SM is replaced with a more fundamental theory is actually much lower, ΛNP ! 1 TeV.

Given that the SM is only an effective low-energy theory, non-renormalizable terms must be added to
LSM of Eq. (4). These are terms of dimension higher than four in the fields which, therefore, have
couplings that are inversely proportional to the scale of new physics ΛNP. For example, the lowest-
dimension non-renormalizable terms are dimension five:

− Ldim−5
Yukawa =

Zν
ij

ΛNP
LI
LiL

I
Ljφφ+ h.c. (44)

These are the seesaw terms, leading to neutrino masses. We shall return to the topic of neutrino masses
in Section 8.

Exercise 5: How does the global symmetry breaking pattern (14) change when (44) is taken into
account?

Exercise 6: What is the number of physical lepton flavour parameters in this case? Identify these
parameters in the mass basis.

As concerns quark flavour physics, consider, for example, the following dimension-six, four-
fermion, flavour-changing operators:

L∆F=2 =
zsd
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0.23 GeV, fB ≈ 0.18 GeV. We further use fBs
≈ 0.20 GeV.

3The bounds from the corresponding four-fermi terms with LR structure, instead of the LL structure of Eq. (45), are even
stronger.
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AB ∼ zij [q̄iΓ

Aqj ]⊗ [q̄iΓ
Bqj ]

zij ∼ exp(iφNP )
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Fig. 4: Constraints in the (a) r2d–2θd plane, and (b) hd–σd plane, assuming that new physics contributions to
tree-level processes are negligible [12]

5 The new physics flavour puzzle
It is clear that the Standard Model is not a complete theory of Nature:

1. It does not include gravity, and therefore it cannot be valid at energy scales above mPlanck ∼
1019 GeV.

2. It does not allow for neutrino masses, and therefore it cannot be valid at energy scales above
mseesaw ∼ 1015 GeV.

3. The fine-tuning problem of the Higgs mass and the puzzle of dark matter suggest that the scale
where the SM is replaced with a more fundamental theory is actually much lower, ΛNP ! 1 TeV.

Given that the SM is only an effective low-energy theory, non-renormalizable terms must be added to
LSM of Eq. (4). These are terms of dimension higher than four in the fields which, therefore, have
couplings that are inversely proportional to the scale of new physics ΛNP. For example, the lowest-
dimension non-renormalizable terms are dimension five:

− Ldim−5
Yukawa =

Zν
ij

ΛNP
LI
LiL

I
Ljφφ+ h.c. (44)

These are the seesaw terms, leading to neutrino masses. We shall return to the topic of neutrino masses
in Section 8.

Exercise 5: How does the global symmetry breaking pattern (14) change when (44) is taken into
account?

Exercise 6: What is the number of physical lepton flavour parameters in this case? Identify these
parameters in the mass basis.

As concerns quark flavour physics, consider, for example, the following dimension-six, four-
fermion, flavour-changing operators:

L∆F=2 =
zsd
Λ2
NP

(dLγµsL)
2 +

zcu
Λ2
NP

(cLγµuL)
2 +

zbd
Λ2
NP

(dLγµbL)
2 +

zbs
Λ2
NP

(sLγµbL)
2. (45)

Each of these terms contributes to the mass splitting between the corresponding two neutral mesons.
For example, the term L∆B=2 ∝ (dLγµbL)2 contributes to ∆mB, the mass difference between the two
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If the new physics has a generic flavour structure, that is zij = O(1), then its scale must be above
103–104 TeV (or, if the leading contributions involve electroweak loops, above 102–103 TeV).3

If indeed ΛNP ' TeV, it means that we have misinterpreted the hints from the fine-tuning problem
and the dark matter puzzle. There is, however, another way to look at these constraints:

zsd ∼< 8× 10−7 (ΛNP/TeV)2,
zcu ∼< 5× 10−7 (ΛNP/TeV)2,
zbd ∼< 5× 10−6 (ΛNP/TeV)2,
zbs ∼< 2× 10−4 (ΛNP/TeV)2, (51)

zIsd ∼< 6× 10−9 (ΛNP/TeV)2,
2The PDG [11] quotes the following values, extracted from leptonic charged meson decays: fK ≈ 0.16 GeV, fD ≈

0.23 GeV, fB ≈ 0.18 GeV. We further use fBs
≈ 0.20 GeV.

3The bounds from the corresponding four-fermi terms with LR structure, instead of the LL structure of Eq. (45), are even
stronger.
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zIcu ∼< 1× 10−7 (ΛNP/TeV)2,
zIbd ∼< 1× 10−6 (ΛNP/TeV)2,
zIbs ∼< 2× 10−4 (ΛNP/TeV)2. (52)

It could be that the scale of new physics is of order TeV, but its flavour structure is far from generic.
One can use that language of effective operators also for the SM, integrating out all particles

significantly heavier than the neutral mesons (that is, the top, the Higgs, and the weak gauge bosons).
Thus the scale is ΛSM ∼ mW . Since the leading contributions to neutral meson mixings come from
box diagrams, the zij coefficients are suppressed by α2

2. To identify the relevant flavour suppression
factor, one can employ the spurion formalism. For example, the flavour transition that is relevant to
B0–B0 mixing involves dLbL which transforms as (8, 1, 1)SU(3)3q

. The leading contribution must then
be proportional to (Y uY u†)13 ∝ y2t VtbV ∗

td. Indeed, an explicit calculation (using VIA for the matrix
element and neglecting QCD corrections) gives4

2MB
12

mB
≈ −α2

2

12

f2
B

m2
W

S0(xt)(VtbV
∗
td)

2, (53)

where xi = m2
i /m

2
W and

S0(x) =
x

(1− x)2

[

1− 11x

4
+

x2

4
− 3x2 lnx

2(1 − x)

]

. (54)

Similar spurion analyses, or explicit calculations, allow us to extract the weak and flavour suppression
factors that apply in the SM:

Im(zSMsd ) ∼ α2
2y

2
t |VtdVts|2 ∼ 1× 10−10,

zSMsd ∼ α2
2y

2
c |VcdVcs|2 ∼ 5× 10−9,

zSMbd ∼ α2
2y

2
t |VtdVtb|2 ∼ 7× 10−8,

zSMbs ∼ α2
2y

2
t |VtsVtb|2 ∼ 2× 10−6. (55)

(We did not include zSMcu in the list because it requires a more detailed consideration. The naively leading
short distance contribution is∝ α2

2(y
4
s/y

2
c )|VcsVus|2 ∼ 5×10−13. However, higher dimension terms can

replace a y2s factor with (Λ/mD)2 [18]. Moreover, long distance contributions are expected to dominate.
In particular, peculiar phase space effects [19, 20] have been identified which are expected to enhance
∆mD to within an order of magnitude of its measured value.)

It is clear then that contributions from new physics at ΛNP ∼ 1 TeV should be suppressed by
factors that are comparable to or smaller than the SM ones. Why does that happen? This is the new
physics flavour puzzle.

The fact that the flavour structure of new physics at the TeV scale must be non-generic means that
flavour measurements are a good probe of the new physics. Perhaps the best-studied example is that of
supersymmetry. Here, the spectrum of the superpartners and the structure of their couplings to the SM
fermions will allow us to probe the mechanism of dynamical supersymmetry breaking.

6 Lessons for supersymmetry fromD0–D0 mixing
Interesting experimental results concerning D0–D0 mixing have recently been achieved by the BELLE
and BaBar experiments. For the first time, there is evidence for width splitting [21,22] and mass splitting

4A detailed derivation can be found in Appendix B of Ref. [17].
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in case of TeV NP, flavour structure needs to be far from generic
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Fig. 4: Constraints in the (a) r2d–2θd plane, and (b) hd–σd plane, assuming that new physics contributions to
tree-level processes are negligible [12]

5 The new physics flavour puzzle
It is clear that the Standard Model is not a complete theory of Nature:

1. It does not include gravity, and therefore it cannot be valid at energy scales above mPlanck ∼
1019 GeV.

2. It does not allow for neutrino masses, and therefore it cannot be valid at energy scales above
mseesaw ∼ 1015 GeV.

3. The fine-tuning problem of the Higgs mass and the puzzle of dark matter suggest that the scale
where the SM is replaced with a more fundamental theory is actually much lower, ΛNP ! 1 TeV.

Given that the SM is only an effective low-energy theory, non-renormalizable terms must be added to
LSM of Eq. (4). These are terms of dimension higher than four in the fields which, therefore, have
couplings that are inversely proportional to the scale of new physics ΛNP. For example, the lowest-
dimension non-renormalizable terms are dimension five:

− Ldim−5
Yukawa =

Zν
ij

ΛNP
LI
LiL

I
Ljφφ+ h.c. (44)

These are the seesaw terms, leading to neutrino masses. We shall return to the topic of neutrino masses
in Section 8.

Exercise 5: How does the global symmetry breaking pattern (14) change when (44) is taken into
account?

Exercise 6: What is the number of physical lepton flavour parameters in this case? Identify these
parameters in the mass basis.

As concerns quark flavour physics, consider, for example, the following dimension-six, four-
fermion, flavour-changing operators:

L∆F=2 =
zsd
Λ2
NP

(dLγµsL)
2 +

zcu
Λ2
NP

(cLγµuL)
2 +

zbd
Λ2
NP

(dLγµbL)
2 +

zbs
Λ2
NP

(sLγµbL)
2. (45)

Each of these terms contributes to the mass splitting between the corresponding two neutral mesons.
For example, the term L∆B=2 ∝ (dLγµbL)2 contributes to ∆mB, the mass difference between the two
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neutral B-mesons. We useMB
12 =

1
2mB

〈B0|L∆F=2|B
0〉 and

〈B0|(dLaγµbLa)(dLbγµbLb)|B
0〉 = −1

3
m2

Bf
2
BBB. (46)

Analogous expressions hold for the other neutral mesons2. This leads to ∆mB/mB = 2|MB
12|/mB ∼

(|zbd|/3)(fB/ΛNP)2. Experiments give, for CP conserving observables (the experimental evidence for
∆mD is at the 3σ level):

∆mK/mK ∼ 7.0× 10−15,

∆mD/mD ∼ 8.7× 10−15,

∆mB/mB ∼ 6.3× 10−14,

∆mBs/mBs ∼ 2.1× 10−12, (47)

and for CP violating ones

εK ∼ 2.3× 10−3,

AΓ/yCP ∼< 0.2,

SψKS
= 0.67± 0.02,

Sψφ ∼< 1. (48)

These measurements give then the following constraints:

ΛNP ∼>























√
zsd 1× 103 TeV ∆mK

√
zcu 1× 103 TeV ∆mD

√
zbd 4× 102 TeV ∆mB

√
zbs 7× 101 TeV ∆mBs

(49)

and, for maximal phases,

ΛNP ∼>























√
zsd 2× 104 TeV εK

√
zcu 3× 103 TeV AΓ

√
zbd 8× 102 TeV SψK√
zbs 7× 101 TeV Sψφ

(50)

If the new physics has a generic flavour structure, that is zij = O(1), then its scale must be above
103–104 TeV (or, if the leading contributions involve electroweak loops, above 102–103 TeV).3

If indeed ΛNP ' TeV, it means that we have misinterpreted the hints from the fine-tuning problem
and the dark matter puzzle. There is, however, another way to look at these constraints:

zsd ∼< 8× 10−7 (ΛNP/TeV)2,
zcu ∼< 5× 10−7 (ΛNP/TeV)2,
zbd ∼< 5× 10−6 (ΛNP/TeV)2,
zbs ∼< 2× 10−4 (ΛNP/TeV)2, (51)

zIsd ∼< 6× 10−9 (ΛNP/TeV)2,
2The PDG [11] quotes the following values, extracted from leptonic charged meson decays: fK ≈ 0.16 GeV, fD ≈

0.23 GeV, fB ≈ 0.18 GeV. We further use fBs
≈ 0.20 GeV.

3The bounds from the corresponding four-fermi terms with LR structure, instead of the LL structure of Eq. (45), are even
stronger.
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2The PDG [11] quotes the following values, extracted from leptonic charged meson decays: fK ≈ 0.16 GeV, fD ≈

0.23 GeV, fB ≈ 0.18 GeV. We further use fBs
≈ 0.20 GeV.

3The bounds from the corresponding four-fermi terms with LR structure, instead of the LL structure of Eq. (45), are even
stronger.

12

zIcu ∼< 1× 10−7 (ΛNP/TeV)2,
zIbd ∼< 1× 10−6 (ΛNP/TeV)2,
zIbs ∼< 2× 10−4 (ΛNP/TeV)2. (52)

It could be that the scale of new physics is of order TeV, but its flavour structure is far from generic.
One can use that language of effective operators also for the SM, integrating out all particles

significantly heavier than the neutral mesons (that is, the top, the Higgs, and the weak gauge bosons).
Thus the scale is ΛSM ∼ mW . Since the leading contributions to neutral meson mixings come from
box diagrams, the zij coefficients are suppressed by α2

2. To identify the relevant flavour suppression
factor, one can employ the spurion formalism. For example, the flavour transition that is relevant to
B0–B0 mixing involves dLbL which transforms as (8, 1, 1)SU(3)3q

. The leading contribution must then
be proportional to (Y uY u†)13 ∝ y2t VtbV ∗

td. Indeed, an explicit calculation (using VIA for the matrix
element and neglecting QCD corrections) gives4

2MB
12

mB
≈ −α2

2

12

f2
B

m2
W

S0(xt)(VtbV
∗
td)

2, (53)

where xi = m2
i /m

2
W and

S0(x) =
x

(1− x)2

[

1− 11x

4
+

x2

4
− 3x2 lnx

2(1 − x)

]

. (54)

Similar spurion analyses, or explicit calculations, allow us to extract the weak and flavour suppression
factors that apply in the SM:

Im(zSMsd ) ∼ α2
2y

2
t |VtdVts|2 ∼ 1× 10−10,

zSMsd ∼ α2
2y

2
c |VcdVcs|2 ∼ 5× 10−9,

zSMbd ∼ α2
2y

2
t |VtdVtb|2 ∼ 7× 10−8,

zSMbs ∼ α2
2y

2
t |VtsVtb|2 ∼ 2× 10−6. (55)

(We did not include zSMcu in the list because it requires a more detailed consideration. The naively leading
short distance contribution is∝ α2

2(y
4
s/y

2
c )|VcsVus|2 ∼ 5×10−13. However, higher dimension terms can

replace a y2s factor with (Λ/mD)2 [18]. Moreover, long distance contributions are expected to dominate.
In particular, peculiar phase space effects [19, 20] have been identified which are expected to enhance
∆mD to within an order of magnitude of its measured value.)

It is clear then that contributions from new physics at ΛNP ∼ 1 TeV should be suppressed by
factors that are comparable to or smaller than the SM ones. Why does that happen? This is the new
physics flavour puzzle.

The fact that the flavour structure of new physics at the TeV scale must be non-generic means that
flavour measurements are a good probe of the new physics. Perhaps the best-studied example is that of
supersymmetry. Here, the spectrum of the superpartners and the structure of their couplings to the SM
fermions will allow us to probe the mechanism of dynamical supersymmetry breaking.

6 Lessons for supersymmetry fromD0–D0 mixing
Interesting experimental results concerning D0–D0 mixing have recently been achieved by the BELLE
and BaBar experiments. For the first time, there is evidence for width splitting [21,22] and mass splitting

4A detailed derivation can be found in Appendix B of Ref. [17].
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











√
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√
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√
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√
zbs 7× 101 TeV ∆mBs

(49)

and, for maximal phases,
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
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










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√
zsd 2× 104 TeV εK

√
zcu 3× 103 TeV AΓ

√
zbd 8× 102 TeV SψK√
zbs 7× 101 TeV Sψφ

(50)

If the new physics has a generic flavour structure, that is zij = O(1), then its scale must be above
103–104 TeV (or, if the leading contributions involve electroweak loops, above 102–103 TeV).3

If indeed ΛNP ' TeV, it means that we have misinterpreted the hints from the fine-tuning problem
and the dark matter puzzle. There is, however, another way to look at these constraints:

zsd ∼< 8× 10−7 (ΛNP/TeV)2,
zcu ∼< 5× 10−7 (ΛNP/TeV)2,
zbd ∼< 5× 10−6 (ΛNP/TeV)2,
zbs ∼< 2× 10−4 (ΛNP/TeV)2, (51)

zIsd ∼< 6× 10−9 (ΛNP/TeV)2,
2The PDG [11] quotes the following values, extracted from leptonic charged meson decays: fK ≈ 0.16 GeV, fD ≈

0.23 GeV, fB ≈ 0.18 GeV. We further use fBs
≈ 0.20 GeV.

3The bounds from the corresponding four-fermi terms with LR structure, instead of the LL structure of Eq. (45), are even
stronger.
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Fig. 4: Constraints in the (a) r2d–2θd plane, and (b) hd–σd plane, assuming that new physics contributions to
tree-level processes are negligible [12]

5 The new physics flavour puzzle
It is clear that the Standard Model is not a complete theory of Nature:

1. It does not include gravity, and therefore it cannot be valid at energy scales above mPlanck ∼
1019 GeV.

2. It does not allow for neutrino masses, and therefore it cannot be valid at energy scales above
mseesaw ∼ 1015 GeV.

3. The fine-tuning problem of the Higgs mass and the puzzle of dark matter suggest that the scale
where the SM is replaced with a more fundamental theory is actually much lower, ΛNP ! 1 TeV.

Given that the SM is only an effective low-energy theory, non-renormalizable terms must be added to
LSM of Eq. (4). These are terms of dimension higher than four in the fields which, therefore, have
couplings that are inversely proportional to the scale of new physics ΛNP. For example, the lowest-
dimension non-renormalizable terms are dimension five:

− Ldim−5
Yukawa =

Zν
ij

ΛNP
LI
LiL

I
Ljφφ+ h.c. (44)

These are the seesaw terms, leading to neutrino masses. We shall return to the topic of neutrino masses
in Section 8.

Exercise 5: How does the global symmetry breaking pattern (14) change when (44) is taken into
account?

Exercise 6: What is the number of physical lepton flavour parameters in this case? Identify these
parameters in the mass basis.

As concerns quark flavour physics, consider, for example, the following dimension-six, four-
fermion, flavour-changing operators:

L∆F=2 =
zsd
Λ2
NP

(dLγµsL)
2 +

zcu
Λ2
NP

(cLγµuL)
2 +

zbd
Λ2
NP

(dLγµbL)
2 +

zbs
Λ2
NP

(sLγµbL)
2. (45)

Each of these terms contributes to the mass splitting between the corresponding two neutral mesons.
For example, the term L∆B=2 ∝ (dLγµbL)2 contributes to ∆mB, the mass difference between the two

11

SM (ΛSM≈v)

neutral B-mesons. We useMB
12 =

1
2mB

〈B0|L∆F=2|B
0〉 and

〈B0|(dLaγµbLa)(dLbγµbLb)|B
0〉 = −1

3
m2

Bf
2
BBB. (46)

Analogous expressions hold for the other neutral mesons2. This leads to ∆mB/mB = 2|MB
12|/mB ∼

(|zbd|/3)(fB/ΛNP)2. Experiments give, for CP conserving observables (the experimental evidence for
∆mD is at the 3σ level):

∆mK/mK ∼ 7.0× 10−15,

∆mD/mD ∼ 8.7× 10−15,

∆mB/mB ∼ 6.3× 10−14,

∆mBs/mBs ∼ 2.1× 10−12, (47)

and for CP violating ones

εK ∼ 2.3× 10−3,

AΓ/yCP ∼< 0.2,

SψKS
= 0.67± 0.02,

Sψφ ∼< 1. (48)

These measurements give then the following constraints:

ΛNP ∼>























√
zsd 1× 103 TeV ∆mK

√
zcu 1× 103 TeV ∆mD

√
zbd 4× 102 TeV ∆mB

√
zbs 7× 101 TeV ∆mBs

(49)

and, for maximal phases,

ΛNP ∼>























√
zsd 2× 104 TeV εK

√
zcu 3× 103 TeV AΓ

√
zbd 8× 102 TeV SψK√
zbs 7× 101 TeV Sψφ

(50)

If the new physics has a generic flavour structure, that is zij = O(1), then its scale must be above
103–104 TeV (or, if the leading contributions involve electroweak loops, above 102–103 TeV).3

If indeed ΛNP ' TeV, it means that we have misinterpreted the hints from the fine-tuning problem
and the dark matter puzzle. There is, however, another way to look at these constraints:

zsd ∼< 8× 10−7 (ΛNP/TeV)2,
zcu ∼< 5× 10−7 (ΛNP/TeV)2,
zbd ∼< 5× 10−6 (ΛNP/TeV)2,
zbs ∼< 2× 10−4 (ΛNP/TeV)2, (51)

zIsd ∼< 6× 10−9 (ΛNP/TeV)2,
2The PDG [11] quotes the following values, extracted from leptonic charged meson decays: fK ≈ 0.16 GeV, fD ≈

0.23 GeV, fB ≈ 0.18 GeV. We further use fBs
≈ 0.20 GeV.

3The bounds from the corresponding four-fermi terms with LR structure, instead of the LL structure of Eq. (45), are even
stronger.
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zIcu ∼< 1× 10−7 (ΛNP/TeV)2,
zIbd ∼< 1× 10−6 (ΛNP/TeV)2,
zIbs ∼< 2× 10−4 (ΛNP/TeV)2. (52)

It could be that the scale of new physics is of order TeV, but its flavour structure is far from generic.
One can use that language of effective operators also for the SM, integrating out all particles

significantly heavier than the neutral mesons (that is, the top, the Higgs, and the weak gauge bosons).
Thus the scale is ΛSM ∼ mW . Since the leading contributions to neutral meson mixings come from
box diagrams, the zij coefficients are suppressed by α2

2. To identify the relevant flavour suppression
factor, one can employ the spurion formalism. For example, the flavour transition that is relevant to
B0–B0 mixing involves dLbL which transforms as (8, 1, 1)SU(3)3q

. The leading contribution must then
be proportional to (Y uY u†)13 ∝ y2t VtbV ∗

td. Indeed, an explicit calculation (using VIA for the matrix
element and neglecting QCD corrections) gives4

2MB
12

mB
≈ −α2

2

12

f2
B

m2
W

S0(xt)(VtbV
∗
td)

2, (53)

where xi = m2
i /m

2
W and

S0(x) =
x

(1− x)2

[

1− 11x

4
+

x2

4
− 3x2 lnx

2(1 − x)

]

. (54)

Similar spurion analyses, or explicit calculations, allow us to extract the weak and flavour suppression
factors that apply in the SM:

Im(zSMsd ) ∼ α2
2y

2
t |VtdVts|2 ∼ 1× 10−10,

zSMsd ∼ α2
2y

2
c |VcdVcs|2 ∼ 5× 10−9,

zSMbd ∼ α2
2y

2
t |VtdVtb|2 ∼ 7× 10−8,

zSMbs ∼ α2
2y

2
t |VtsVtb|2 ∼ 2× 10−6. (55)

(We did not include zSMcu in the list because it requires a more detailed consideration. The naively leading
short distance contribution is∝ α2

2(y
4
s/y

2
c )|VcsVus|2 ∼ 5×10−13. However, higher dimension terms can

replace a y2s factor with (Λ/mD)2 [18]. Moreover, long distance contributions are expected to dominate.
In particular, peculiar phase space effects [19, 20] have been identified which are expected to enhance
∆mD to within an order of magnitude of its measured value.)

It is clear then that contributions from new physics at ΛNP ∼ 1 TeV should be suppressed by
factors that are comparable to or smaller than the SM ones. Why does that happen? This is the new
physics flavour puzzle.

The fact that the flavour structure of new physics at the TeV scale must be non-generic means that
flavour measurements are a good probe of the new physics. Perhaps the best-studied example is that of
supersymmetry. Here, the spectrum of the superpartners and the structure of their couplings to the SM
fermions will allow us to probe the mechanism of dynamical supersymmetry breaking.

6 Lessons for supersymmetry fromD0–D0 mixing
Interesting experimental results concerning D0–D0 mixing have recently been achieved by the BELLE
and BaBar experiments. For the first time, there is evidence for width splitting [21,22] and mass splitting

4A detailed derivation can be found in Appendix B of Ref. [17].
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ΛNP ∼>























√
zsd 1× 103 TeV ∆mK

√
zcu 1× 103 TeV ∆mD

√
zbd 4× 102 TeV ∆mB

√
zbs 7× 101 TeV ∆mBs

(49)

and, for maximal phases,

ΛNP ∼>























√
zsd 2× 104 TeV εK

√
zcu 3× 103 TeV AΓ

√
zbd 8× 102 TeV SψK√
zbs 7× 101 TeV Sψφ

(50)

If the new physics has a generic flavour structure, that is zij = O(1), then its scale must be above
103–104 TeV (or, if the leading contributions involve electroweak loops, above 102–103 TeV).3

If indeed ΛNP ' TeV, it means that we have misinterpreted the hints from the fine-tuning problem
and the dark matter puzzle. There is, however, another way to look at these constraints:

zsd ∼< 8× 10−7 (ΛNP/TeV)2,
zcu ∼< 5× 10−7 (ΛNP/TeV)2,
zbd ∼< 5× 10−6 (ΛNP/TeV)2,
zbs ∼< 2× 10−4 (ΛNP/TeV)2, (51)

zIsd ∼< 6× 10−9 (ΛNP/TeV)2,
2The PDG [11] quotes the following values, extracted from leptonic charged meson decays: fK ≈ 0.16 GeV, fD ≈

0.23 GeV, fB ≈ 0.18 GeV. We further use fBs
≈ 0.20 GeV.

3The bounds from the corresponding four-fermi terms with LR structure, instead of the LL structure of Eq. (45), are even
stronger.
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B(K+ → π+νν̄) ∼ 8× 10−11 ,

B(Bd → µ+µ−) ∼ 10−10 ,

B(Bs → µ+µ−) ∼ 4× 10−9 .
⇒
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Particularly sensitive to FCNC scalar currents and FCNC Z 
penguins

Bs,d → !+!-

17

Clean probe of the Yukawa interaction  (⇒ Higgs sector) 
beyond tree level

Latest results beginning 
to test possible         
enhancement 

Nontrivial test of MFV.

see talk by Kohda

Hurth et al., 0807.5039

MFV

Figure 2: Correlation between the branching ratios of Bs → µ+µ− and Bd → µ+µ−

in MFV, the SM4 and four SUSY flavour models. The gray area is ruled out experi-
mentally. The SM point is marked by a star.

3.2 Bs → µ+µ− vs. Bd → µ+µ−

The correlation between the decays Bs → µ+µ− and Bd → µ+µ− is an example of a
“vertical” correlation mentioned in section 2. Beyond the SM, their branching ratios
can be written as

BR(Bq → µ+µ−) ∝ |S|2
�
1− 4x2

µ

�
+ |P |2, (5)

S = Cbq
S − C �bq

S , P = Cbq
P − C �bq

P + 2xµ(C
bq
10 − C �bq

10 ) , xµ = mµ/mBs . (6)

Order-of-magnitude enhancements of these branching ratios are only possible in the
presence of sizable contributions from scalar or pseudoscalar operators. In two-Higgs-
doublet models, the contribution to Cbq

S from neutral Higgs exchange scales as tan β2,
where tan β is the ratio of the two Higgs VEVs. In the MSSM, the non-holomorphic
corrections to the Yukawa couplings even enhance this contribution to tanβ3.

Figure 2 shows the correlation between BR(Bs → µ+µ−) and BR(Bd → µ+µ−)
in MFV, the SM4 and four SUSY flavour models¶ analyzed in detail in [10]. The
MFV line, shown in orange, is obtained from the flavour independence of the Wil-
son coefficients, cf. eq. (3). The largest effects are obtained in the SUSY flavour
models due to the above-mentioned Higgs-mediated contributions. While in some

¶The acronyms stand for the models by Agashe and Carone (AC, [13]), Ross, Velasco-Sevilla
and Vives (RVV2, [12]), Antusch, King and Malinsky (AKM, [11]) and a model with left-handed
currents only (LL, [14]).

5

CMS 68%, 95% C.L.

update of Straub, 1012.3893
using CMS, 1307.5025

Bd/Bs
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The decay B0 → K∗0[→ K+π−]µ+µ−
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B
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+
+

Figure 1. Kinematic variables of

B̄0
d → K̄∗0(→ K−π+) + �̄� decays:

i) the (�̄�)-invariant mass squared q2,

ii) the angle θ� between � = �− and B̄

in the (�̄�) center of mass (c.m.), iii)

the angle θK∗ between K− and B̄ in

the (K−π+) c.m. and iv) the angle φ

between the two decay planes spanned

by the 3-momenta of the (Kπ)- and

(�̄�)-systems, respectively.

V is assumed to be on-shell in the narrow-resonance approximation which restricts the number

of kinematic variables to four4. Using B̄0
d → K̄∗0(→ K−π+) + �̄� for illustration, they might be

chosen as depicted in figure 1.

The differential decay rate, after summing over lepton spins, factorises into

8π

3

d4Γ

dq2 d cos θ� d cos θK∗ dφ
= Js

1 sin
2 θK∗ + Jc

1 cos
2 θK∗ + (Js

2 sin
2 θK∗ + Jc

2 cos
2 θK∗) cos 2θ�

+J3 sin
2 θK∗ sin2 θ� cos 2φ+ J4 sin 2θK∗ sin 2θ� cosφ+ J5 sin 2θK∗ sin θ� cosφ

+(Js
6 sin

2 θK∗ + Jc
6 cos

2 θK∗) cos θ� + J7 sin 2θK∗ sin θ� sinφ

+J8 sin 2θK∗ sin 2θ� sinφ+ J9 sin
2 θK∗ sin2 θ� sin 2φ, (1)

that is, into q2-dependent observables5 J j
i (q

2) and the dependence on the angles θ�, θK∗ and

φ. No additional angular dependencies can be induced by any extension of the SM operator

basis [11] as found by [12, 13]. The following simplifications arise in the limit m� → 0: Js
1 = 3Js

2 ,

Jc
1 = −Jc

2 and Jc
6 = 0.

The differential decay rate d4Γ̄ of the CP-conjugated decay B0
d → K0∗(→ K+π−) + �̄� is

obtained through the following replacements

J j
1,2,3,4,7 → J̄ j

1,2,3,4,7[δW → −δW ], J j
5,6,8,9 → − J̄ j

5,6,8,9[δW → −δW ], (2)

due to � ↔ �̄ ⇒ θ� → θ� − π and φ → −φ. The CP-violating (weak) phases δW are conjugated.

The angular distribution provides twice as many observables (J j
i and J̄ j

i ) when the decay

and its CP-conjugate decay are measured separately. This doubles again if the � = e and µ

lepton flavours are not averaged. Notably, CP-asymmetries can be measured in an untagged

sample of B-mesons due to the presence of CP-odd observables (i = 5, 6, 8, 9) [7]. Moreover,

T-odd observables ∼ cos δs sin δW (i = 7, 8, 9) are especially sensitive to weak BSM phases δW
[10, 14] contrary to T-even ones ∼ sin δs sin δW (i = 1, . . . , 6), since the CP-conserved (strong)

phase δs is often predicted to be small. Note, that in the SM CP-violating effects in b → s are

doubly-suppressed by the Cabibbo angle as Im[VubV
∗
us/(VtbV

∗
ts)] ≈ η̄λ ∼ 10−2.

4 The off-resonance case has been studied in [9].
5 Possibilities to extract q2-integrated Jj

i from single-differential distributions in θ�, θK∗ or φ can be found in [10].

� Decay fully described by three helicity angles θ�, θK ,Φ and q2 = m(µ+µ−)2

� 1

Γ

d3(Γ+ Γ̄)

d cos θ�d cos θKdΦ
=

9

32π

�
3
4 (1− FL) sin

2 θK + FL cos
2 θK + 1

4 (1− FL) sin
2 θK cos 2θ�

− FL cos
2 θK cos 2θ� + S3 sin

2 θK sin2 θ� cos 2Φ

+ S4 sin 2θK sin 2θ� cosΦ+ S5 sin 2θK sin θ� cosΦ

+ 4
3AFB sin2 θK cos θ� + S7 sin 2θK sin θ� sinΦ

+ S8 sin 2θK sin 2θ� sinΦ+ S9 sin
2 θK sin2 θ� sin 2Φ

�

� FL(q2), AFB(q2), Si(q2) combinations of K∗0 spin amplitudes

depending on Wilson coefficients C(�)
7 , C(�)

9 , C(�)
10

� Large theory uncertainty due to the q2 dependent hadronic form-factors

� Determine observables in 4D (cos θ�, cos θK ,φ and mKπµµ) fit in bins of q2
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Figure 1. Kinematic variables of

B̄0
d → K̄∗0(→ K−π+) + �̄� decays:

i) the (�̄�)-invariant mass squared q2,

ii) the angle θ� between � = �− and B̄

in the (�̄�) center of mass (c.m.), iii)

the angle θK∗ between K− and B̄ in

the (K−π+) c.m. and iv) the angle φ

between the two decay planes spanned

by the 3-momenta of the (Kπ)- and

(�̄�)-systems, respectively.

V is assumed to be on-shell in the narrow-resonance approximation which restricts the number

of kinematic variables to four4. Using B̄0
d → K̄∗0(→ K−π+) + �̄� for illustration, they might be

chosen as depicted in figure 1.

The differential decay rate, after summing over lepton spins, factorises into
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that is, into q2-dependent observables5 J j
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φ. No additional angular dependencies can be induced by any extension of the SM operator

basis [11] as found by [12, 13]. The following simplifications arise in the limit m� → 0: Js
1 = 3Js
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The differential decay rate d4Γ̄ of the CP-conjugated decay B0
d → K0∗(→ K+π−) + �̄� is
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1,2,3,4,7[δW → −δW ], J j
5,6,8,9 → − J̄ j

5,6,8,9[δW → −δW ], (2)

due to � ↔ �̄ ⇒ θ� → θ� − π and φ → −φ. The CP-violating (weak) phases δW are conjugated.

The angular distribution provides twice as many observables (J j
i and J̄ j

i ) when the decay

and its CP-conjugate decay are measured separately. This doubles again if the � = e and µ

lepton flavours are not averaged. Notably, CP-asymmetries can be measured in an untagged

sample of B-mesons due to the presence of CP-odd observables (i = 5, 6, 8, 9) [7]. Moreover,

T-odd observables ∼ cos δs sin δW (i = 7, 8, 9) are especially sensitive to weak BSM phases δW
[10, 14] contrary to T-even ones ∼ sin δs sin δW (i = 1, . . . , 6), since the CP-conserved (strong)

phase δs is often predicted to be small. Note, that in the SM CP-violating effects in b → s are

doubly-suppressed by the Cabibbo angle as Im[VubV
∗
us/(VtbV

∗
ts)] ≈ η̄λ ∼ 10−2.

4 The off-resonance case has been studied in [9].
5 Possibilities to extract q2-integrated Jj

i from single-differential distributions in θ�, θK∗ or φ can be found in [10].
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• B0 → K∗0[→ K+π−]μ+μ−

• differential rate analysis

• challenging theory uncertainties 
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B̄0
d → K̄∗0(→ K−π+) + �̄� decays:

i) the (�̄�)-invariant mass squared q2,

ii) the angle θ� between � = �− and B̄

in the (�̄�) center of mass (c.m.), iii)

the angle θK∗ between K− and B̄ in

the (K−π+) c.m. and iv) the angle φ
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by the 3-momenta of the (Kπ)- and

(�̄�)-systems, respectively.

V is assumed to be on-shell in the narrow-resonance approximation which restricts the number

of kinematic variables to four4. Using B̄0
d → K̄∗0(→ K−π+) + �̄� for illustration, they might be

chosen as depicted in figure 1.
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B̄0
d → K̄∗0(→ K−π+) + �̄� decays:
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V is assumed to be on-shell in the narrow-resonance approximation which restricts the number

of kinematic variables to four4. Using B̄0
d → K̄∗0(→ K−π+) + �̄� for illustration, they might be

chosen as depicted in figure 1.
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and its CP-conjugate decay are measured separately. This doubles again if the � = e and µ

lepton flavours are not averaged. Notably, CP-asymmetries can be measured in an untagged

sample of B-mesons due to the presence of CP-odd observables (i = 5, 6, 8, 9) [7]. Moreover,

T-odd observables ∼ cos δs sin δW (i = 7, 8, 9) are especially sensitive to weak BSM phases δW
[10, 14] contrary to T-even ones ∼ sin δs sin δW (i = 1, . . . , 6), since the CP-conserved (strong)

phase δs is often predicted to be small. Note, that in the SM CP-violating effects in b → s are

doubly-suppressed by the Cabibbo angle as Im[VubV
∗
us/(VtbV

∗
ts)] ≈ η̄λ ∼ 10−2.

4 The off-resonance case has been studied in [9].
5 Possibilities to extract q2-integrated Jj

i from single-differential distributions in θ�, θK∗ or φ can be found in [10].

� Decay fully described by three helicity angles θ�, θK ,Φ and q2 = m(µ+µ−)2

� 1

Γ

d3(Γ+ Γ̄)

d cos θ�d cos θKdΦ
=

9

32π

�
3
4 (1− FL) sin

2 θK + FL cos
2 θK + 1

4 (1− FL) sin
2 θK cos 2θ�

− FL cos
2 θK cos 2θ� + S3 sin

2 θK sin2 θ� cos 2Φ

+ S4 sin 2θK sin 2θ� cosΦ+ S5 sin 2θK sin θ� cosΦ

+ 4
3AFB sin2 θK cos θ� + S7 sin 2θK sin θ� sinΦ

+ S8 sin 2θK sin 2θ� sinΦ+ S9 sin
2 θK sin2 θ� sin 2Φ

�

� FL(q2), AFB(q2), Si(q2) combinations of K∗0 spin amplitudes

depending on Wilson coefficients C(�)
7 , C(�)

9 , C(�)
10

� Large theory uncertainty due to the q2 dependent hadronic form-factors

� Determine observables in 4D (cos θ�, cos θK ,φ and mKπµµ) fit in bins of q2
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Less form factor dependent observables P �
i (1 fb

−1)

� Less FF dependent observables P �
i introduced in [JHEP 05 (2013) 137]

� For P �
4,5 = S4,5/

�
FL(1− FL) leading FF uncertainties cancel for all q2

� 3.7σ local deviation from SM prediction [JHEP 05 (2013) 137] in P �
5
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• B0 → K∗0[→ K+π−]μ+μ−, B+ → K+μ+μ−/e+e-

• differential rate analysis

• lepton flavour universality tests

•                                                  in the SM 

NP in ΔF=1
L∆F=1 = ysd

v2

Λ2
NP

g

cW
d̄L /ZsL + ycu

v2

Λ2
NP

g

cW
ūL /ZcL + ybd

v2

Λ2
NP

g

cW
d̄L /ZbL + ybs

v2

Λ2
NP

g

cW
s̄L /ZbL
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Test of lepton universality in B+ → K+�+�−

� RK = B(B+→K+µ+µ−)
B(B+→K+e+e−) = 1±O(10−3) in the SM

� Sensitive to new (pseudo)scalar operators
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B+ → K+µ+µ− B+ → K+e+e−

ψ(2S)K+

J/ψK+

ψ(2S)K+

J/ψK+

radiative tails radiative tails

� Experimental challenges for B+ → K+e+e− mode
1. Trigger 2. Bremsstrahlung

� Use double ratio to cancel systematic uncertainties

RK =
�

NK+µ+µ−

NK+e+e−

��
NJ/ψ (e+e−)K+

NJ/ψ (µ+µ−)K+

��
�K+e+e−
�K+µ+µ−

��
�J/ψ (µ+µ−)K+

�J/ψ (e+e−)K+

�
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ūL /ZcL + ybd

v2

Λ2
NP

g

cW
d̄L /ZbL + ybs

v2

Λ2
NP

g

cW
s̄L /ZbL

102

Branching fraction measurements 20 / 22

Test of lepton universality in B+ → K+�+�−

� RK = B(B+→K+µ+µ−)
B(B+→K+e+e−) = 1±O(10−3) in the SM

� Sensitive to new (pseudo)scalar operators
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]

� Use theoretically and experimentally
favoured q2 region ∈ [1, 6]GeV2

� RK = 0.745+0.090
−0.074(stat.)± 0.036(syst.),

compatible with SM at 2.6σ

� Bq2∈[1,6]GeV2(B+ → K+e+e−) =

(1.56+0.19
−0.15

+0.06
−0.04)× 10−7
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NP in Flavour
• Example: Supersymmetry

• SUSY models in general provide new sources of 
flavor violation

• supersymmetry breaking soft mass terms for 
squarks and sleptons 

• trilinear couplings of a Higgs field with a squark-
antisquark or slepton-antislepton pairs
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formalism. In that case the flavor group is broken down to U(2)Q × U(2)U × U(1)t × U(3)D , and

the expansion in Eq. (109) no longer holds. In particular, resummation over yb is not required.

Flavor violation is described by linearly expanding in the down type Yukawa couplings, from which

it follows that contributions proportional to the bottom Yukawa are further suppressed beyond

the SM CKM suppression.

It should also be pointed out that NLMFV differs from the next-to-MFV framework [4, 5],

since the latter exhibits additional spurions at low energy.

6.4 MFV in covariant language

The covariant formalism described in Sec. 4 enables us to offer further insight on the MFV frame-

work. In the LMFV case, the NP source XQ from Eq. (39) or Eq. (87) is a linear combination of the

AQd and AQu “vectors”, naturally with O(1) coefficients at most. Hence we can immediately infer

that no new CPV sources exist, as all vectors are on the same plane, and that the induced flavor

violation is small (recall that the angle between AQu and AQd is small – O(λ2
)). These conclusions

are of course already known, but they emerge naturally when using the covariant language.

In the GMFV scenario, XQ is a general function of AQu and AQd . We can alternatively express

it in terms of the covariant basis introduced in Sec. 4.2.2, since this basis is constructed using only

AQu and AQd . Then, it is easy to see that an arbitrary function of the Yukawa matrices could

produce any kind of flavor and CP violation [60, 61, 62]. However, the directions denoted by �̂D
require higher powers of the Yukawas, so their contribution is generically much smaller (in [60]

it was noticed that some directions, which we identify as �̂D, are not generated via RGE flow).

Therefore, the induced flavor and CP violation tend to be restricted to the submanifold which

corresponds to the U(2)Q limit (that is, the directions denoted by ÂQu,Qd , Ĵ , Ĵu,d and Ĉu,d).

7 Supersymmetry

Supersymmetric models provide, in general, new sources of flavor violation, for both the quark

and the lepton sectors. The main new sources are the supersymmetry breaking soft mass terms

for squarks and sleptons and the trilinear couplings of a Higgs field with a squark-antisquark or

slepton-antislepton pairs. Let us focus on the squark sector. The new sources of flavor violation

are most commonly analyzed in the basis in which the corresponding (down or up) quark mass

matrix and the neutral gaugino vertices are diagonal. In this basis, the squark masses are not

necessarily flavor-diagonal, and have the form

q̃
∗
Mi(M

2
q̃ )

MN
ij q̃Nj = (q̃

∗
Li q̃

∗
Rk)

�
(M

2
q̃ )Lij A

q
ilvq

A
q
jkvq (M

2
q̃ )Rkl

��
q̃Lj

q̃Rl

�
, (125)

where M,N = L,R label chirality, and i, j, k, l = 1, 2, 3 are generation indices. (M
2
q̃ )L and (M

2
q̃ )R

are the supersymmetry breaking squark masses-squared. The A
q
parameters enter in the trilinear

scalar couplings A
q
ijHq�qLi�q∗Rj, where Hq (q = u, d) is the q-type Higgs boson and vq = �Hq�.

In this basis, flavor violation takes place through one or more squark mass insertion. Each

mass insertion brings with it a factor of (δqij)MN ≡ (M
2
q̃ )

MN
ij /m̃

2
q, where m̃

2
q is a representative

q-squark mass scale. Physical processes therefore constrain

[(δqij)MN ]eff ∼ max[(δqij)MN , (δ
q
ik)MP (δ

q
kj)PN , . . . , (i ↔ j)]. (126)
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(of order one per cent) between the two neutral D-mesons. Allowing for indirect CP violation, the world
averages of the mixing parameters are [10]

x = (1.00 ± 0.25) × 10−2,

y = (0.77 ± 0.18) × 10−2. (56)

It is important to note, however, that there is no evidence for CP violation in this mixing [10]:

1− |q/p| = +0.06 ± 0.14,

φD = −0.04 ± 0.09. (57)

We use this recent experimental information to draw important lessons on supersymmetry. This demon-
strates how flavour physics—at the GeV scale—provides a significant probe of supersymmetry—at the
TeV scale.

6.1 Neutral meson mixing with supersymmetry
We consider the contributions from the box diagrams involving the squark doublets of the first two
generations, Q̃L1,2, to the D0–D0 andK0–K0 mixing amplitudes. The contributions that are relevant to
the neutral D system are proportional to Ku

2iK
u∗
1i K

u
2jK

u∗
1j , where Ku is the mixing matrix of the gluino

couplings to a left-handed up quark and their supersymmetric squark partners. (In the language of the
mass insertion approximation, we calculate here the contribution that is∝ [(δuLL)12]

2.) The contributions
that are relevant to the neutral K system are proportional to Kd∗

2i K
d
1iK

d∗
2jK

d
1j , where Kd is the mixing

matrix of the gluino couplings to a left-handed down quark and their supersymmetric squark partners
(∝ [(δdLL)12]

2 in the mass insertion approximation). We work in the mass basis for both quarks and
squarks. A detailed derivation [23] is given in Appendix C. It gives

MD
12 =

α2
smDf2

DBDηQCD
108m2

ũ

[11f̃6(xu) + 4xuf6(xu)]
(∆m2

ũ)
2

m4
ũ

(Ku
21K

u∗
11 )

2, (58)

MK
12 =

α2
smKf2

KBKηQCD
108m2

d̃

[11f̃6(xd) + 4xdf6(xd)]
(∆m̃2

d̃
)2

m̃4
d

(Kd∗
21K

d
11)

2. (59)

Heremũ,d̃ is the average mass of the corresponding two squark generations, ∆m2
ũ,d̃
is the mass-squared

difference, and xu,d = m2
g̃/m

2
ũ,d̃
.

One can immediately identify three generic ways in which supersymmetric contributions to neutral
meson mixing can be suppressed:

1. Heaviness: mq̃ $ 1 TeV.
2. Degeneracy: ∆m2

q̃ % m2
q̃ .

3. Alignment: Kd,u
21 % 1.

When heaviness is the only suppression mechanism, as in split supersymmetry [24], the squarks are very
heavy and supersymmetry no longer solves the fine tuning problem5. If we want to maintain super-
symmetry as a solution to the fine tuning problem, either degeneracy, or alignment, or a combination of
both is needed. This means that the flavour structure of supersymmetry is not generic, as argued in the
previous section.

The 2× 2 mass-squared matrices for the relevant squarks have the following form:

M̃2
UL

= m̃2
QL

+

(

1

2
− 2

3
s2W

)

m2
Z cos 2β +MuM

†
u,

5When the first two squark generations are mildly heavy and the third generation is light, as in effective supersymmetry [25],
the fine tuning problem is still solved, but additional suppression mechanisms are needed.
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(of order one per cent) between the two neutral D-mesons. Allowing for indirect CP violation, the world
averages of the mixing parameters are [10]

x = (1.00 ± 0.25) × 10−2,

y = (0.77 ± 0.18) × 10−2. (56)

It is important to note, however, that there is no evidence for CP violation in this mixing [10]:

1− |q/p| = +0.06 ± 0.14,

φD = −0.04 ± 0.09. (57)

We use this recent experimental information to draw important lessons on supersymmetry. This demon-
strates how flavour physics—at the GeV scale—provides a significant probe of supersymmetry—at the
TeV scale.

6.1 Neutral meson mixing with supersymmetry
We consider the contributions from the box diagrams involving the squark doublets of the first two
generations, Q̃L1,2, to the D0–D0 andK0–K0 mixing amplitudes. The contributions that are relevant to
the neutral D system are proportional to Ku
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matrix of the gluino couplings to a left-handed down quark and their supersymmetric squark partners
(∝ [(δdLL)12]
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squarks. A detailed derivation [23] is given in Appendix C. It gives

MD
12 =

α2
smDf2

DBDηQCD
108m2

ũ
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Heremũ,d̃ is the average mass of the corresponding two squark generations, ∆m2
ũ,d̃
is the mass-squared

difference, and xu,d = m2
g̃/m

2
ũ,d̃
.

One can immediately identify three generic ways in which supersymmetric contributions to neutral
meson mixing can be suppressed:

1. Heaviness: mq̃ $ 1 TeV.
2. Degeneracy: ∆m2

q̃ % m2
q̃ .

3. Alignment: Kd,u
21 % 1.

When heaviness is the only suppression mechanism, as in split supersymmetry [24], the squarks are very
heavy and supersymmetry no longer solves the fine tuning problem5. If we want to maintain super-
symmetry as a solution to the fine tuning problem, either degeneracy, or alignment, or a combination of
both is needed. This means that the flavour structure of supersymmetry is not generic, as argued in the
previous section.

The 2× 2 mass-squared matrices for the relevant squarks have the following form:

M̃2
UL

= m̃2
QL

+

(

1

2
− 2

3
s2W

)

m2
Z cos 2β +MuM

†
u,

5When the first two squark generations are mildly heavy and the third generation is light, as in effective supersymmetry [25],
the fine tuning problem is still solved, but additional suppression mechanisms are needed.
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For example,

[(δd12)LR]eff ∼ max[Ad
12vd/m̃

2
d, (M

2
d̃
)L1kA

d
k2vd/m̃

4
d, A

d
1kvd(M

2
d̃
)Rk2/m̃

4
d, . . . , (1 ↔ 2)]. (127)

Note that the contributions with two or more insertions may be less suppressed than those with

only one.

In terms of mass basis parameters, the (δqij)MM ’s stand for a combination of mass splittings

and mixing angles:

(δqij)MM =
1

m̃2
q

�

α

(Kq
M)iα(K

q
M)

∗
jα∆m̃2

qα , (128)

where Kq
M is the mixing matrix in the coupling of the gluino (and similarly for the bino and neutral

wino) to qLi− q̃Mα; m̃2
q =

1
3

�3
α=1 m

2
q̃Mα

is the average squark mass-squared, and ∆m̃2
qα = m2

q̃α−m̃2
q.

Things simplify considerably when the two following conditions are satisfied [140, 141], which means

that a two generation effective framework can be used (for simplicity, we omit here the chirality

index):

|KikK
∗
jk| � |KijK

∗
jj|, |KikK

∗
jk∆m̃2

qkqi
| � |KijK

∗
jj∆m̃2

qjqi |, (129)

where there is no summation over i, j, k and where ∆m̃2
qjqi = m2

q̃j −m2
q̃i . Then, the contribution of

the intermediate q̃k can be neglected, and furthermore, to a good approximation, KiiK∗
ji+KijK∗

jj =

0. For these cases, we obtain a simpler expression for the mass insertion term

(δqij)MM =
∆m̃2

qjqi

m̃2
q

(Kq
M)ij(K

q
M)

∗
jj , (130)

In the non-degenerate case, in particular relevant for alignment models, it is useful to take instead

of m̃q the mass scale m̃q
ij =

1
2(mq̃i +mq̃j) [142], which better approximates the full expression. We

also define

�δqij� =
�
(δqij)LL(δ

q
ij)RR . (131)

The new sources of flavor and CP violation contribute to FCNC processes via loop diagrams

involving squarks and gluinos (or electroweak gauginos, or higgsinos). If the scale of the soft

supersymmetry breaking is below TeV, and if the new flavor violation is of order one, and/or

if the phases are of order one, then these contributions could be orders of magnitude above the

experimental bounds. Imposing that the supersymmetric contributions do not exceed the phe-

nomenological constraints leads to constraints of the form (δqij)MM � 1. Such constraints imply

that either quasi-degeneracy (∆m̃2
qjqi � (m̃q

ij)
2
) or alignment (|Kq

ij| � 1) or a combination of the

two mechanisms is at work.

Table 4 presents the constraints obtained in Refs. [17, 18, 143, 144] as appear in [140]. Wher-

ever relevant, a phase suppression of order 0.3 in the mixing amplitude is allowed, namely we quote

the stronger between the bounds on Re(δqij) and 3Im(δqij). The dependence of these bounds on the

average squark mass m̃q, the ratio x ≡ m2
g̃/m̃

2
q as well as the effect of arbitrary strong CP violating

phases can be found in [140].

For large tanβ, some constraints are modified from those in Table 4. For instance, the effects
of neutral Higgs exchange in Bs and Bd mixing give, for tanβ = 30 and x = 1 (see [140, 145, 146]

and refs. therein for details):

�δd13� < 0.01

�
MA0

200GeV

�
, �δd23� < 0.04

�
MA0

200GeV

�
, (132)
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q ij (δqij)MM �δqij�
d 12 0.03 0.002
d 13 0.2 0.07
d 23 0.6 0.2
u 12 0.1 0.008

Table 4: The phenomenological upper bounds on (δqij)MM and on �δqij�, where q = u, d and M =

L,R. The constraints are given for m̃q = 1 TeV and x ≡ m2
g̃/m̃

2
q = 1. We assume that the phases

could suppress the imaginary parts by a factor ∼ 0.3. The bound on (δd23)RR is about 3 times

weaker than that on (δd23)LL (given in table). The constraints on (δd12,13)MM , (δu12)MM and (δd23)MM

are based on, respectively, Refs. [143], [17] and [144].

q ij (δqij)LR
d 12 2× 10

−4

d 13 0.08
d 23 0.01
d 11 4.7× 10

−6

u 11 9.3× 10
−6

u 12 0.02

Table 5: The phenomenological upper bounds on chirality-mixing (δqij)LR, where q = u, d. The

constraints are given for m̃q = 1 TeV and x ≡ m2
g̃/m̃

2
q = 1. The constraints on δd12,13, δ

u
12, δ

d
23

and δqii are based on, respectively, Refs. [143], [17], [144] and [147] (with the relation between the

neutron and quark EDMs as in [148]).

whereMA0 denotes the pseudoscalar Higgs mass, and the above bounds scale roughly as (30/ tan β)2.
The experimental constraints on the (δqij)LR parameters in the quark-squark sector are pre-

sented in Table 5. The bounds are the same for (δqij)LR and (δqij)RL, except for (δd12)MN , where

the bound for MN = LR is 10 times weaker. Very strong constraints apply for the phase of
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While, in general, the low energy flavor measurements constrain only the combinations of
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���
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• Heaviness: mq ≫ 1 TeV.

• Degeneracy:
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(of order one per cent) between the two neutral D-mesons. Allowing for indirect CP violation, the world
averages of the mixing parameters are [10]

x = (1.00 ± 0.25) × 10−2,

y = (0.77 ± 0.18) × 10−2. (56)

It is important to note, however, that there is no evidence for CP violation in this mixing [10]:

1− |q/p| = +0.06 ± 0.14,

φD = −0.04 ± 0.09. (57)

We use this recent experimental information to draw important lessons on supersymmetry. This demon-
strates how flavour physics—at the GeV scale—provides a significant probe of supersymmetry—at the
TeV scale.

6.1 Neutral meson mixing with supersymmetry
We consider the contributions from the box diagrams involving the squark doublets of the first two
generations, Q̃L1,2, to the D0–D0 andK0–K0 mixing amplitudes. The contributions that are relevant to
the neutral D system are proportional to Ku

2iK
u∗
1i K

u
2jK

u∗
1j , where Ku is the mixing matrix of the gluino

couplings to a left-handed up quark and their supersymmetric squark partners. (In the language of the
mass insertion approximation, we calculate here the contribution that is∝ [(δuLL)12]

2.) The contributions
that are relevant to the neutral K system are proportional to Kd∗

2i K
d
1iK

d∗
2jK

d
1j , where Kd is the mixing

matrix of the gluino couplings to a left-handed down quark and their supersymmetric squark partners
(∝ [(δdLL)12]

2 in the mass insertion approximation). We work in the mass basis for both quarks and
squarks. A detailed derivation [23] is given in Appendix C. It gives
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DBDηQCD
108m2
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d
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2. (59)

Heremũ,d̃ is the average mass of the corresponding two squark generations, ∆m2
ũ,d̃
is the mass-squared

difference, and xu,d = m2
g̃/m

2
ũ,d̃
.

One can immediately identify three generic ways in which supersymmetric contributions to neutral
meson mixing can be suppressed:

1. Heaviness: mq̃ $ 1 TeV.
2. Degeneracy: ∆m2

q̃ % m2
q̃ .

3. Alignment: Kd,u
21 % 1.

When heaviness is the only suppression mechanism, as in split supersymmetry [24], the squarks are very
heavy and supersymmetry no longer solves the fine tuning problem5. If we want to maintain super-
symmetry as a solution to the fine tuning problem, either degeneracy, or alignment, or a combination of
both is needed. This means that the flavour structure of supersymmetry is not generic, as argued in the
previous section.

The 2× 2 mass-squared matrices for the relevant squarks have the following form:

M̃2
UL

= m̃2
QL

+

(

1

2
− 2

3
s2W

)

m2
Z cos 2β +MuM

†
u,

5When the first two squark generations are mildly heavy and the third generation is light, as in effective supersymmetry [25],
the fine tuning problem is still solved, but additional suppression mechanisms are needed.
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ũ,d̃
.

One can immediately identify three generic ways in which supersymmetric contributions to neutral
meson mixing can be suppressed:

1. Heaviness: mq̃ $ 1 TeV.
2. Degeneracy: ∆m2

q̃ % m2
q̃ .

3. Alignment: Kd,u
21 % 1.

When heaviness is the only suppression mechanism, as in split supersymmetry [24], the squarks are very
heavy and supersymmetry no longer solves the fine tuning problem5. If we want to maintain super-
symmetry as a solution to the fine tuning problem, either degeneracy, or alignment, or a combination of
both is needed. This means that the flavour structure of supersymmetry is not generic, as argued in the
previous section.

The 2× 2 mass-squared matrices for the relevant squarks have the following form:

M̃2
UL

= m̃2
QL

+

(

1

2
− 2

3
s2W

)

m2
Z cos 2β +MuM

†
u,

5When the first two squark generations are mildly heavy and the third generation is light, as in effective supersymmetry [25],
the fine tuning problem is still solved, but additional suppression mechanisms are needed.

14

(of order one per cent) between the two neutral D-mesons. Allowing for indirect CP violation, the world
averages of the mixing parameters are [10]

x = (1.00 ± 0.25) × 10−2,

y = (0.77 ± 0.18) × 10−2. (56)

It is important to note, however, that there is no evidence for CP violation in this mixing [10]:

1− |q/p| = +0.06 ± 0.14,

φD = −0.04 ± 0.09. (57)

We use this recent experimental information to draw important lessons on supersymmetry. This demon-
strates how flavour physics—at the GeV scale—provides a significant probe of supersymmetry—at the
TeV scale.

6.1 Neutral meson mixing with supersymmetry
We consider the contributions from the box diagrams involving the squark doublets of the first two
generations, Q̃L1,2, to the D0–D0 andK0–K0 mixing amplitudes. The contributions that are relevant to
the neutral D system are proportional to Ku

2iK
u∗
1i K

u
2jK

u∗
1j , where Ku is the mixing matrix of the gluino

couplings to a left-handed up quark and their supersymmetric squark partners. (In the language of the
mass insertion approximation, we calculate here the contribution that is∝ [(δuLL)12]

2.) The contributions
that are relevant to the neutral K system are proportional to Kd∗

2i K
d
1iK

d∗
2jK

d
1j , where Kd is the mixing

matrix of the gluino couplings to a left-handed down quark and their supersymmetric squark partners
(∝ [(δdLL)12]

2 in the mass insertion approximation). We work in the mass basis for both quarks and
squarks. A detailed derivation [23] is given in Appendix C. It gives

MD
12 =

α2
smDf2

DBDηQCD
108m2

ũ
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NP in Flavour
• Minimal Flavour Hypothesis

• flavour-violating interactions are linked to known 
Yukawa couplings also beyond SM

• (i) flavour symmetry: SU(3)3

• (ii) set of symmetry-breaking terms:

• tractable due to peculiar structure of SM flavour

Chapter 3

Flavor physics beyond the SM: models and predictions

If the physics beyond the SM respects the SM gauge symmetry, as we expect from general arguments,
the corrections to low-energy flavor-violating amplitudes can be written in the following general form

A(fi → fj +X) = A0

�
cSM
M2

W

+
cNP

Λ2

�
, (3.1)

where Λ is the energy scale of the new degrees of freedom. This structure is completely general: the
coefficients cSM(NP) may include appropriate CKM factors and eventually a ∼ 1/(16π2) suppression if
the amplitude is loop-mediated. Given our ignorance about the cNP, the values of the scale Λ probed by
present experiments vary over a wide range. However, the general result in Eq. (3.1) allows us to predict
how these bounds will improve with future experiments: the sensitivity on Λ scale as N1/4, where
N is the number of events used to measure the observable. This implies that is not easy to increase
substantially the energy reach with indirect NP searches only. Moreover, from Eq. (3.1) it is also clear
that indirect searches can probe NP scales well above the TeV for models where (cSM � cNP), namely
models which do not respect the symmetries and the symmetry-breaking pattern of the SM.

The bound on representative ∆F = 2 operators have already been shown in Table 1.1. As can
be seen, for cNP = 1 present data probes very high scales. On the other hand, if we insist with the
theoretical prejudice that NP must show up not far from the TeV scale in order to stabilize the Higgs
sector, then the new degrees of freedom must have a peculiar flavor structure able to justify the smallness
of the effective couplings cNP for Λ = 1 TeV.

1 The Minimal Flavor Violation hypothesis
The main idea of MFV is that flavor-violating interactions are linked to the known structure of Yukawa
couplings also beyond the SM. In a more quantitative way, the MFV construction consists in identifying
the flavor symmetry and symmetry-breaking structure of the SM and enforce it also beyond the SM.

The MFV hypothesis consists of two ingredients [49]: (1) a flavor symmetry and (ii) a set of
symmetry-breaking terms. The symmetry is noting but the large global symmetry Gflavor of the SM
Lagrangian in absence of Yukawa couplings shown in Eq. (1.4). Since this global symmetry, and partic-
ularly the SU(3) subgroups controlling quark flavor-changing transitions, is already broken within the
SM, we cannot promote it to be an exact symmetry of the NP model. Some breaking would appear at the
quantum level because of the SM Yukawa interactions. The most restrictive assumption we can make to
protect in a consistent way quark-flavor mixing beyond the SM is to assume that Yd and Yu are the only
sources of flavor symmetry breaking also in the NP model. To implement and interpret this hypothesis
in a consistent way, we can assume that Gq is a good symmetry and promote Yu,d to be non-dynamical
fields (spurions) with non-trivial transformation properties under Gq:

Yu ∼ (3, 3̄, 1) , Yd ∼ (3, 1, 3̄) . (3.2)

If the breaking of the symmetry occurs at very high energy scales, at low-energies we would only be
sensitive to the background values of the Y , i.e. to the ordinary SM Yukawa couplings. The role of the
Yukawa in breaking the flavor symmetry becomes similar to the role of the Higgs in the the breaking
of the gauge symmetry. However, in the case of the Yukawa we don’t know (and we do not attempt to
construct) a dynamical model which give rise to this symmetry breaking.
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Fig. 3.1: Fit of the CKM unitarity triangle (in 2008) within the SM (left) and in generic extensions of the SM

satisfying the MFV hypothesis (right) [13].

Within the effective-theory approach to physics beyond the SM introduced in Sect. 4, we can say

that an effective theory satisfies the criterion of Minimal Flavor Violation in the quark sector if all higher-

dimensional operators, constructed from SM and Y fields, are invariant under CP and (formally) under

the flavor group Gq [49].

According to this criterion one should in principle consider operators with arbitrary powers of the

(dimensionless) Yukawa fields. However, a strong simplification arises by the observation that all the

eigenvalues of the Yukawa matrices are small, but for the top one, and that the off-diagonal elements of

the CKM matrix are very suppressed. Working in the basis in Eq. (1.6) we have

�
Yu(Yu)

†
�n
i �=j

≈ ynt V
∗
itVtj . (3.3)

As a consequence, in the limit where we neglect light quark masses, the leading ∆F = 2 and ∆F = 1
FCNC amplitudes get exactly the same CKM suppression as in the SM:

A(di → dj)MFV = (V ∗
tiVtj) A

(∆F=1)
SM

�
1 + a1

16π2M2
W

Λ2

�
, (3.4)

A(Mij − M̄ij)MFV = (V ∗
tiVtj)

2
A

(∆F=2)
SM

�
1 + a2

16π2M2
W

Λ2

�
. (3.5)

where the A
(i)
SM are the SM loop amplitudes and the ai are O(1) real parameters. The ai depend on

the specific operator considered but are flavor independent. This implies the same relative correction

in s → d, b → d, and b → s transitions of the same type: a key prediction which can be tested in

experiment.

As pointed out in Ref. [50], within the MFV framework several of the constraints used to determine

the CKM matrix (and in particular the unitarity triangle) are not affected by NP. In this framework, NP

effects are negligible not only in tree-level processes but also in a few clean observables sensitive to

loop effects, such as the time-dependent CPV asymmetry in Bd → ψKL,S . Indeed the structure of

the basic flavor-changing coupling in Eq. (3.5) implies that the weak CPV phase of Bd–B̄d mixing is

arg[(VtdV ∗
tb)

2
], exactly as in the SM. This construction provides a natural (a posteriori) justification of

why no NP effects have been observed in the quark sector: by construction, most of the clean observables

measured at B factories are insensitive to NP effects in the MFV framework. A comparison of the CKM

fits in the SM and in generic MFV models is shown in Fig. 3.1. Essentially only �K and ∆mBd (but not

the ratio ∆mBd/∆mBs) are sensitive to non-standard effects within MFV models.
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Because of this large number of free parameters, we cannot discuss the implications of the MSSM
in flavor physics without specifying in more detail the flavor structure of the model. The versions of
the MSSM analysed in the literature range from the so-called Constrained MSSM (CMSSM), where the
complete model is specified in terms of only four free parameters (in addition to the SM couplings), to
the MSSM without R parity and generic flavor structure, which contains a few hundreds of new free
parameters.

Throughout the large amount of work in the past decades it has became clear that the MSSM with
generic flavor structure and squarks in the TeV range is not compatible with precision tests in flavor
physics. This is true even if we impose R parity, the discrete symmetry which forbids single s-particle
production, usually advocated to prevent a too fast proton decay. In this case we have no tree-level
FCNC amplitudes, but the loop-induced contributions are still too large compared to the SM ones unless
the squarks are highly degenerate or have very small intra-generation mixing angles. This is nothing but
a manifestation in the MSSM context of the general flavor problem illustrated in the first lecture.

The flavor problem of the MSSM is an important clue about the underling mechanism of super-
symmetry breaking. On general grounds, mechanisms of SUSY breaking with flavor universality (such
as gauge mediation) or with heavy squarks (especially in the case of the first two generations) tends to
be favored. However, several options are still open. These range from the very restrictive CMSSM case,
which is a special case of MSSM with MFV, to more general scenarios with new small but non-negligible
sources of flavor symmetry breaking.

2.1 Flavor Universality, MFV, and RGE in the MSSM.
Since the squark fields have well-defined transformation properties under the SM quark-flavor group Gq,
the MFV hypothesis can easily be implemented in the MSSM framework following the general rules
outlined in Sect. 1.

We need to consider all possible interactions compatible with i) softly-broken supersymmetry; ii)
the breaking of Gq via the spurion fields Yu,d. This allows to express the squark mass terms and the
trilinear quark-squark-Higgs couplings as follows [49, 68]:

m̃2
QL

= m̃2
�
a11l + b1YuY

†
u + b2YdY

†
d + b3YdY

†
d YuY

†
u + . . .

�
,

m̃2
UR

= m̃2
�
a21l + b5Y

†
uYu + . . .

�
,

AU = A
�
a31l + b6YdY

†
d + . . .

�
Yd , (3.13)

and similarly for the down-type terms. The dimensional parameters m̃ and A, expected to be in the range
few 100 GeV – 1 TeV, set the overall scale of the soft-breaking terms. In Eq. (3.13) we have explicitly
shown all independent flavor structures which cannot be absorbed into a redefinition of the leading terms
(up to tiny contributions quadratic in the Yukawas of the first two families), when tanβ is not too large
and the bottom Yukawa coupling is small, the terms quadratic in Yd can be dropped.

In a bottom-up approach, the dimensionless coefficients ai and bi should be considered as free
parameters of the model. Note that this structure is renormalization-group invariant: the values of ai and
bi change according to the Renormalization Group (RG) flow, but the general structure of Eq. (3.13) is
unchanged. This is not the case if the bi are set to zero, corresponding to the so-called hypothesis of
flavor universality. In several explicit mechanism of supersymmetry breaking, the condition of flavor
universality holds at some high scale M , such as the scale of Grand Unification in the CMSSM (see
below) or the mass-scale of the messenger particles in gauge mediation (see Ref. [69]). In this case
non-vanishing bi ∼ (1/4π)2 lnM2/M̃2 are generated by the RG evolution. As recently pointed out in
Ref. [70] the RG flow in the MSSM-MFV framework exhibit quasi infra-red fixed points: even if we
start with all the bi = O(1) at some high scale, the only non-negligible terms at the TeV scale are those
associated to the YuY

†
u structures.
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Conclusions
• Absence of significant deviations from SM in quark 

flavour physics is key constraint on any extension of 
SM (example: Supersymmetry)

• Various open questions regarding flavour structure of 
SM itself; can be possibly addressed only using 
flavour measurements

• Set of flavour observables to be measured with 
higher precision in search for NP is limited, but not 
necessarily small (examples: CPV in Bs and D)

• NP effects could still lurk in rare K, D and B decays


