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Course Synopsis

Lecture 1: Back to basics
Introduction, Probability distribution functions, Binomial
distributions, Poisson distribution

Lecture 2: The Gaussian Limit
The central limit theorem, Gaussian errors, Error
propagation, Combination of measurements, Multi-
dimensional Gaussian errors, Error Matrix

Lecture 3: Fitting and Hypothesis Testing
The 2 test, Likelihood functions, Fitting, Binned maximum

likelihood, Unbinned maximum likelihood

Lecture 4: Dark Arts

Bayesian statistics, Confidence intervals, systematic errors.
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Experimental Physics

* Experimental science concerned with two types of experimental measurement:
+ Measurement of a quantity : parameter estimation
+ Tests of a theory/model : hypothesis testing

* For parameter estimation we usually have some data (a set of measurements) and

from which we want to obtain
¢+ The best estimate of the true parameter; “the measured value”
+* The best estimate of how well we have measured the parameter; “the uncertainty’

* For hypothesis testing we usually have some data (a set of measurements) and

one or more theoretical models, and want
+ A measure of how consistent our data are with the model; “a probability”

+ Which model best describes our data; “a relative probability”

To address the above questions we need to
use and understand statistical techniques

* In these 51 lectures we will cover most aspects of statistics as applied to

experimental high energy physics:
+ Nothing will be stated without proof (or at least justification).
+ Understanding the derivations will help you to understand the basis behind the

statistical techniques
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Caveat Emptor

* | will present my own view of Statistics as applied to HEP
» This is based on years of experience...
= It is biased towards a probabilistic view with strong (but not too rabid)

Bayesian leanings
= Derivations, explanations, mostly based on the probabilistic view

The path to enlightenment:
* If you measure something always quote an uncertainty
* Understand what you are doing and why
» Don’ t forget that you are usually estimating the uncertainty
* e.g. don’t worry too much about whether an effect is 2.9¢ and 3.10
unlikely you can estimate the uncertainty that well
* Don’ t worry too much about the difference between Bayesian and
Frequentist approaches
- often give same results
« if the results are different — usually means data are weak
— so do another experiment

Prof. M.A. Thomson Lent Term 2015



Three Types of “Errors”

Statistical Uncertainties:
* Random fluctuations
¢+ e.g. shot noise, measuring small currents, The main topic of
how many electrons arrive in a fixed time these lectures
¢+ Tossing a coin N times, how many heads

Systematic Uncertianies:

* Biases
+ e.g. energy calibration wrong , | Discussed in the last
+ Thermal expansion of measuring device lecture
+ Imperfect theoretical predications y

Blunders, i.e. errors:

* Mistakes -
¢+ Forgot to include a particular background "::;t dles:ussed, never
in analysis ppen...

+ Bugs in analysis code
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Probability Distributions

* Suppose we are trying to measure some quantity with true value X0 the result
of a single measurement follows a probability density function (PDF) which may
or may not be of a known form.

P(x) 1 P(xi)t

* Normalised:

*In general, can parameterise the PDF by its moments &,
oy = /x”P(x)dx Oy = anpi

Note: O, = <xn>
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Mean and Variance

* Can now define a few important properties of the PDF

Mean: U = <x> = /xP(x)dx “average of many measurements”
Mean of squares: (x*) = /sz(x)dx

Variance:  Var(x) = 62 = ((x— u)?) = / (x— 11)2P(x)dx

= The variance represents the width of the PDF about the mean

= Convenient to express this in terms of the standard deviation o

* U and o describe the mean and “width” of a PDF

» Sometimes you will see the 39 and 4" moments used (skewness, kurtosis)
(these are not particularly useful)

u
, 2 __ 2 _ 2
Py - ol = (k=) = (- 2ux+u )
= () - <>+u
= ()- 2u +u’
. = () -
X
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Estimating the Mean and Variance

* In general do not know the PDF - instead have a number of measurements
distributed according to the PDF

* Unless one has a infinite number of measurements cannot fully reconstruct
the PDF (not a particularly useful thing to do anyway)

* But can obtain unbiased estimates of the mean and variance

“Population” “Sample”

H : Measurements

X0 X : Xi

* Best estimate of mean of distribution is the mean of the sample
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* Can also define sample variance

SI'—*
M=

z:l

* How does sample variance 52 relate to true variance o2 ?
* Can calculate average value of variance

) = (-9
= <x%>—2<xf%2xj>+,j—2<[2x,-]2>

= X+ Y xixj) + — () +nln— 1) (xixj)iz)
J#i
1 (n—1)
2 2
= () -G+ (xixj)iz
" " Question 1: prove
— (n—l) (<x> <xx > ) < > 2
n Skl Xixjrig) TR
(n — 1) ’ » n—1 , what assumption have you made?
= (W) -w) =0
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* Hence, on average, the sample variance is a factor 2 —1 smaller than the true variance
* For an unbiased estimate of the true variance for a smgle measurement use:
1 n

Y (xi—x)?

i=1

2
Sn—l - n_l

* For the best unbiased estimate of the true mean use the sample mean:
_ 1
X=-) X
by
* What is the “error” (i.e. square root of the variance) on the sample mean ?
Var® =02 = (F-p))

= (G Xu-

nn—
= Ly M 2u ) 2
o <x2> n-— 2 2
ey S N
o n o n
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* Hence the uncertainty on the mean is \/ﬁ smaller than the uncertainty on a single
measurement o

n

* Note: this is general result — doesn’ t rely on distribution

2

* Of course we only have an estimate of O , so our best (unbiased) estimate of the
uncertainty on the mean is:
. 1
Ox = %Sn—l

* There is one final question we can ask... what is the uncertainty on our estimate
of the uncertainty. The answer to this question depends on the form of the
PDF.

« We’ Il come back to this in the context of a Gaussian distribution.....

QUESTION 2 (~IA Physics):

Given 5 measurements of a quantity x: 10.2, 5.5, 6.7, 3.4, 3.5

What is the best estimate of X and what is the estimated uncertainty?
For later, how well do you know the uncertainty?
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Special Probability Distributions

* So far, dealt in generalities
* Now consider some special distributions...
* Simplest case “Binomial distribution”
+ Random process with two outcomes with probabilities p and (1-p)
+ Repeat process a fixed number of times = distribution of outcomes
* Next simplest, “Poisson distribution”
+ Discrete random process with fixed mean
* Then, “Gaussian distribution”
+ Continuous “high statistics” limit

“infinitesimal limit”

Binomial - |Poisson

“large N limit”

Gaussian
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Binomial Distribution

* Applies for a fixed number of trials when there are two possible outcomes, e.g.
+ Toss an unbiased coin ten times, how many heads ?

* Hence

P(r;n)

nCrpr(l _ p)n—r

np

np

np

np

Yr_o"P(r)
Yo P(r)

i rp"(1—=p)"*
r=0

n—1

= irP(r)

0

(n—1)!
(r—1)!(n—r)!

(n—1)!

ip(’_l)(l
r=1

n—1 ,

Y ra
r'=0

(n=0 term is zero)

(n—1-r)
r) (let r’ = r1)

Y P(rin—1) «—
r=0

normalised to unity

(hardly a surprising result)
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Variance of the binomial distribution

() =

Var(
Y r?P(r;n)
P(r;n)

r)={(r—p)?

n

Z r2pr(1 _p)n—r

r=0

anrp (1—p

r)!
(n—1)!
(r— D!(n—r)!
n—1 n—1)!

n—1 n—1

np ZP(r;n— 1)+np Z rP(rin—1)
r=0 r=0

np+npx(n—1)p

np(np—p+1)

(r?) = u* = np(np — p+1)+np — (np)?
np(1—p)

=np(1-p)

ri(n—

Var(r)
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*What is the meaning of G ?

= By definition, O, is root of the mean square (rms) deviation from the mean
1

— 2\ 5
o= ((r—u))?

* For a binomial distribution ¢ = np(l —p)
= [t provides a well-defined measure of the spread about the mean

* For above values: 62 %, 57 %, and 66 % of distribution within £ 1 o of mean
Answer depends on n and p, but roughly ~55-70%
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Example: Efficiency Uncertainty

* Suppose you use MC events to determine a selection efficiency
+ m out n events pass some selection, what is the efficiency and uncertainty

* This is a binomial process (fixed number of trials). Hence the number of events
passing the selection will be distributed as:

P(m;n) = "Cpe"(1—g)"™"

* Want to quote best estimate of the efficiency and the best estimate of the
uncertainty (i.e. square root of the variance).

m
* Best estimate of efficiency is “clearly”: [&, = —
n

* From properties of binomial distribution expect

1
2 2

o° = (g = ne(l—¢)x —
(€7) ne( )><n2

) e(l—eg) ( M)

(0} =
n

e.g. 90 out of 100 events pass trigger requirements,

€=0.90+£0.03
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A more advanced analysis

* Asserted that our best estimate of the true efficiency € is ¢ = —

Suppose we repeated the experiment many times
()= ) _ 1
¢ n

so on average this procedure gives an unbiased estimate of €
* What about our estimate for the variance ?

GOOD

GOOD ENOUGH

»  &(l—g) m(n—m)
¢ n o
Again suppose we repeated the experiment many times
2 n(m) (m?)
<Ge> = 3 3
n n
B n*e  n%e?—ne?+ne
IR n3
e(l—eg) e(l—g) n+l1
n + n? n? ( )
1
n
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a problem...
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2 g(l—eg)

(0

n

* Suppose you want to estimate a trigger efficiency based on 100 MC events

* If all the MC events pass the trigger selection...
= best estimate of efficiency is 100 %
= but what about the uncertainty on the efficiency ?
= the above equation would suggest zero
= this is clearly nonsense
* so what’ s wrong ?

We’ Il come back to this in lecture 4...

Prof. M.A. Thomson Lent Term 2015
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The Poisson Distribution

* Probably the most important distribution for experimental particle physicists
* Appropriate for discrete counts at a fixed rate

= e.g. in time t, on average expect u events

Loy MteTH

* The form of this equation is not immediately obvious (unlike that of the binomial
distribution) — so (for completeness) derive the Poisson Distribution...

*In time t, on average expect u events. Now divide t into N intervals of &t
* Probability of one event on &t is dp

Sp=uT=y

* Probability of getting two events is negligibly small
* Hence the problem has been transformed into N trials each with two discrete
outcomes, i.e. a binomial distribution

N!

p(nip) = lim 6p" (1~ Sp)" " AN )t
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Derivation of the Poisson distribution

N!
P = nel— N—n
InP = nlnép+(N—-n)ln(1-36p)+InN!—Inn!—In(N —n)!
First consider: (N—n)In(1-8p) = (N—n)[-8p+(8p)*/2+..]
~ —NOop+ndp
n
= THTGH
hence i {Vomin(i=op)} = —w Stirling’s approx,
N!
Now consider: 111@ = NInN—N—(N—n)In(N—n)+(N—n)
— NIanN+n—(N—n)ln (1 - 1%) — (N—n)InN
NN +n+ (N —n)=
~ n n —n)—
N
n2.
= InN"+ =
, ! )
hence HL{W} = N
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So finally, N) = "(1-8p)N~
N " N"
. . — n,~H__ _ (Z H__
becomes: P(n;pu) = (0p)e py (N> et
: pre H

* Check that the Poisson distribution is normalised...

[ e} 2
Y P(m;p) i
n=0

—u
e (1+1'

e HetH =1

21

+ 5+
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Properties of the Poisson Distribution

Mean
(n) = inP(n;“) = inu"g’*ﬂ <n2> = anP(n;‘u) = Z 2.“ e
n=0 n=0 n. — =
') ”ne—u _ oo /,L”e_
- n;n n! ;
e n l —u
_ 0 ‘unflef‘u _ Z
ML ey 2 /
oo n' —u B 0 e_“
B ungounf! N Z:: n+1
= .uiP(n;IJ) = {Z pr(n;“)}
n=0 n —
- H = WPt
O'2=Var(n) = (n > <>2
= U
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e.g. u=1.25, 2.5, 5.0
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Example |
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* Suppose | am trying to measure a cross section for a process

= observe N events for an integrated luminosity of -Z’
= for this luminosity the expected number of events is

u

=0Y

= observed number of events will be Poisson distributed according to U
= our best unbiased estimate of Ul is simply the number of observed events

= for a Poisson distribution the variance is equal to the mean

He =N

* hence we can estimate the uncertainty on the estimated mean as /N

.ue:N:I:\/N
o=-4(N+VN)

NOTE: if you observe N events, the estimated uncertainty on the mean of the
underlying Poisson distribution is VN

: it is not the “error” on IV — there is no uncertainty on what you counted

* Poisson fluctuations are the ultimate limit to any counting experiment
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Example Il

* Suppose a colleague makes a histogram of event counts as a function of y
= the histogram includes errors bars (made by root)

- 15 ——r—T—r—"1Tr—r—T 7

ity

a1
00 0.2 04 0.6 0.8 1

Events/O.

* How should you interpret the error bars
= If symmetric then probably /N
* i.e. they indicate the expected “spread” assuming the mean expected
counts in that bin are equal to the observed value
» For large N this is not unreasonable
= But for small N this doesn’ t make much sense...
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High Statistics Limit of Poisson Distribution

e
P(nip) = —
let f(x) = InP(x;u)
= —u—Inx!'+xlnu
—U+xInx—x—+xInu
hence f'(x) = Inu—Inx
ffx) = —1/x

Taylor expansion about mean:

) = F)+ = ) )+ oy o= PP () + 3 (= ) ().

x—i
Px;u) ~ ke 20
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P(x;u) ~ ke 20
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* Even for relatively small p, (apart from in the extreme tails), a Gaussian
Distribution is a pretty good approximation

*Problem 3: for “fun” show that the high statistics limit of a binomial distribution is
a Gaussian of width o2=np(1-p)
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Next Time
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* Investigate the treatment of statistics in the Gaussian Limit
The central limit theorem

Gaussian errors

Error propagation

Combination of measurements
Multi-dimensional Gaussian errors
Error Matrix
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