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Lent Term 2015 
Prof. Mark Thomson 

Lecture 1 : Back to Basics  

Statistics 
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Course Synopsis 
   Lecture     1: Back to basics  
                            Introduction, Probability distribution functions, Binomial 
                            distributions, Poisson distribution  
   Lecture     2: The Gaussian Limit 
                            The central limit theorem, Gaussian errors, Error  
                             propagation, Combination of measurements, Multi- 
                             dimensional Gaussian errors, Error Matrix    
   Lecture     3:  Fitting and Hypothesis Testing 
                             The χ2 test, Likelihood functions, Fitting, Binned maximum  
                               likelihood, Unbinned maximum likelihood 
   Lecture     4:  Dark Arts 
                             Bayesian statistics, Confidence intervals, systematic errors. 
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Experimental Physics 
!  Experimental science concerned with two types of experimental measurement:  

"  Measurement of a quantity :  parameter estimation 
"  Tests of a theory/model      :  hypothesis testing  

!  For parameter estimation we usually have some data (a set of measurements) and 
       from which we want to obtain 

"  The best estimate of the true parameter; �the measured value�� 
"  The best estimate of how well we have measured the parameter; �the uncertainty� 

!  For hypothesis testing we usually have some data (a set of measurements) and 
       one or more theoretical models, and want  

"  A measure of how consistent our data are with the model; �a probability�� 
"  Which model best describes our data; �a relative probability�� 

To address the above questions we need to  
use and understand statistical techniques 

!  In these 5±1 lectures we will cover most aspects of statistics as applied to  
      experimental high energy physics: 

"  Nothing will be stated without proof (or at least justification). 
"  Understanding the derivations will help you to understand the basis behind the 
      statistical techniques  
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Caveat Emptor 
!  I will present my own view of Statistics as applied to HEP 

#  This is based on years of experience… 
#  It is biased towards a probabilistic view with strong (but not too rabid)  
      Bayesian leanings 
#  Derivations, explanations, mostly based on the probabilistic view 

The path to enlightenment: 
#  If you measure something always quote an uncertainty  
#  Understand what you are doing and why 
#  Don�t forget that you are usually estimating the uncertainty 

•  e.g.  don�t worry too much about whether an effect is 2.9σ and 3.1σ  
           unlikely you can estimate the uncertainty that well 

#  Don�t worry too much about the difference between Bayesian and 
    Frequentist approaches 

•  often give same results 
•  if the results are different – usually means data are weak 
                                              – so do another experiment  
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Three Types of �Errors� 
Statistical Uncertainties: 

Systematic Uncertianies: 

Blunders, i.e. errors: 

!  Random fluctuations 
"  e.g. shot noise, measuring small currents,  
          how many electrons arrive in a fixed time 
"  Tossing a coin N times, how many heads  

!  Biases 
"  e.g. energy calibration wrong 
"  Thermal expansion of measuring device 
"  Imperfect theoretical predications  

!  Mistakes 
"  Forgot to include a particular background 
     in analysis 
"  Bugs in analysis code 

The main topic of  
 these lectures 

Discussed in the last 
 lecture 

Not discussed, never 
 happen… 
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Probability Distributions 
!  Suppose we are trying to measure some quantity with true value       the result 
        of a single measurement follows a probability density function (PDF) which may  
        or may not be of a known form.  

! Normalised: 

! In general, can parameterise the PDF by its moments  

Note:             
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Mean and Variance 
!  Can now define a few important properties of the PDF  

Mean of squares: 

Mean: 

Variance: 

�average of many measurements� 

#  The variance represents the width of the PDF about the mean 
#  Convenient to express this in terms of the standard deviation 
#       and        describe the mean and �width� of a PDF 
#  Sometimes you will see the 3rd and 4th moments used (skewness, kurtosis) 
    (these are not particularly useful)          
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Estimating the Mean and Variance 
!  In general do not know the PDF – instead have a number of measurements 
      distributed according to the PDF 
!  Unless one has a infinite number of measurements cannot fully reconstruct  
      the PDF (not a particularly useful thing to do anyway) 
!  But can obtain unbiased estimates of the mean and variance    

Measurements 

!  Best estimate of mean of distribution is the mean of the sample 

�Population� �Sample� 
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!  Can also define sample variance 

!  How does sample variance       relate to true variance       ?  
!  Can calculate average value of variance         

Question 1: prove 

what assumption have you made? 
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!  Hence, on average, the sample variance is a factor          smaller than the true variance 
!  For an unbiased estimate of the true variance for a single measurement use:       

!  For the best unbiased estimate of the true mean use the sample mean:       

!  What is the �error� (i.e. square root of the variance) on the sample mean ?     
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!  Hence the uncertainty on the mean is         smaller than the uncertainty on a single  
          measurement    

!  Note: this is general result – doesn�t rely on distribution    

!  Of course we only have an estimate of       , so our best (unbiased) estimate of the  
     uncertainty on  the mean is:     

!  There is one final question we can ask… what is the uncertainty on our estimate 
       of the uncertainty.  The answer to this question depends on the form of the 
       PDF.  

•  We�ll come back to this in the context of a Gaussian distribution….. 

QUESTION 2 (~IA Physics): 

Given 5 measurements of a quantity x: 10.2, 5.5, 6.7, 3.4, 3.5 
What is the best estimate of x and what is the estimated uncertainty? 
For later, how well do you know the uncertainty?     
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Special Probability Distributions 
!  So far, dealt in generalities 
!  Now consider some special distributions… 
!  Simplest case �Binomial distribution� 

"  Random process with two outcomes with probabilities  p and (1-p)  
"  Repeat process a fixed number of times          distribution of outcomes  

Binomial Poisson 

Gaussian 

�infinitesimal limit� 

�large N limit� 

!  Next simplest,  �Poisson distribution� 
"  Discrete random process with fixed mean 

!  Then,  �Gaussian distribution� 
"  Continuous �high statistics� limit 
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Binomial Distribution 
!  Applies for a fixed number of trials when there are two possible outcomes, e.g. 

"  Toss an unbiased coin ten times, how many heads ?  

(n=0 term is zero)  

(let r� = r-1)  

!  Hence  (hardly a surprising result) 

normalised to unity 
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Variance of the binomial distribution 
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p=0.125 p=0.25 p=0.5 

e.g. n=10 

! What is the meaning of σ ? 
#  By definition, σ, is root of the mean square (rms) deviation from the mean  

#  For a binomial distribution   
#  It provides a well-defined measure of the spread about the mean   
#  For above values:   62 %,   57 %, and 66 % of distribution within ± 1 σ  of mean 

Answer depends on n and p, but roughly ~55-70%  

Prof. M.A. Thomson Lent Term 2015 16 

Example: Efficiency Uncertainty 
!  Suppose you use MC events to determine a selection efficiency 

"  m out n events pass some selection, what is the efficiency and uncertainty  
!  This is a binomial process (fixed number of trials). Hence the number of events 
       passing the selection will be distributed as:       

!  Want to quote best estimate of the efficiency and the best estimate of the  
      uncertainty (i.e. square root of the variance).   

!  Best estimate of efficiency is �clearly�: 

!  From properties of binomial distribution expect 

e.g. 90 out of 100 events pass trigger requirements,  
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A more advanced analysis 

!  What about our estimate for the variance ?   

!  Asserted that our best estimate of the true efficiency       is  
   Suppose we repeated the experiment many times 

   so on average this procedure gives an unbiased estimate of  

   Again suppose we repeated the experiment many times 

GOOD 

GOOD ENOUGH 
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a problem… 

!  Suppose you want to estimate a trigger efficiency based on 100 MC events 
!  If all the MC events pass the trigger selection… 

#  best estimate of efficiency is 100 % 
#  but what about the uncertainty on the efficiency ? 
#  the above equation would suggest zero 
#  this is clearly nonsense 
#  so what�s wrong ?  

We�ll come back to this in lecture 4… 
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The Poisson Distribution 
! Probably the most important distribution for experimental particle physicists 
! Appropriate for discrete counts at a fixed rate  

#  e.g. in time t, on average expect µ events 
 

! The form of this equation is not immediately obvious (unlike that of the binomial 
      distribution) – so (for completeness) derive the Poisson Distribution… 
! In time t, on average expect µ events. Now divide t into N intervals of δt 

•   Probability of one event on δt is δp 

•  Probability of getting two events is negligibly small 
•  Hence the problem has been transformed into N trials each with two discrete 
     outcomes, i.e. a binomial distribution  

Prof. M.A. Thomson Lent Term 2015 20 

First consider: 

Now consider: 

hence 

hence 

Derivation of the Poisson distribution 

Stirling�s approx 
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So finally, 

becomes: 

!  Check that the Poisson distribution is normalised… 
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Properties of the  Poisson Distribution 

Mean 
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µ=1.25 µ=2.5 µ=5.0 

e.g. µ=1.25, 2.5, 5.0 
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Example I 
!  Suppose I am trying to measure a cross section for a process 

#  observe N events for an integrated luminosity of  
#  for this luminosity the expected number of events is 

 
#  observed number of events will be Poisson distributed according to  
#  our best unbiased estimate of        is simply the number of observed events  

#  for a Poisson distribution the variance is equal to the mean  
#  hence we can estimate the uncertainty on the estimated mean as  

!  Poisson fluctuations are the ultimate limit to any counting experiment 

NOTE: if you observe N events, the estimated uncertainty on the mean of the 
             underlying Poisson distribution is √N 
           : it is not the �error� on N – there is no uncertainty on what you counted  
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Example II 
!  Suppose a colleague makes a histogram of event counts as a function of y 

#  the histogram includes errors bars (made by root) 

!  How should you interpret the error bars 
#  If symmetric then probably 
#  i.e. they indicate the expected �spread� assuming the mean expected  
       counts in that bin are equal to the observed value 
#  For large N this is not unreasonable    
#  But for small N this doesn�t make much sense…  
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High Statistics Limit of Poisson Distribution 

Taylor expansion about mean: 
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# Problem 3: for �fun� show that the high statistics limit of a binomial distribution is 
                     a Gaussian of width σ2=np(1-p) 

µ=50 µ=10 

!  Even for relatively small µ, (apart from in the extreme tails), a Gaussian  
      Distribution is a pretty good approximation  
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!  Investigate the treatment of statistics in the Gaussian Limit 
        The central limit theorem 
        Gaussian errors 
        Error propagation 
        Combination of measurements 
        Multi-dimensional Gaussian errors 
        Error Matrix    

Next Time 


