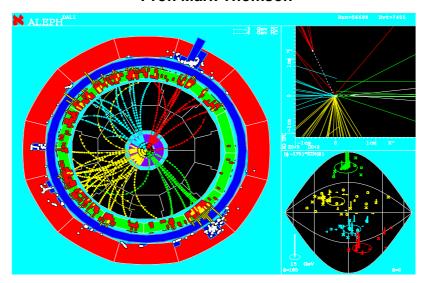
Statistics

Lent Term 2015 Prof. Mark Thomson



Lecture 1: Back to Basics

Prof. M.A. Thomson Lent Term 2015

Course Synopsis

Lecture 1: Back to basics

Introduction, Probability distribution functions, Binomial distributions, Poisson distribution

Lecture 2: The Gaussian Limit

The central limit theorem, Gaussian errors, Error propagation, Combination of measurements, Multidimensional Gaussian errors, Error Matrix

Lecture 3: Fitting and Hypothesis Testing

The χ^2 test, Likelihood functions, Fitting, Binned maximum likelihood. Unbinned maximum likelihood

Lecture 4: Dark Arts

Bayesian statistics, Confidence intervals, systematic errors.

Experimental Physics

- ★ Experimental science concerned with two types of experimental measurement:
 - Measurement of a quantity: parameter estimation
 - Tests of a theory/model : hypothesis testing
- ★ For parameter estimation we usually have some data (a set of measurements) and from which we want to obtain
 - The best estimate of the true parameter; "the measured value"
 - The best estimate of how well we have measured the parameter; "the uncertainty"
- ★ For hypothesis testing we usually have some data (a set of measurements) and one or more theoretical models, and want
 - A measure of how consistent our data are with the model; "a probability"
 - Which model best describes our data; "a relative probability"

To address the above questions we need to use <u>and understand statistical</u> techniques

- ★ In these 5±1 lectures we will cover most aspects of statistics as applied to experimental high energy physics:
 - Nothing will be stated without proof (or at least justification).
 - Understanding the derivations will help you to understand the basis behind the statistical techniques

Prof. M.A. Thomson Lent Term 2015 3

Caveat Emptor

- ★ I will present my own view of Statistics as applied to HEP
 - This is based on years of experience...
 - It is biased towards a probabilistic view with strong (but not too rabid) Bayesian leanings
 - Derivations, explanations, mostly based on the probabilistic view

The path to enlightenment:

- If you measure something always quote an uncertainty
- Understand what you are doing and why
- Don't forget that you are usually estimating the uncertainty
 - e.g. don't worry too much about whether an effect is 2.9 σ and 3.1 σ unlikely you can estimate the uncertainty that well
- Don't worry too much about the difference between Bayesian and Frequentist approaches
 - often give same results
 - if the results are different usually means data are weak
 - so do another experiment

Three Types of "Errors"

Statistical Uncertainties:

- **★** Random fluctuations
 - e.g. shot noise, measuring small currents, how many electrons arrive in a fixed time
 - Tossing a coin N times, how many heads

The main topic of these lectures

Systematic Uncertianies:

- **★** Biases
 - e.g. energy calibration wrong
 - Thermal expansion of measuring device
 - Imperfect theoretical predications

Discussed in the last lecture

Blunders, i.e. errors:

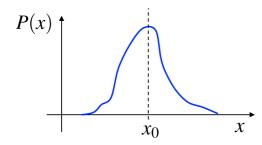
- **★** Mistakes
 - Forgot to include a particular background in analysis
 - Bugs in analysis code

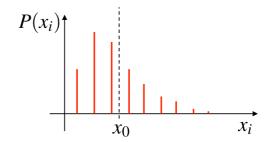
Not discussed, never happen...

Prof. M.A. Thomson Lent Term 2015 5

Probability Distributions

★ Suppose we are trying to measure some quantity with true value X₀ the result of a single measurement follows a probability density function (PDF) which may or may not be of a known form.





★Normalised:

$$\int_{-\infty}^{+\infty} P(x) = 1$$

$$\sum_{i=0}^{\infty} P(x_i) = 1$$

★In general, can parameterise the PDF by its moments α_n

$$\alpha_n = \int x^n P(x) \mathrm{d}x$$

$$\alpha_n = \sum x^n P_i$$

Note: $\alpha_n \equiv \langle x^n \rangle$

Mean and Variance

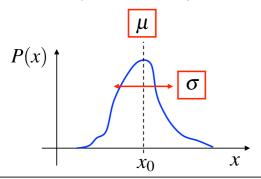
★ Can now define a few important properties of the PDF

<u>Mean:</u> $\mu \equiv \langle x \rangle = \int x P(x) \mathrm{d}x$ "average of many measurements"

Mean of squares: $\langle x^2 \rangle = \int x^2 P(x) dx$

<u>Variance:</u> $Var(x) \equiv \sigma^2 \equiv \langle (x - \mu)^2 \rangle = \int (x - \mu)^2 P(x) dx$

- The variance represents the width of the PDF about the mean
- ullet Convenient to express this in terms of the standard deviation σ
- μ and σ describe the mean and "width" of a PDF
- Sometimes you will see the 3rd and 4th moments used (skewness, kurtosis) (these are not particularly useful)



$$\sigma^{2} \equiv \langle (x - \mu)^{2} \rangle = \langle x^{2} - 2\mu x + \mu^{2} \rangle$$

$$= \langle x^{2} \rangle - 2\mu \langle x \rangle + \mu^{2}$$

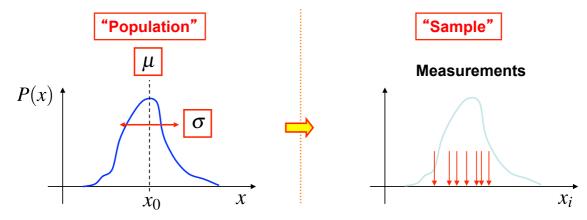
$$= \langle x^{2} \rangle - 2\mu^{2} + \mu^{2}$$

$$= \langle x^{2} \rangle - \mu^{2}$$

Prof. M.A. Thomson Lent Term 2015 7

Estimating the Mean and Variance

- ★ In general do not know the PDF instead have a number of measurements distributed according to the PDF
- ★ Unless one has a infinite number of measurements cannot fully reconstruct the PDF (not a particularly useful thing to do anyway)
- ★ But can obtain unbiased estimates of the mean and variance



★ Best estimate of mean of distribution is the mean of the sample

$$\bar{x} = \frac{1}{n} \sum_{i} x_{i}$$

★ Can also define sample variance

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

- ***** How does sample variance s^2 relate to true variance σ^2 ?
- ★ Can calculate average value of variance

$$\langle s^2 \rangle = \langle (x_i - \overline{x})^2 \rangle$$

$$= \langle x_i^2 \rangle - 2 \langle x_i \frac{1}{n} \sum_j x_j \rangle + \frac{1}{n^2} \langle [\sum_j x_j]^2 \rangle$$

$$= \langle x_i^2 \rangle - \frac{2}{n} \langle x_i^2 + \sum_{j \neq i} x_i x_j \rangle + \frac{1}{n^2} \left(n \langle x_i^2 \rangle + n(n-1) \langle x_i x_j \rangle_{i \neq j} \right)$$

$$= \langle x^2 \rangle - \frac{1}{n} \langle x^2 \rangle + \frac{(n-1)}{n} \langle x_i x_j \rangle_{i \neq j}$$

$$= \frac{(n-1)}{n} \left(\langle x^2 \rangle - \langle x_i x_j \rangle_{i \neq j} \right)$$

$$= \frac{(n-1)}{n} (\langle x^2 \rangle - \mu^2) = \frac{n-1}{n} \sigma^2$$
What assumption

Question 1: prove

$$\langle x_i x_j \rangle_{i \neq j} = \mu^2$$

what assumption have you made?

Prof. M.A. Thomson Lent Term 2015 9

- **\star** Hence, on average, the sample variance is a factor $\frac{n-1}{n}$ smaller than the true variance
- \star For an unbiased estimate of the true variance for a single measurement use:

$$s_{n-1}^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$$

★ For the best unbiased estimate of the true mean use the sample mean:

$$\overline{x} = \frac{1}{n} \sum_{i} x_{i}$$

★ What is the "error" (i.e. square root of the variance) on the sample mean?

$$Var(\overline{x}) \equiv \sigma_{\overline{x}}^{2} = \langle (\overline{x} - \mu)^{2} \rangle$$

$$= \langle (\frac{1}{n} \sum_{i} x_{i} - \mu)^{2} \rangle$$

$$= \frac{1}{n^{2}} n \langle x^{2} \rangle + \frac{n(n-1)}{n^{2}} \langle x_{i} x_{j} \rangle_{i \neq j} - 2\mu \langle \overline{x} \rangle + \mu^{2}$$

$$= \frac{\langle x^{2} \rangle}{n} + \frac{n-1}{n} \mu^{2} - \mu^{2}$$

$$= \frac{\langle x^{2} - \mu^{2} \rangle}{n} = \frac{\sigma^{2}}{n}$$

***** Hence the uncertainty on the mean is \sqrt{n} smaller than the uncertainty on a single measurement

$$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$$

- ★ Note: this is general result doesn't rely on distribution
- ***** Of course we only have an estimate of σ , so our best (unbiased) estimate of the uncertainty on the mean is: $\sigma_{\overline{x}} = \frac{1}{\sqrt{n}} s_{n-1}$
- ★ There is one final question we can ask... what is the uncertainty on our estimate of the uncertainty. The answer to this question depends on the form of the PDF.
 - We'll come back to this in the context of a Gaussian distribution.....

QUESTION 2 (~IA Physics):

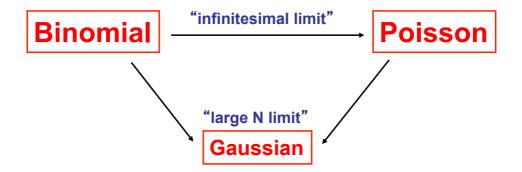
Given 5 measurements of a quantity x: 10.2, 5.5, 6.7, 3.4, 3.5

What is the best estimate of *x* and what is the estimated uncertainty? For later, how well do you know the uncertainty?

Prof. M.A. Thomson Lent Term 2015 11

Special Probability Distributions

- **★** So far, dealt in generalities
- **★** Now consider some special distributions...
- **★ Simplest case "Binomial distribution"**
 - Random process with two outcomes with probabilities p and (1-p)
 - Repeat process a fixed number of times ⇒ distribution of outcomes
- **★ Next simplest**, "Poisson distribution"
 - Discrete random process with fixed mean
- **★ Then, "Gaussian distribution"**
 - Continuous "high statistics" limit



Binomial Distribution

★ Applies for a fixed number of trials when there are two possible outcomes, e.g.

• Toss an unbiased coin ten times, how many heads?

$$\overline{x} = \frac{\sum_{r=0}^{n} rP(r)}{\sum_{0}^{n} P(r)} = \sum_{0}^{n} rP(r)$$

$$= \sum_{r=0}^{n} rp^{r} (1-p)^{n-r} \frac{n!}{r!(n-r)!}$$

$$= np \sum_{r=1}^{n} p^{(r-1)} (1-p)^{(n-r)} \frac{(n-1)!}{(r-1)!(n-r)!}$$

$$= np \sum_{r'=0}^{n-1} p^{r'} (1-p)^{(n-1-r')} \frac{(n-1)!}{r'!(n-1-r')!}$$
(n=0 term is zero)
$$= np \sum_{r'=0}^{n-1} p^{r'} (1-p)^{(n-1-r')} \frac{(n-1)!}{r'!(n-1-r')!}$$

$$= np \sum_{r=0}^{n-1} P(r; n-1) \longleftarrow \text{normalised to unity}$$

$$= np$$

★ Hence

$$\overline{x} = np$$

(hardly a surprising result)

Prof. M.A. Thomson Lent Term 2015 13

Variance of the binomial distribution

$$Var(r) = \langle (r - \mu)^2 \rangle = \langle r^2 \rangle - \mu^2$$

$$\langle r^2 \rangle = \frac{\sum r^2 P(r;n)}{P(r;n)} = \sum_{r=0}^n r^2 p^r (1-p)^{n-r} \frac{n!}{r!(n-r)!}$$

$$= np \sum_{r=1}^n r p^{r-1} (1-p)^{n-r} \frac{(n-1)!}{(r-1)!(n-r)!}$$

$$= np \sum_{r'=0}^{n-1} (r'+1) p^{r'} (1-p)^{n-1-r'} \frac{(n-1)!}{r'!(n-1-r')!}$$

$$= np \sum_{r=0}^{n-1} P(r;n-1) + np \sum_{r=0}^{n-1} r P(r;n-1)$$

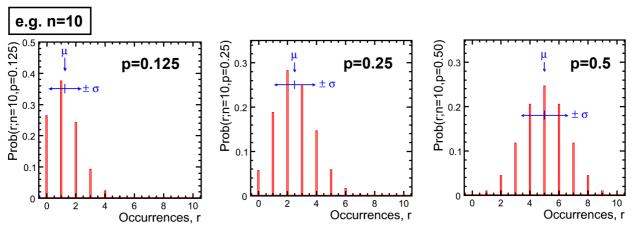
$$= np + np \times (n-1)p$$

$$\langle r^2 \rangle = np(np-p+1)$$

$$Var(r) = \langle r^2 \rangle - \mu^2 = np(np-p+1) + np - (np)^2$$

$$= np(1-p)$$

$$Var(r) = np(1-p)$$



- ★What is the meaning of ♂?
 - By definition, o, is root of the mean square (rms) deviation from the mean

$$\sigma \equiv \langle (r-\mu)^2 \rangle^{\frac{1}{2}}$$

- ullet For a binomial distribution $oldsymbol{\sigma} = \sqrt{np(1-p)}$
- It provides a well-defined measure of the spread about the mean
- For above values: 62 %, 57 %, and 66 % of distribution within ± 1 σ of mean
 Answer depends on n and p, but roughly ~55-70%

Prof M A Thomson Lent Term 2015 15

Example: Efficiency Uncertainty

- **★** Suppose you use MC events to determine a selection efficiency
 - m out n events pass some selection, what is the efficiency and uncertainty
- **★** This is a binomial process (fixed number of trials). Hence the number of events passing the selection will be distributed as:

$$P(m;n) = {}^{n}C_{m}\varepsilon^{m}(1-\varepsilon)^{n-m}$$

- ★ Want to quote *best estimate* of the efficiency and the *best estimate* of the uncertainty (i.e. square root of the variance).
- ***** Best estimate of efficiency is "clearly": $\varepsilon_e = \frac{m}{n}$
- **★** From properties of binomial distribution expect

$$\sigma^{2} = \langle \varepsilon^{2} \rangle = n\varepsilon(1-\varepsilon) \times \frac{1}{n^{2}}$$

$$\sigma^{2} = \frac{\varepsilon(1-\varepsilon)}{n} \qquad \left(= \frac{m(n-m)}{n^{3}} \right)$$

e.g. 90 out of 100 events pass trigger requirements,

$$\varepsilon = 0.90 \pm 0.03$$

A more advanced analysis

***** Asserted that our best estimate of the true efficiency \mathcal{E} is $\mathcal{E}_e = \frac{m}{n}$ Suppose we repeated the experiment many times

$$\langle arepsilon_e
angle = rac{\langle m
angle}{n} = rac{n arepsilon}{n} = arepsilon$$

so on average this procedure gives an unbiased estimate of ${\mathcal E}$

GOOD

★ What about our estimate for the variance?

$$\sigma_e^2 = \frac{\varepsilon_e(1-\varepsilon_e)}{n} = \frac{m(n-m)}{n^3}$$

Again suppose we repeated the experiment many times

$$\langle \sigma_e^2 \rangle = \frac{n \langle m \rangle}{n^3} - \frac{\langle m^2 \rangle}{n^3}$$

$$= \frac{n^2 \varepsilon}{n^3} - \frac{n^2 \varepsilon^2 - n \varepsilon^2 + n \varepsilon}{n^3}$$

$$= \frac{\varepsilon (1 - \varepsilon)}{n} + \frac{\varepsilon (1 - \varepsilon)}{n^2} = \frac{n + 1}{n^2} \varepsilon (1 - \varepsilon)$$

$$= \frac{n + 1}{n} \sigma^2$$

GOOD ENOUGH

Prof. M.A. Thomson Lent Term 2015 17

a problem...

$$\sigma^2 = \frac{\varepsilon(1-\varepsilon)}{n}$$

- **★** Suppose you want to estimate a trigger efficiency based on 100 MC events
- **★** If all the MC events pass the trigger selection...
 - best estimate of efficiency is 100 %
 - but what about the uncertainty on the efficiency ?
 - the above equation would suggest zero
 - this is clearly nonsense
 - so what's wrong?

We'll come back to this in lecture 4...

The Poisson Distribution

- **★Probably the most important distribution for experimental particle physicists**
- **★**Appropriate for discrete counts at a fixed rate
 - e.g. in time t, on average expect μ events

$$p(n;\mu) = \frac{\mu^n e^{-\mu}}{n!}$$

- **★**The form of this equation is not immediately obvious (unlike that of the binomial distribution) so (for completeness) derive the Poisson Distribution...
- **★In time t, on average expect µ events. Now divide t into N intervals of δt**
 - Probability of one event on δt is δp

$$\delta p = \mu \frac{\delta t}{t} = \frac{\mu}{N}$$

- Probability of getting two events is negligibly small
- Hence the problem has been transformed into N trials each with two discrete outcomes, i.e. a binomial distribution

$$p(n;\mu) = \lim_{N \to \infty} \delta p^n (1 - \delta p)^{N-n} \frac{N!}{n!(N-n)!}$$

Prof. M.A. Thomson Lent Term 2015 19

Derivation of the Poisson distribution

$$P = (\delta p)^n (1 - \delta p)^{N-n} \frac{N!}{n!(N-n)!}$$

$$\ln P = n \ln \delta p + (N-n) \ln (1 - \delta p) + \ln N! - \ln n! - \ln (N-n)!$$
First consider:
$$(N-n) \ln (1 - \delta p) = (N-n) [-\delta p + (\delta p)^2 / 2 + ...]$$

$$\approx -N \delta p + n \delta p$$

$$= -\mu + \frac{n}{N} \mu$$
hence
$$\lim_{N \to \infty} \{(N-n) \ln (1 - \delta p)\} = -\mu$$
Stirling's approx
$$\ln \frac{N!}{(N-n)!} = N \ln N - N - (N-n) \ln (N-n) + (N-n)$$

$$= N \ln N + n - (N-n) \ln \left(1 - \frac{n}{N}\right) - (N-n) \ln N$$

$$\approx n \ln N + n + (N-n) \frac{n}{N}$$

$$= \ln N^n + \frac{n^2}{N}$$
hence
$$\lim_{N \to \infty} \left\{ \frac{N!}{(N-n)!} \right\} = N^n$$

So finally,
$$P(n;N) = (\delta p)^n (1 - \delta p)^{N-n} \frac{N!}{n!(N-n)!}$$
 becomes:
$$P(n;\mu) = (\delta p)^n e^{-\mu} \frac{N^n}{n!} = \left(\frac{\mu}{N}\right)^n e^{-\mu} \frac{N^n}{n!}$$

$$P(n;\mu) = \frac{\mu^n e^{-\mu}}{n!}$$

★ Check that the Poisson distribution is normalised...

$$\sum_{n=0}^{\infty} P(n; \mu) = e^{-\mu} \left(1 + \frac{\mu}{1!} + \frac{\mu^2}{2!} + \dots \right)$$
$$= e^{-\mu} e^{+\mu} = 1$$

Prof. M.A. Thomson Lent Term 2015 21

Properties of the Poisson Distribution

Mean

$$\langle n \rangle = \sum_{n=0}^{\infty} nP(n;\mu) = \sum_{n=0}^{\infty} n \frac{\mu^n e^{-\mu}}{n!} \qquad \langle n^2 \rangle = \sum_{n=0}^{\infty} nP(n;\mu) = \sum_{n=0}^{\infty} n^2 \frac{\mu^n e^{-\mu}}{n!}$$

$$= \sum_{n=1}^{\infty} n \frac{\mu^n e^{-\mu}}{n!}$$

$$= \mu \sum_{n=1}^{\infty} \frac{\mu^{n-1} e^{-\mu}}{(n-1)!}$$

$$= \mu \sum_{n=0}^{\infty} \frac{\mu^{n'} e^{-\mu}}{n'!}$$

$$= \mu \sum_{n=0}^{\infty} P(n;\mu)$$

$$= \mu \sum_{n=0}^{\infty} P(n;\mu)$$

$$= \mu \sum_{n=0}^{\infty} P(n;\mu)$$

$$= \mu^2 + \mu$$

$$\langle n \rangle = \mu$$

$$\langle n^2 \rangle = \sum_{n=0}^{\infty} nP(n;\mu) = \sum_{n=0}^{\infty} n^2 \frac{\mu^n e^{-\mu}}{n!}$$

$$= \sum_{n=1}^{\infty} n^2 \frac{\mu^n e^{-\mu}}{n!}$$

$$= \mu \sum_{n=1}^{\infty} n \frac{\mu^{n-1} e^{-\mu}}{(n-1)!}$$

$$= \mu \sum_{n'=0}^{\infty} (n'+1) \frac{\mu^{n'} e^{-\mu}}{n'!}$$

$$= \mu \left\{ \sum_{n=0}^{\infty} nP(n;\mu) + \sum_{n=0}^{\infty} P(n;\mu) \right\}$$

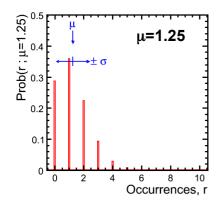
$$= \mu^2 + \mu$$

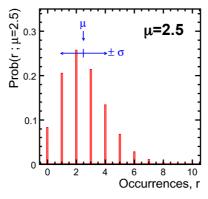
$$\sigma^2 = Var(n) = \langle n^2 \rangle - \langle n \rangle^2$$

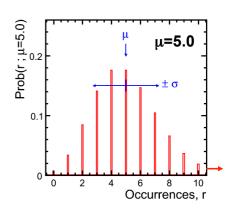
$$= \mu$$

$$\sigma^2 = \mu$$

e.g. μ=1.25, 2.5, 5.0







$$\langle N \rangle = \mu$$
 $\sigma = \sqrt{\mu}$

Prof. M.A. Thomson Lent Term 2015 23

Example I

- ★ Suppose I am trying to measure a cross section for a process
 - ullet observe N events for an integrated luminosity of $\hat{\mathscr{L}}$
 - for this luminosity the expected number of events is

$$\mu = \sigma \mathscr{L}$$

- ullet observed number of events will be Poisson distributed according to μ
- ullet our best unbiased estimate of μ is simply the number of observed events

$$\mu_e = N$$

- for a Poisson distribution the variance is equal to the mean
- hence we can estimate the uncertainty on the estimated mean as \sqrt{N}

$$\mu_e = N \pm \sqrt{N}$$
 $\sigma = \frac{1}{\mathscr{C}}(N \pm \sqrt{N})$

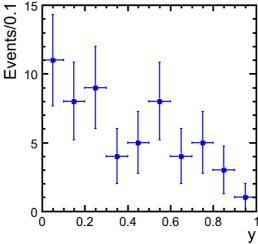
NOTE: if you observe N events, the estimated uncertainty on the mean of the underlying Poisson distribution is \sqrt{N}

: it is not the "error" on N – there is no uncertainty on what you counted

★ Poisson fluctuations are the ultimate limit to any counting experiment

Example II

- ★ Suppose a colleague makes a histogram of event counts as a function of y
 - the histogram includes errors bars (made by root)



- ★ How should you interpret the error bars
 - If symmetric then probably \sqrt{N}
 - i.e. they indicate the expected "spread" assuming the mean expected counts in that bin are equal to the observed value
 - For large N this is not unreasonable
 - But for small N this doesn't make much sense...

Prof. M.A. Thomson Lent Term 2015 25

High Statistics Limit of Poisson Distribution

$$P(n; \mu) = \frac{\mu^n e^{-\mu}}{n!}$$

$$\det f(x) = \ln P(x; \mu)$$

$$= -\mu - \ln x! + x \ln \mu$$

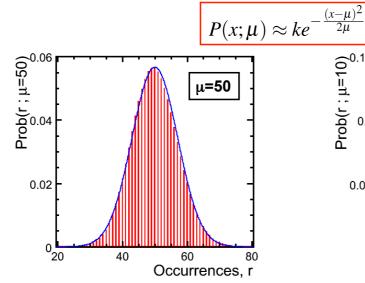
$$\approx -\mu + x \ln x - x + x \ln \mu$$
hence $f'(x) = \ln \mu - \ln x$

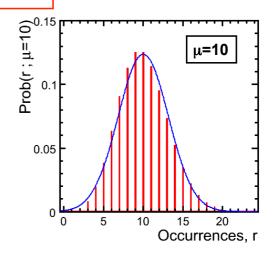
$$f''(x) = -1/x$$

Taylor expansion about mean:

$$f(x) = f(\mu) + (x - \mu)f'(\mu) + \frac{1}{2!}(x - \mu)^2 f''(\mu) + \frac{1}{3!}(x - \mu)^3 f'''(\mu)...$$
$$= f(\mu) - \frac{(x - \mu)^2}{2\mu} + \frac{(x - \mu)^3}{6\mu^2} + ...$$

$$P(x;\mu) \approx ke^{-\frac{(x-\mu)^2}{2\mu}}$$





- ★ Even for relatively small μ, (apart from in the extreme tails), a Gaussian Distribution is a pretty good approximation
- •Problem 3: for "fun" show that the high statistics limit of a binomial distribution is a Gaussian of width σ²=np(1-p)

Prof M A Thomson Lent Term 2015 27

Next Time

★ Investigate the treatment of statistics in the Gaussian Limit

The central limit theorem
Gaussian errors
Error propagation
Combination of measurements
Multi-dimensional Gaussian errors
Error Matrix